US11371338B2 - Applied cooling for electronics of downhole tool - Google Patents

Applied cooling for electronics of downhole tool Download PDF

Info

Publication number
US11371338B2
US11371338B2 US16/889,538 US202016889538A US11371338B2 US 11371338 B2 US11371338 B2 US 11371338B2 US 202016889538 A US202016889538 A US 202016889538A US 11371338 B2 US11371338 B2 US 11371338B2
Authority
US
United States
Prior art keywords
tool
tool assembly
electrically conductive
turbine
electronics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/889,538
Other versions
US20210372268A1 (en
Inventor
Alexey Alexeyenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Priority to US16/889,538 priority Critical patent/US11371338B2/en
Assigned to SAUDI ARABIAN OIL COMPANY reassignment SAUDI ARABIAN OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALEXEYENKO, ALEXEY
Priority to PCT/US2021/035124 priority patent/WO2021247484A1/en
Publication of US20210372268A1 publication Critical patent/US20210372268A1/en
Application granted granted Critical
Publication of US11371338B2 publication Critical patent/US11371338B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • E21B47/0175Cooling arrangements
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/001Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry

Definitions

  • the present disclosure relates to subterranean well development, and more specifically, the disclosure relates to the cooling of downhole tools during well development operations.
  • Tools and equipment used within a wellbore during the development of subterranean wells can include electronics that can be temperature sensitive. Electronics employed in downhole drilling tools have working parameters limited by downhole temperature which can exceed 300 degrees Fahrenheit (° F.). Some currently available downhole electronics are designed to work at temperatures below 320° F. If the electronics reach temperatures that exceed the design maximum working temperature of the electronics, the electronics can fail and can result in non-productive time periods during drilling operations.
  • Embodiments of the current application provide systems and method for cooling electronics components of a downhole tool.
  • a compressor assembly is included in the downhole tool.
  • the compressor assembly compresses a coolant fluid.
  • a central heat exchanger of the compressor assembly reduces the temperature of a non-electrically conductive fluid with the coolant.
  • the non-electrically conductive fluid fills the internal volume of the electronics compartment that houses the electronics components.
  • the compressor is powered by a turbine that is part of the downhole tool.
  • the compressor can also drive an impeller that circulates the non-electrically conductive fluid inside of the electronics compartment.
  • a system for cooling an electronics compartment of a downhole tool includes a tool assembly.
  • the tool assembly is an elongated member formed of axially aligned tool units.
  • the tool units include a turbine and the electronics compartment.
  • the electronics compartment has an interior cavity containing electronics components.
  • the tool units further include a compressor powered by the turbine.
  • the compressor is operable to compress a coolant fluid.
  • the compressor has a central heat exchanger operable to cool a non-electrically conductive fluid with the coolant fluid.
  • An impeller is rotated by the turbine. The impeller is operable to circulate the non-electrically conductive fluid past the electronics components.
  • a centralizer can circumscribe the tool assembly and be operable to centralize the tool assembly within an outer tool tubular.
  • the outer tool tubular can be secured in-line with a drilling string.
  • the tool assembly can define a measurement while drilling downhole tool.
  • the tool assembly can have an axial length in a range of 5 meters to 10 meters.
  • the electronics components can be submerged within the non-electrically conductive fluid.
  • a system for cooling an electronics compartment of a downhole tool includes a tool assembly.
  • the tool assembly is an elongated member formed of axially aligned tool units.
  • the tool units include a turbine located at a downhole end of the tool assembly.
  • the tool units further include a rotary compressor located axially adjacent to the turbine and rotated by the turbine.
  • the rotary compressor is operable to compress a coolant fluid.
  • the rotary compressor has a central heat exchanger operable to cool a non-electrically conductive fluid with the coolant fluid.
  • the tool units further include the electronics compartment that is located axially adjacent to the rotary compressor.
  • the electronics compartment has an interior cavity containing electronics components.
  • An impeller is rotated by the turbine. The impeller is operable to direct the non-electrically conductive fluid from the rotary compressor to the electronics compartment.
  • a centralizer can circumscribe the tool assembly and be operable to centralize the tool assembly within an outer tool tubular.
  • the outer tool tubular can be secured in-line with a drilling string.
  • An outer heat exchanger of the compressor can be in thermal communication with a flow of fluid external to the tool assembly that is within the outer tool tubular.
  • the tool assembly can have an axial length in a range of 5 meters to 10 meters.
  • the electronics components can be submerged within the non-electrically conductive fluid.
  • a method for cooling an electronics compartment of a downhole tool includes forming a tool assembly.
  • the tool assembly is an elongated member formed of axially aligned tool units.
  • the tool units include a turbine and the electronics compartment.
  • the electronics compartment has an interior cavity containing electronics components.
  • the tool units further include a compressor with a central heat exchanger.
  • the tool units also has an impeller.
  • the method further includes powering the compressor with the turbine to compress a coolant fluid and cooling a non-electrically conductive fluid with the coolant fluid in the central heat exchanger.
  • the impeller is rotated with the turbine to circulate the non-electrically conductive fluid past the electronics components.
  • the tool assembly can be centralized within an outer tool tubular with a centralizer circumscribing the tool assembly.
  • the outer tool tubular can be secured in-line with a drilling string.
  • Forming the tool assembly can include forming the tool assembly that is a measurement while drilling downhole tool.
  • Forming the tool assembly can alternately include forming the tool assembly with an axial length in a range of 5 meters to 10 meters.
  • the method can include submerging the electronics components within the non-electrically conductive fluid.
  • FIG. 1 is a partial section view of a subterranean well with a system for cooling an electronics compartment of a downhole tool, in accordance with an embodiment of this disclosure.
  • FIG. 2 is a schematic partial section view of a system for cooling an electronics compartment of a downhole tool, in accordance with an embodiment of this disclosure.
  • the words “comprise,” “has,” “includes”, and all other grammatical variations are each intended to have an open, non-limiting meaning that does not exclude additional elements, components or steps.
  • Embodiments of the present disclosure may suitably “comprise”, “consist” or “consist essentially of” the limiting features disclosed, and may be practiced in the absence of a limiting feature not disclosed. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step.
  • the term “substantially equal” means that the values being referenced have a difference of no more than two percent of the larger of the values being referenced.
  • subterranean well 10 extends downwards from a surface of the earth, which can be a ground level surface or a subsea surface. Bore 12 of subterranean well 10 can extended generally vertically relative to the surface. Bore 12 can alternately include portions that extend generally horizontally or in other directions that deviate from generally vertically from the surface. Subterranean well 10 can be a well associated with hydrocarbon development operations, such as a hydrocarbon production well, an injection well, or a water well.
  • Tubular string 14 extends into bore 12 of subterranean well 10 .
  • Tubular string 14 can be, for example, a drill string, a casing string, or another elongated member lowered into subterranean well 10 .
  • bore 12 is shown as an uncased opening, in embodiments where tubular string 14 is an inner tubular member, bore 12 can be part of an outer tubular member, such as casing.
  • Tubular string 14 can include downhole tools and equipment that are secured in line with joints of tubular string 14 .
  • Tubular string 14 can have, for example, a bottom hole assembly 16 that can include a drill bit 18 .
  • Drill bit 18 can rotate to create bore 12 of subterranean well 10 .
  • Tubular string 14 can further include downhole tool 20 .
  • tubular string 14 is a drill string that can include downhole tool 20 that is a measurement while drilling downhole tool.
  • downhole tool 20 can be another downhole tool that includes electronics components within an electronics compartment that are at risk of overheating.
  • Measurement while drilling tools can utilize instruments such as sensors, gauges, gyroscopes, accelerometers, and magnetometers to provide real time data relating to the drilling operation.
  • the data collected by the downhole measurement while drilling tools can be transmitted to the surface, such as through mud pulse telemetry.
  • the data received at the surface can be interpreted and evaluated to assist the operators in understanding downhole properties and conditions.
  • downhole tool 20 is a measurement while drilling downhole tool.
  • Downhole tool 20 includes tool assembly 22 .
  • Tool assembly 22 is formed of a series of axially aligned tool units.
  • Downhole tool 20 can have an axial length XL that is in a range of 5 meters to 10 meters. In an example embodiment, downhole tool 20 can have an axial length XL of 8 meters.
  • Tool assembly 22 is an elongated member that is centralized within outer tool tubular 24 by centralizers 26 .
  • Centralizers 26 circumscribe tool assembly 22 and centralize tool assembly 22 within outer tool tubular 24 .
  • Outer tool tubular 24 is an elongated tubular member with an internal bore that houses tool assembly 22 .
  • Outer tool tubular 24 can be secured in-line with tubular string 14 .
  • Outer tool tubular 24 can be secured in-line with tubular string 14 by common connection systems, such as by threaded connections, flange connections, or other known drill string connector systems.
  • Outer tool tubular 24 can have an outer diameter that is consistent with the outer diameter of joints of tubular string 14 .
  • the tool units of tool assembly 22 can include turbine 28 .
  • Turbine 28 can be located at a downhole end of tool assembly 22 .
  • Turbine 28 can provide the power for the operation of tool assembly 22 .
  • a flow of fluid, such as a flow of drilling fluid, over a rotor of turbine 28 can transmit a rotational force to an alternator that can generate an electrical current.
  • the tool units of tool assembly 22 can further include electronics compartment 30 .
  • Electronics compartment 30 has an interior cavity containing electronics components 32 .
  • Electronics components 32 can include, for example, a circuit printed board assembly, a memory, a processor, and sensors
  • the tool units of tool assembly 22 can also include mud pulse modulator 34 located at an uphole end of tool assembly 22 .
  • Mud pulse modulator 34 can be used to transmit data gathered by tool assembly 22 to the surface.
  • mud pulse modulator 34 can convert data gathered by tool assembly 22 to an amplitude- or frequency-modulated pattern of mud pulses, which mud pulses are received at the surface for interpretation.
  • the tool units of tool assembly 22 can still further include cooling system 36 to lower the temperature of electronics components 32 .
  • Cooling system 36 includes compressor 38 .
  • compressor 38 is a rotary compressor powered by turbine 28 .
  • Compressor 38 can be located axially adjacent to turbine 28 .
  • Compressor 38 can compress a coolant fluid.
  • the coolant fluid will cool down central heat exchanger 39 .
  • Central heat exchanger 39 will in turn cool down a non-electrically conductive fluid that fills electronics compartment 30 .
  • the non-electrically conductive fluid can be 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone (3MTM NovecTM) or similar fluid. Due to the non-electrically conductive properties of the non-electrically conductive fluid, electronics components 32 can be submerged within the non-electrically conductive fluid. This allows for direct cooling of electronics components 32 by the non-electrically conductive fluid.
  • the non-electrically conductive fluid can be circulated past electronics components 32 by impeller 40 .
  • Impeller 40 is mechanically connected to power shaft 42 . Power shaft 42 is rotated by turbine 28 . Therefore, impeller 40 is rotated by turbine 28 by way of power shaft 42 .
  • Impeller 40 is shaped and positioned so that as impeller 40 rotates, impeller 40 directs the cooled non-electrically conductive fluid from central heat exchanger 39 of the compressor 38 to electronics compartment 30 .
  • the non-electrically conductive fluid As the non-electrically conductive fluid is circulated past electronics components 32 , the non-electrically conductive fluid will be warmed as the non-electrically conductive fluid absorbs heat from electronics components 32 . The warmed non-electrically conductive fluid will circulate back to central heat exchanger 39 of compressor 38 to be cooled.
  • a radially outward portion of compressor 38 can include outer heat exchanger 44 .
  • Outer heat exchanger 44 is in thermal communication with a flow of fluid external to tool assembly 22 that is within outer tool tubular 24 .
  • Outer heat exchanger 44 can allow the coolant fluid to lose heat to the flow of fluid, such as a flow of drilling fluid, along an exterior surface of tool assembly 22 .
  • the flow of fluid can be through annulus 48 that is defined between an outer diameter surface of tool assembly 22 and an inner diameter surface of outer tool tubular 24 .
  • the non-electrically conductive fluid can contact central heat exchanger 39 and be cooled down by the coolant fluid.
  • the cooled non-electrically conductive fluid will be directed towards fluid guides 50 with flow created by impeller 40 .
  • Fluid guides 50 extend generally axially from compressor 38 towards electronics compartment 30 creating a flow path allowing the non-electrically conductive fluid to circulate freely between central heat exchanger 39 and electronics compartment 30 .
  • the cooled non-electrically conductive fluid is directed towards impeller 40 by fluid guides 50 .
  • Impeller 40 will in turn direct the cooled non-electrically conductive fluid towards electronics compartment 30 .
  • the non-electrically conductive fluid departs central heat exchanger 39 of compressor 38 as cooled non-electrically conductive fluid 100 . Cooled non-electrically conductive fluid 100 then passes through electronics compartment 30 . As cooled non-electrically conductive fluid 100 circulates through electronics compartment 30 , an amount of heat will be transferred into cooled non-electrically conductive fluid 100 from electronics components 32 to form heated non-electrically conductive fluid 110 . Heated non-electrically conductive fluid 110 circulates back to central heat exchanger 39 guided by fluid guides 50 . As the heated non-electrically conductive fluid passes through central heat exchanger 39 , an amount of heat will be removed from the heated non-electrically conductive fluid 110 to form cooled non-electrically conductive fluid 100 .
  • tubular string 14 can be a drill string used to drill subterranean well 10 .
  • Downhole tool 20 can be secured in-line as part of tubular string 14 .
  • downhole tool 20 can include electronics components 32 that can become heated by the high temperature conditions of the wellbore downhole.
  • cooling system 36 can be used to reduce the temperature of electronics components 32 .
  • Cooled non-electrically conductive fluid 100 can be directed into electronics compartment 30 and over and past electronics components 32 .
  • Electronics components 32 can be submerged in the non-electrically conductive fluid so that heat from electronics components 32 can be directly transferred to the non-electrically conductive fluid.
  • Embodiments described in this disclosure therefore provide systems and methods for cooling downhole electronics that will increase the downhole temperature range and depth where such electronics can be used.
  • the cooling of the electronics component can reduce the failure rate, and can increase the quality and the longevity of downhole measurements by such electronics components.
  • Embodiments of this disclosure are well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others that are inherent. While embodiments of the disclosure has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present disclosure and the scope of the appended claims.

Abstract

Systems and methods for cooling an electronics compartment of a downhole tool include a tool assembly. The tool assembly is an elongated member formed of axially aligned tool units. The tool units include a turbine and the electronics compartment. The electronics compartment has an interior cavity containing electronics components. The tool units further include a compressor powered by the turbine. The compressor is operable to compress a coolant fluid. The compressor has a central heat exchanger operable to cool a non-electrically conductive fluid with the coolant fluid. An impeller is rotated by the turbine. The impeller is operable to circulate the non-electrically conductive fluid past the electronics components.

Description

BACKGROUND OF THE DISCLOSURE 1. Field of the Disclosure
The present disclosure relates to subterranean well development, and more specifically, the disclosure relates to the cooling of downhole tools during well development operations.
2. Description of the Related Art
Tools and equipment used within a wellbore during the development of subterranean wells can include electronics that can be temperature sensitive. Electronics employed in downhole drilling tools have working parameters limited by downhole temperature which can exceed 300 degrees Fahrenheit (° F.). Some currently available downhole electronics are designed to work at temperatures below 320° F. If the electronics reach temperatures that exceed the design maximum working temperature of the electronics, the electronics can fail and can result in non-productive time periods during drilling operations.
SUMMARY OF THE DISCLOSURE
Embodiments of the current application provide systems and method for cooling electronics components of a downhole tool. A compressor assembly is included in the downhole tool. The compressor assembly compresses a coolant fluid. A central heat exchanger of the compressor assembly reduces the temperature of a non-electrically conductive fluid with the coolant. The non-electrically conductive fluid fills the internal volume of the electronics compartment that houses the electronics components. The compressor is powered by a turbine that is part of the downhole tool. The compressor can also drive an impeller that circulates the non-electrically conductive fluid inside of the electronics compartment.
In an embodiment of this disclosure, a system for cooling an electronics compartment of a downhole tool includes a tool assembly. The tool assembly is an elongated member formed of axially aligned tool units. The tool units include a turbine and the electronics compartment. The electronics compartment has an interior cavity containing electronics components. The tool units further include a compressor powered by the turbine. The compressor is operable to compress a coolant fluid. The compressor has a central heat exchanger operable to cool a non-electrically conductive fluid with the coolant fluid. An impeller is rotated by the turbine. The impeller is operable to circulate the non-electrically conductive fluid past the electronics components.
In alternate embodiments, a centralizer can circumscribe the tool assembly and be operable to centralize the tool assembly within an outer tool tubular. The outer tool tubular can be secured in-line with a drilling string. The tool assembly can define a measurement while drilling downhole tool. The tool assembly can have an axial length in a range of 5 meters to 10 meters. The electronics components can be submerged within the non-electrically conductive fluid.
In an alternate embodiment of this disclosure, a system for cooling an electronics compartment of a downhole tool includes a tool assembly. The tool assembly is an elongated member formed of axially aligned tool units. The tool units include a turbine located at a downhole end of the tool assembly. The tool units further include a rotary compressor located axially adjacent to the turbine and rotated by the turbine. The rotary compressor is operable to compress a coolant fluid. The rotary compressor has a central heat exchanger operable to cool a non-electrically conductive fluid with the coolant fluid. The tool units further include the electronics compartment that is located axially adjacent to the rotary compressor. The electronics compartment has an interior cavity containing electronics components. An impeller is rotated by the turbine. The impeller is operable to direct the non-electrically conductive fluid from the rotary compressor to the electronics compartment.
In alternate embodiments, a centralizer can circumscribe the tool assembly and be operable to centralize the tool assembly within an outer tool tubular. The outer tool tubular can be secured in-line with a drilling string. An outer heat exchanger of the compressor can be in thermal communication with a flow of fluid external to the tool assembly that is within the outer tool tubular. The tool assembly can have an axial length in a range of 5 meters to 10 meters. The electronics components can be submerged within the non-electrically conductive fluid.
In another embodiment of this disclosure, a method for cooling an electronics compartment of a downhole tool includes forming a tool assembly. The tool assembly is an elongated member formed of axially aligned tool units. The tool units include a turbine and the electronics compartment. The electronics compartment has an interior cavity containing electronics components. The tool units further include a compressor with a central heat exchanger. The tool units also has an impeller. The method further includes powering the compressor with the turbine to compress a coolant fluid and cooling a non-electrically conductive fluid with the coolant fluid in the central heat exchanger. The impeller is rotated with the turbine to circulate the non-electrically conductive fluid past the electronics components.
In alternate embodiments, the tool assembly can be centralized within an outer tool tubular with a centralizer circumscribing the tool assembly. The outer tool tubular can be secured in-line with a drilling string. Forming the tool assembly can include forming the tool assembly that is a measurement while drilling downhole tool. Forming the tool assembly can alternately include forming the tool assembly with an axial length in a range of 5 meters to 10 meters. The method can include submerging the electronics components within the non-electrically conductive fluid.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the features, aspects and advantages of the embodiments of this disclosure, as well as others that will become apparent, are attained and can be understood in detail, a more particular description of the disclosure may be had by reference to the embodiments thereof that are illustrated in the drawings that form a part of this specification. It is to be noted, however, that the appended drawings illustrate only certain embodiments of the disclosure and are, therefore, not to be considered limiting of the disclosure's scope, for the disclosure may admit to other equally effective embodiments.
FIG. 1 is a partial section view of a subterranean well with a system for cooling an electronics compartment of a downhole tool, in accordance with an embodiment of this disclosure.
FIG. 2 is a schematic partial section view of a system for cooling an electronics compartment of a downhole tool, in accordance with an embodiment of this disclosure.
DETAILED DESCRIPTION
The disclosure refers to particular features, including process or method steps. Those of skill in the art understand that the disclosure is not limited to or by the description of embodiments given in the specification. The subject matter of this disclosure is not restricted except only in the spirit of the specification and appended Claims.
Those of skill in the art also understand that the terminology used for describing particular embodiments does not limit the scope or breadth of the embodiments of the disclosure. In interpreting the specification and appended Claims, all terms should be interpreted in the broadest possible manner consistent with the context of each term. All technical and scientific terms used in the specification and appended Claims have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs unless defined otherwise.
As used in the Specification and appended Claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly indicates otherwise.
As used, the words “comprise,” “has,” “includes”, and all other grammatical variations are each intended to have an open, non-limiting meaning that does not exclude additional elements, components or steps. Embodiments of the present disclosure may suitably “comprise”, “consist” or “consist essentially of” the limiting features disclosed, and may be practiced in the absence of a limiting feature not disclosed. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step.
Where a range of values is provided in the Specification or in the appended Claims, it is understood that the interval encompasses each intervening value between the upper limit and the lower limit as well as the upper limit and the lower limit. The disclosure encompasses and bounds smaller ranges of the interval subject to any specific exclusion provided.
As used in this Specification, the term “substantially equal” means that the values being referenced have a difference of no more than two percent of the larger of the values being referenced.
Where reference is made in the specification and appended Claims to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously except where the context excludes that possibility.
Looking at FIG. 1, subterranean well 10 extends downwards from a surface of the earth, which can be a ground level surface or a subsea surface. Bore 12 of subterranean well 10 can extended generally vertically relative to the surface. Bore 12 can alternately include portions that extend generally horizontally or in other directions that deviate from generally vertically from the surface. Subterranean well 10 can be a well associated with hydrocarbon development operations, such as a hydrocarbon production well, an injection well, or a water well.
Tubular string 14 extends into bore 12 of subterranean well 10. Tubular string 14 can be, for example, a drill string, a casing string, or another elongated member lowered into subterranean well 10. Although bore 12 is shown as an uncased opening, in embodiments where tubular string 14 is an inner tubular member, bore 12 can be part of an outer tubular member, such as casing.
Tubular string 14 can include downhole tools and equipment that are secured in line with joints of tubular string 14. Tubular string 14 can have, for example, a bottom hole assembly 16 that can include a drill bit 18. Drill bit 18 can rotate to create bore 12 of subterranean well 10.
Tubular string 14 can further include downhole tool 20. In the example embodiment of FIG. 1, tubular string 14 is a drill string that can include downhole tool 20 that is a measurement while drilling downhole tool. In alternate embodiments, downhole tool 20 can be another downhole tool that includes electronics components within an electronics compartment that are at risk of overheating.
Measurement while drilling tools can utilize instruments such as sensors, gauges, gyroscopes, accelerometers, and magnetometers to provide real time data relating to the drilling operation. The data collected by the downhole measurement while drilling tools can be transmitted to the surface, such as through mud pulse telemetry. The data received at the surface can be interpreted and evaluated to assist the operators in understanding downhole properties and conditions.
Looking at FIG. 2, in an example embodiment downhole tool 20 is a measurement while drilling downhole tool. Downhole tool 20 includes tool assembly 22. Tool assembly 22 is formed of a series of axially aligned tool units. Downhole tool 20 can have an axial length XL that is in a range of 5 meters to 10 meters. In an example embodiment, downhole tool 20 can have an axial length XL of 8 meters.
Tool assembly 22 is an elongated member that is centralized within outer tool tubular 24 by centralizers 26. Centralizers 26 circumscribe tool assembly 22 and centralize tool assembly 22 within outer tool tubular 24.
Outer tool tubular 24 is an elongated tubular member with an internal bore that houses tool assembly 22. Outer tool tubular 24 can be secured in-line with tubular string 14. Outer tool tubular 24 can be secured in-line with tubular string 14 by common connection systems, such as by threaded connections, flange connections, or other known drill string connector systems. Outer tool tubular 24 can have an outer diameter that is consistent with the outer diameter of joints of tubular string 14.
The tool units of tool assembly 22 can include turbine 28. Turbine 28 can be located at a downhole end of tool assembly 22. Turbine 28 can provide the power for the operation of tool assembly 22. A flow of fluid, such as a flow of drilling fluid, over a rotor of turbine 28 can transmit a rotational force to an alternator that can generate an electrical current.
The tool units of tool assembly 22 can further include electronics compartment 30. Electronics compartment 30 has an interior cavity containing electronics components 32. Electronics components 32 can include, for example, a circuit printed board assembly, a memory, a processor, and sensors
The tool units of tool assembly 22 can also include mud pulse modulator 34 located at an uphole end of tool assembly 22. Mud pulse modulator 34 can be used to transmit data gathered by tool assembly 22 to the surface. As an example, mud pulse modulator 34 can convert data gathered by tool assembly 22 to an amplitude- or frequency-modulated pattern of mud pulses, which mud pulses are received at the surface for interpretation.
The tool units of tool assembly 22 can still further include cooling system 36 to lower the temperature of electronics components 32. Cooling system 36 includes compressor 38. In the example embodiment of FIG. 2, compressor 38 is a rotary compressor powered by turbine 28. Compressor 38 can be located axially adjacent to turbine 28.
Compressor 38 can compress a coolant fluid. The coolant fluid will cool down central heat exchanger 39. Central heat exchanger 39 will in turn cool down a non-electrically conductive fluid that fills electronics compartment 30. As an example, the non-electrically conductive fluid can be 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone (3M™ Novec™) or similar fluid. Due to the non-electrically conductive properties of the non-electrically conductive fluid, electronics components 32 can be submerged within the non-electrically conductive fluid. This allows for direct cooling of electronics components 32 by the non-electrically conductive fluid.
The non-electrically conductive fluid can be circulated past electronics components 32 by impeller 40. Impeller 40 is mechanically connected to power shaft 42. Power shaft 42 is rotated by turbine 28. Therefore, impeller 40 is rotated by turbine 28 by way of power shaft 42. Impeller 40 is shaped and positioned so that as impeller 40 rotates, impeller 40 directs the cooled non-electrically conductive fluid from central heat exchanger 39 of the compressor 38 to electronics compartment 30.
As the non-electrically conductive fluid is circulated past electronics components 32, the non-electrically conductive fluid will be warmed as the non-electrically conductive fluid absorbs heat from electronics components 32. The warmed non-electrically conductive fluid will circulate back to central heat exchanger 39 of compressor 38 to be cooled.
A radially outward portion of compressor 38 can include outer heat exchanger 44. Outer heat exchanger 44 is in thermal communication with a flow of fluid external to tool assembly 22 that is within outer tool tubular 24. Outer heat exchanger 44 can allow the coolant fluid to lose heat to the flow of fluid, such as a flow of drilling fluid, along an exterior surface of tool assembly 22. The flow of fluid can be through annulus 48 that is defined between an outer diameter surface of tool assembly 22 and an inner diameter surface of outer tool tubular 24.
The non-electrically conductive fluid can contact central heat exchanger 39 and be cooled down by the coolant fluid. The cooled non-electrically conductive fluid will be directed towards fluid guides 50 with flow created by impeller 40. Fluid guides 50 extend generally axially from compressor 38 towards electronics compartment 30 creating a flow path allowing the non-electrically conductive fluid to circulate freely between central heat exchanger 39 and electronics compartment 30. The cooled non-electrically conductive fluid is directed towards impeller 40 by fluid guides 50. Impeller 40 will in turn direct the cooled non-electrically conductive fluid towards electronics compartment 30.
The non-electrically conductive fluid departs central heat exchanger 39 of compressor 38 as cooled non-electrically conductive fluid 100. Cooled non-electrically conductive fluid 100 then passes through electronics compartment 30. As cooled non-electrically conductive fluid 100 circulates through electronics compartment 30, an amount of heat will be transferred into cooled non-electrically conductive fluid 100 from electronics components 32 to form heated non-electrically conductive fluid 110. Heated non-electrically conductive fluid 110 circulates back to central heat exchanger 39 guided by fluid guides 50. As the heated non-electrically conductive fluid passes through central heat exchanger 39, an amount of heat will be removed from the heated non-electrically conductive fluid 110 to form cooled non-electrically conductive fluid 100.
In an example of operation, looking at FIG. 1, tubular string 14 can be a drill string used to drill subterranean well 10. Downhole tool 20 can be secured in-line as part of tubular string 14. Looking at FIG. 2, downhole tool 20 can include electronics components 32 that can become heated by the high temperature conditions of the wellbore downhole.
Looking at FIG. 2, cooling system 36 can be used to reduce the temperature of electronics components 32. Cooled non-electrically conductive fluid 100 can be directed into electronics compartment 30 and over and past electronics components 32. Electronics components 32 can be submerged in the non-electrically conductive fluid so that heat from electronics components 32 can be directly transferred to the non-electrically conductive fluid.
Embodiments described in this disclosure therefore provide systems and methods for cooling downhole electronics that will increase the downhole temperature range and depth where such electronics can be used. The cooling of the electronics component can reduce the failure rate, and can increase the quality and the longevity of downhole measurements by such electronics components.
Embodiments of this disclosure, therefore, are well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others that are inherent. While embodiments of the disclosure has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present disclosure and the scope of the appended claims.

Claims (18)

What is claimed is:
1. A system for cooling an electronics compartment of a downhole tool, the system including:
a tool assembly, the tool assembly being an elongated member formed of axially aligned tool units, the tool units including:
a turbine;
the electronics compartment having an interior cavity containing electronics components;
a compressor powered by the turbine, the compressor operable to compress a coolant fluid, the compressor having a central heat exchanger operable to cool a non-electrically conductive fluid with the coolant fluid;
and
an impeller rotated by the turbine, the impeller operable to circulate the non-electrically conductive fluid past the electronics components.
2. The system of claim 1, further including a centralizer circumscribing the tool assembly and operable to centralize the tool assembly within an outer tool tubular.
3. The system of claim 2, where the outer tool tubular is secured in-line with a drilling string.
4. The system of claim 1, where the tool assembly defines a measurement while drilling downhole tool.
5. The system of claim 1, where the tool assembly has an axial length in a range of 5 meters to 10 meters.
6. The system of claim 1, where the electronics components are submerged within the non-electrically conductive fluid.
7. A system for cooling an electronics compartment of a downhole tool, the system including:
a tool assembly, the tool assembly being an elongated member formed of axially aligned tool units, the tool units including:
a turbine located at a downhole end of the tool assembly;
a rotary compressor located axially adjacent to the turbine and rotated by the turbine, the rotary compressor operable to compress a coolant fluid, the rotary compressor having a central heat exchanger operable to cool a non-electrically conductive fluid with the coolant fluid;
the electronics compartment located axially adjacent to the rotary compressor, the electronics compartment having an interior cavity containing electronics components; and
an impeller rotated by the turbine, the impeller operable to direct the non-electrically conductive fluid from the rotary compressor to the electronics compartment.
8. The system of claim 7, further including a centralizer circumscribing the tool assembly and operable to centralize the tool assembly within an outer tool tubular.
9. The system of claim 8, where the outer tool tubular is secured in-line with a drilling string.
10. The system of claim 8, where an outer heat exchanger of the rotary compressor is in thermal communication with a flow of fluid external to the tool assembly that is within the outer tool tubular.
11. The system of claim 7, where the tool assembly has an axial length in a range of 5 meters to 10 meters.
12. The system of claim 7, where electronics components are submerged within the non-electrically conductive fluid.
13. A method for cooling an electronics compartment of a downhole tool, the method including:
forming a tool assembly, the tool assembly being an elongated member formed of axially aligned tool units, the tool units including:
a turbine;
the electronics compartment having an interior cavity containing electronics components;
a compressor with a central heat exchanger; and
an impeller;
powering the compressor with the turbine to compress a coolant fluid;
cooling a non-electrically conductive fluid with the coolant fluid in the central heat exchanger; and
rotating the impeller with the turbine to circulate the non-electrically conductive fluid past the electronics components.
14. The method of claim 13, further including centralizing the tool assembly within an outer tool tubular with a centralizer circumscribing the tool assembly.
15. The method of claim 14, further including securing the outer tool tubular in-line with a drilling string.
16. The method of claim 13, where forming the tool assembly includes forming the tool assembly that is a measurement while drilling downhole tool.
17. The method of claim 13, where forming the tool assembly includes forming the tool assembly with an axial length in a range of 5 meters to 10 meters.
18. The method of claim 13, further including submerging the electronics components within the non-electrically conductive fluid.
US16/889,538 2020-06-01 2020-06-01 Applied cooling for electronics of downhole tool Active 2040-12-30 US11371338B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/889,538 US11371338B2 (en) 2020-06-01 2020-06-01 Applied cooling for electronics of downhole tool
PCT/US2021/035124 WO2021247484A1 (en) 2020-06-01 2021-06-01 Applied cooling for electronics of downhole tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/889,538 US11371338B2 (en) 2020-06-01 2020-06-01 Applied cooling for electronics of downhole tool

Publications (2)

Publication Number Publication Date
US20210372268A1 US20210372268A1 (en) 2021-12-02
US11371338B2 true US11371338B2 (en) 2022-06-28

Family

ID=76601816

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/889,538 Active 2040-12-30 US11371338B2 (en) 2020-06-01 2020-06-01 Applied cooling for electronics of downhole tool

Country Status (2)

Country Link
US (1) US11371338B2 (en)
WO (1) WO2021247484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220356785A1 (en) * 2019-07-04 2022-11-10 Petróleo Brasileiro S.A. - Petrobrás Cooling system for downhole electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371338B2 (en) * 2020-06-01 2022-06-28 Saudi Arabian Oil Company Applied cooling for electronics of downhole tool

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265677A (en) * 1992-07-08 1993-11-30 Halliburton Company Refrigerant-cooled downhole tool and method
US5701751A (en) * 1996-05-10 1997-12-30 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US20040112601A1 (en) * 2002-12-11 2004-06-17 Jean-Michel Hache Apparatus and method for actively cooling instrumentation in a high temperature environment
CN1641185A (en) * 2003-11-06 2005-07-20 施卢默格海外有限公司 Downhole tools with a stirling cooler system
US20060102353A1 (en) * 2004-11-12 2006-05-18 Halliburton Energy Services, Inc. Thermal component temperature management system and method
US20060162931A1 (en) * 2005-01-27 2006-07-27 Schlumberger Technology Corporation Cooling apparatus and method
US20060191682A1 (en) * 2004-12-03 2006-08-31 Storm Bruce H Heating and cooling electrical components in a downhole operation
US20060266064A1 (en) * 2003-11-06 2006-11-30 Schlumberger Technology Corporation Electrical Submersible Pumping Systems Having Stirling Coolers
US7246940B2 (en) 2003-06-24 2007-07-24 Halliburton Energy Services, Inc. Method and apparatus for managing the temperature of thermal components
US7308795B2 (en) * 2004-12-08 2007-12-18 Hall David R Method and system for cooling electrical components downhole
EP2246523A1 (en) 2009-04-30 2010-11-03 Services Pétroliers Schlumberger A cooling apparatus of a downhole tool
US20110079391A1 (en) * 2009-10-06 2011-04-07 Sylvain Bedouet Cooling apparatus and methods for use with downhole tools
US8024936B2 (en) 2004-11-16 2011-09-27 Halliburton Energy Services, Inc. Cooling apparatus, systems, and methods
US8453760B2 (en) 2009-08-25 2013-06-04 Baker Hughes Incorporated Method and apparatus for controlling bottomhole temperature in deviated wells
NO20130156A1 (en) * 2012-02-08 2013-08-09 Visuray Technology Ltd Dressing device for downhole tool
US8826984B2 (en) 2009-07-17 2014-09-09 Baker Hughes Incorporated Method and apparatus of heat dissipaters for electronic components in downhole tools
US9353618B2 (en) * 2012-10-31 2016-05-31 Baker Hughes Incorporated Apparatus and methods for cooling downhole devices
US20170292533A1 (en) * 2016-04-07 2017-10-12 General Electric Company Self-cooling electric submersible pump
US9932817B1 (en) * 2017-02-10 2018-04-03 Vierko Enterprises, LLC Tool and method for actively cooling downhole electronics
US20180347336A1 (en) * 2017-06-02 2018-12-06 Vierko Enterprises, LLC System for improving the usage of a thermoelectric cooler in a downhole tool
CN109630097A (en) 2018-12-05 2019-04-16 西安石油大学 A kind of underground heat disaster component temperature management system and method
CN109653708A (en) * 2018-12-05 2019-04-19 西安石油大学 A kind of device of the component of the cooling downhole tool based on steam compression cycle
US20210372268A1 (en) * 2020-06-01 2021-12-02 Saudi Arabian Oil Company Applied cooling for electronics of downhole tool

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265677A (en) * 1992-07-08 1993-11-30 Halliburton Company Refrigerant-cooled downhole tool and method
US5701751A (en) * 1996-05-10 1997-12-30 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US20040112601A1 (en) * 2002-12-11 2004-06-17 Jean-Michel Hache Apparatus and method for actively cooling instrumentation in a high temperature environment
US6769487B2 (en) * 2002-12-11 2004-08-03 Schlumberger Technology Corporation Apparatus and method for actively cooling instrumentation in a high temperature environment
US7246940B2 (en) 2003-06-24 2007-07-24 Halliburton Energy Services, Inc. Method and apparatus for managing the temperature of thermal components
CN1641185A (en) * 2003-11-06 2005-07-20 施卢默格海外有限公司 Downhole tools with a stirling cooler system
US20060266064A1 (en) * 2003-11-06 2006-11-30 Schlumberger Technology Corporation Electrical Submersible Pumping Systems Having Stirling Coolers
US20060102353A1 (en) * 2004-11-12 2006-05-18 Halliburton Energy Services, Inc. Thermal component temperature management system and method
US8024936B2 (en) 2004-11-16 2011-09-27 Halliburton Energy Services, Inc. Cooling apparatus, systems, and methods
US20060191682A1 (en) * 2004-12-03 2006-08-31 Storm Bruce H Heating and cooling electrical components in a downhole operation
US7308795B2 (en) * 2004-12-08 2007-12-18 Hall David R Method and system for cooling electrical components downhole
US20060162931A1 (en) * 2005-01-27 2006-07-27 Schlumberger Technology Corporation Cooling apparatus and method
US7527101B2 (en) * 2005-01-27 2009-05-05 Schlumberger Technology Corporation Cooling apparatus and method
EP2246523A1 (en) 2009-04-30 2010-11-03 Services Pétroliers Schlumberger A cooling apparatus of a downhole tool
US8826984B2 (en) 2009-07-17 2014-09-09 Baker Hughes Incorporated Method and apparatus of heat dissipaters for electronic components in downhole tools
US8453760B2 (en) 2009-08-25 2013-06-04 Baker Hughes Incorporated Method and apparatus for controlling bottomhole temperature in deviated wells
US8567500B2 (en) 2009-10-06 2013-10-29 Schlumberger Technology Corporation Cooling apparatus and methods for use with downhole tools
US20110079391A1 (en) * 2009-10-06 2011-04-07 Sylvain Bedouet Cooling apparatus and methods for use with downhole tools
US10012054B2 (en) 2012-02-08 2018-07-03 Visuray Technology Ltd. Downhole logging tool cooling device
NO20130156A1 (en) * 2012-02-08 2013-08-09 Visuray Technology Ltd Dressing device for downhole tool
US9353618B2 (en) * 2012-10-31 2016-05-31 Baker Hughes Incorporated Apparatus and methods for cooling downhole devices
US20170292533A1 (en) * 2016-04-07 2017-10-12 General Electric Company Self-cooling electric submersible pump
US9932817B1 (en) * 2017-02-10 2018-04-03 Vierko Enterprises, LLC Tool and method for actively cooling downhole electronics
US20180230793A1 (en) * 2017-02-10 2018-08-16 Vierko Enterprises, LLC of Texas Tool and method for actively cooling downhole electronics
US10358908B2 (en) * 2017-02-10 2019-07-23 Vierko Enterprises, LLC Tool and method for actively cooling downhole electronics
US20180347336A1 (en) * 2017-06-02 2018-12-06 Vierko Enterprises, LLC System for improving the usage of a thermoelectric cooler in a downhole tool
CN109630097A (en) 2018-12-05 2019-04-16 西安石油大学 A kind of underground heat disaster component temperature management system and method
CN109653708A (en) * 2018-12-05 2019-04-19 西安石油大学 A kind of device of the component of the cooling downhole tool based on steam compression cycle
US20210372268A1 (en) * 2020-06-01 2021-12-02 Saudi Arabian Oil Company Applied cooling for electronics of downhole tool

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion for PCT Application No. PCT/US2021/035124 dated Sep. 14, 2021.
Monteiro et al., "Temperature Control of Drilling Fluid with Phase-Change Materials", 2012, https://www.researchgate.net/publication/267345478_Temperature_Control_of_Drilling_Fluid_with_Phase-Change_Materials.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220356785A1 (en) * 2019-07-04 2022-11-10 Petróleo Brasileiro S.A. - Petrobrás Cooling system for downhole electronic device

Also Published As

Publication number Publication date
WO2021247484A1 (en) 2021-12-09
US20210372268A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
CA2795482C (en) Drill bit assembly having electrically isolated gap joint for electromagnetic telemetry
US10100586B2 (en) Downhole electrical connector
US11371338B2 (en) Applied cooling for electronics of downhole tool
US8893822B2 (en) Apparatus and methods for real time communication between drill bit and drilling assembly
US8100195B2 (en) Motor cooling radiators for use in downhole environments
US9004161B2 (en) Apparatus and methods for real time communication in drill strings
US20200295640A1 (en) Power generation with speed dependent magnetic field control
US20180179828A1 (en) Oil and gas well drill pipe electrical and communication assembly
US9222309B2 (en) Drilling apparatus including milling devices configured to rotate at different speeds
US20150129311A1 (en) Motor Integrated Reamer
US10584534B2 (en) Drilling tool with near-bit electronics
US11795809B2 (en) Electronics enclosure for downhole tools
CN111350457B (en) Downhole drilling system
US20220389774A1 (en) Drill String with Centralizer
US20230011364A1 (en) Mud Motor Bearing Assembly for use with a Drilling System

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SAUDI ARABIAN OIL COMPANY, SAUDI ARABIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALEXEYENKO, ALEXEY;REEL/FRAME:052809/0876

Effective date: 20200531

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: EX PARTE QUAYLE ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO EX PARTE QUAYLE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE