US11269126B2 - Light guide, light guide unit, manufacturing method of light guide unit, and electronic device - Google Patents
Light guide, light guide unit, manufacturing method of light guide unit, and electronic device Download PDFInfo
- Publication number
- US11269126B2 US11269126B2 US16/647,438 US201716647438A US11269126B2 US 11269126 B2 US11269126 B2 US 11269126B2 US 201716647438 A US201716647438 A US 201716647438A US 11269126 B2 US11269126 B2 US 11269126B2
- Authority
- US
- United States
- Prior art keywords
- light guide
- attachment
- main body
- guide main
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000003466 welding Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 description 21
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012780 transparent material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0016—Grooves, prisms, gratings, scattering particles or rough surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/102—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/424—Mounting of the optical light guide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4298—Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
Definitions
- the present invention relates to a light guide that guides light, such as infrared light, a light guide unit in which the light guide is installed in a holding member, a manufacturing method of the light guide unit, and an electronic device that installs the light guide or the light guide unit and that can be remotely controlled using light, such as infrared light.
- a light guide that guides incident light to an optical receiving unit is used as an optical receiving apparatus that is used for remotely controlling an electronic device, such as an image display apparatus.
- an infrared light guide member disclosed in Patent Document 1 the light guide member is fixed to the front face of a front panel of an electronic device using an attachment plate, and infrared light that has been input through an incident surface is guided to an optical receiver through an exit surface.
- a light guide 100 as shown in FIG. 10 ( a ) is proposed as another light guide.
- the light guide 100 is integrally formed so that the shape of the light guide 100 becomes approximately a cross, a light guide main body 101 is formed in the longitudinal direction of the light guide 100 , and attachment portions 102 to another member are formed on the both side faces of the light guide main body 101 .
- the shape of the light guide main body 101 is, for example, a rectangular plate, and the attachment portions 102 are, for example, plate-shaped members of which thickness is smaller than that of the light guide main body 101 .
- an incident surface 101 a for infrared rays is formed on one end portion in the longitudinal direction of the light guide main body 101 , and an optical receiving unit 103 can optically receive the infrared rays emitted through an exit surface 101 b , which is provided on the other end portion. Because the light guide 100 does not require an attachment plate, which is a separate member, the parts costs and the assembly costs can be reduced.
- the present invention has been made in view of the above-described problem, and an example object of the present invention is to provide a light guide, a light guide unit, a manufacturing method of the light guide unit, and an electronic device that are capable of reducing loss of the quantity of the incident light that enters the attachment portions from the light guide main body and more effectively guiding the incident light.
- a light guide in accordance with the present invention includes: a light guide main body that guides light input from an incident surface to an exit surface; and an attachment member that is connected to the light guide main body and includes an attachment portion that is to be fixed to another member, wherein the area of a connection surface between the attachment member and the light guide main body is smaller than the cross-sectional area of the attachment portion.
- a light guide unit in accordance with the present invention includes: the above-described light guide; a holding member in which a recessed groove to which the light guide is fitted is formed; a protrusion that is formed in one of the attachment portion and the recessed groove; and a hole portion that is formed in the other of the attachment portion and the recessed groove, the protrusion being inserted into the hole portion, wherein the protrusion is coupled to the hole portion.
- An electronic device in accordance with the present invention includes: a main body of the electronic device; and the above-described light guide that is installed in the main body of the electronic device, wherein the incident surface of the light guide main body is exposed to outside from the main body of the electronic device.
- a manufacturing method of a light guide unit in accordance with the present invention includes: a step of fitting the above-described light guide to a recessed groove that is formed in a holding member and inserting a protrusion that is formed in one of the attachment portion of the light guide and the recessed groove into a hole portion that is formed in the other of the attachment portion of the light guide and the recessed groove; and a step of fixing the protrusion and the hole portion using thermal welding.
- the light guide, the light guide unit, and the electronic device in accordance with the present invention even if the part of the light that has entered the light guide main body deviates to the attachment member to thereby result in loss of the quantity of the light, the lost quantity of the light can be reduced because the area of the connection surface between the attachment member and the light guide main body is smaller than the cross-sectional area of the attachment portion, and the attachment portion can be fixed with high strength because the cross-sectional area of the attachment portion is relatively large.
- the attachment portion of the light guide can be fixed to the recessed groove of the holding member by thermally welding the protrusion and the hole portion.
- FIG. 1 is a perspective view of a light guide in accordance with a first example embodiment of the present invention.
- FIG. 2 shows the light guide shown in FIG. 1 , (a) is a front view, and (b) is a side view.
- FIG. 3 shows a light guide in accordance with a second example embodiment of the present invention, (a) is a perspective view, and (b) is a front view.
- FIG. 4 is a side view showing the light guide and an optical receiving unit.
- FIG. 5 is an exploded perspective view showing the light guide and a holding member.
- FIG. 6 is a perspective view of a light guide unit, in which the light guide is fitted to the holding member.
- FIG. 7 is an exploded perspective view of a display apparatus and a light guide holding unit.
- FIG. 8 is a perspective view of the light guide holding unit shown in FIG. 7 .
- FIG. 9 is a front view of the display apparatus and a partial enlarged view of a bezel.
- FIG. 10 shows a conventional light guide, (a) is a perspective view, (b) is a front view, and (c) is a side view.
- a light guide 1 in accordance with a first example embodiment of the present invention shown in FIG. 1 is provided with a light guide main body 3 that guides light that has been input through an incident surface 3 a to an exit surface 3 b and attachment members 4 that are connected to the light guide main body 3 and that include attachment portions 4 b that are to be fixed to an electronic device, which is another member.
- the thickness of each of the portions (connection surfaces 4 aa ) in which the attachment members 4 come into contact with the light guide main body 3 is smaller than that of the attachment portions 4 b and that of the portions near the attachment portions 4 b . For this reason, the area of each of the connection surfaces 4 aa between the attachment members 4 and the light guide main body 3 is smaller than the cross-sectional area of each of the attachment portions 4 b.
- the light guide 1 is installed in, for example, an electronic device and propagates infrared light that is used for remote control while totally reflecting the infrared light, thereby guiding the infrared light to an optical receiving unit 2 .
- the light guide 1 is integrally formed so that the shape of the light guide 1 becomes, for example, approximately a cross, and the light guide 1 is provided with the light guide main body 3 , of which shape is a rectangular plate, and the attachment members 4 , which protrude from both side faces 3 c of the light guide main body 3 .
- One of the end faces of the light guide main body 3 is the incident surface 3 a , the infrared light enters the incident surface 3 a , the other of the end faces, which is opposite to the incident surface 3 a , is the exit surface 3 b of the infrared light, and the exit surface 3 b faces the optical receiving unit 2 .
- the material of the light guide 1 is a material that has excellent transparency and high optical permeability, for example, resin such as polycarbonate.
- the light guide main body 3 and the attachment members 4 have the same refractive index and they are made of the same material.
- a pair of the attachment members 4 is integrally formed with the both side faces 3 c along the long sides of the light guide main body 3 .
- the attachment members 4 are provided with connection portions 4 a , which are coupled to the side faces 3 c of the light guide main body 3 , and the attachment portions 4 b , which are used to fix the light guide 1 to another member, such as an electronic device.
- the thickness of each of the attachment portions 4 b can be set as appropriate.
- the thickness of each of the attachment portions 4 b is smaller than that of each of the side faces 3 c of the light guide main body 3 , and hole portions 7 are formed in the attachment portions 4 b along the thickness direction thereof. Pins can be fixed to the hole portions 7 by melting the pins through thermal welding while passing the pins through the hole portions 7 .
- each of the connection portions 4 a is smaller than that of each of the attachment portions 4 b , and the connection surfaces 4 aa between the connection portions 4 a and the side faces 3 c of the light guide main body 3 are formed so that the area of each of the connection surfaces 4 aa is smaller than the cross-sectional area of each of the attachment portions 4 b in the thickness direction.
- the cross-sectional area of each of the connection portions 4 a excluding the connection surfaces 4 aa in the thickness direction is approximately the same as or greater than that of each of the connection surfaces 4 aa .
- the cross-sectional area of each of the attachment portions 4 b in the thickness direction means a cross-sectional area that includes the cross-sectional area of each of the pins when the pins penetrate the hole portions 7 . Moreover, it is not preferable to make the cross-sectional area of each of the attachment portions 4 b in the thickness direction the same as that of each of the connection portions 4 a because the strength becomes insufficient.
- the area of each of the connection surfaces 4 aa of the connection portions 4 a is set to approximately half the cross-sectional area of each of the attachment portions 4 b in the thickness direction. For this reason, the quantity of the infrared light that enters the attachment members 4 from the light guide main body 3 is reduced to approximately 1 ⁇ 2, compared to the above-described conventional art.
- the pins are formed in another member, such as an electronic device, to which the light guide 1 is to be fixed, and the pins can be fixed to the hole portions 7 by melting the pins through thermal welding while passing the pins through the hole portions 7 .
- the light guide 1 in accordance with the present example embodiment is formed so that a surface 3 e of the light guide main body 3 is flush with the surfaces, including surface 4 e , of the attachment members 4 , the surface 3 e may be formed so as to be flush with a lower surface, and the surface 3 e of the light guide main body 3 may not be flush with an upper surface and the lower surface.
- the light guide 1 in accordance with the present example embodiment has the above-described structure, and a remote controller radiates, for example, infrared light to enter the infrared light through the incident surface 3 a of the light guide 1 that is installed in the electronic device so as to remotely operate the electronic device.
- the infrared light that has entered the light guide main body 3 propagates while being totally reflected by the side faces 3 c , the upper surface, and the lower surface, emits from the exit surface 3 b , and enters the optical receiving unit 2 .
- a remote operation of the electronic device is performed in accordance with an instruction by the infrared light from the remote controller.
- connection portions 4 a part of the infrared light enters the connection portions 4 a through the connection surfaces 4 aa of the attachment members 4 connected to the side faces 3 c and deviates from the optical path toward the exit surface 3 b .
- the quantity of infrared light that deviates from the optical path toward the exit surface 3 b and enters the attachment members 4 can be reduced because the cross-sectional area of each of the connection surfaces 4 aa of the connection portions 4 a is smaller than that of each of the attachment portions 4 b .
- the strength with which the light guide 1 is fixed is high because each of the attachment portions 4 b is formed so that the thickness and cross-sectional area of each of the attachment portions 4 b are larger than those of each of the connection portions 4 a.
- the area of each of the connection surfaces 4 aa between the attachment members 4 and the light guide main body 3 is smaller than the cross-sectional area of each of the attachment portions 4 b in the thickness direction, and thus the quantity of the part of the infrared light that deviates to the connection portions 4 a from the optical path that goes from the incident surface 3 a of the light guide main body 3 to the exit surface 3 b becomes small and the lost quantity of the light can be reduced.
- the thickness of each of the attachment portions 4 b of the attachment members 4 is larger than that of each of the connection surfaces 4 aa , and thus high strength can be secured when the attachment members 4 are attached to the electronic device.
- the present invention is not limited to the light guide 1 in accordance with the above-described example embodiment, appropriate modification, replacement, and so forth are possible to the extent that the gist of the present invention is not changed, and such modification and replacement are included in the present invention.
- modification and replacement are included in the present invention.
- a light guide, a light guide unit, and an electronic device in accordance with a second example embodiment of the present invention will be described with reference to FIG. 3 to FIG. 9 .
- a light guide main body 11 is integrally formed with first attachment members 12 and second attachment members 13 , which are coupled to the light guide main body 11 and are provided on the both sides of the light guide main body 11 so as to intersect the light guide main body 11 .
- the light guide main body 11 is formed so that the shape of the light guide main body 11 becomes, for example, approximately a rectangular plate, an incident surface 11 a and an exit surface 11 b for infrared light are formed in the both end portions in the longitudinal direction of the light guide main body 11 , and the both side portions of the light guide main body 11 are side faces 11 c .
- the light guide main body 11 is bent by a predetermined angle in an appropriate direction, such as a thickness direction, at a bent portion 11 d near the exit surface 11 b , and thus the exit surface 11 b is disposed in the direction that is approximately orthogonal to the incident surface 11 a .
- An optical receiving unit 2 which faces the exit surface 11 b , is installed at a position near the exit surface 11 b.
- a surface 11 e of the light guide main body 11 is formed so as to be, for example, flush with the surfaces of the first attachment members 12 and the second attachment members 13 , and the first attachment members 12 and the second attachment members 13 are formed so that the thicknesses thereof are smaller than the thickness of the light guide main body 11 .
- a back surface 11 f of the light guide main body 11 forms a slope so that the thickness in the region from the bent portion 11 d to the first attachment members 12 is relatively small and the thickness in the region of the second attachment members 13 is relatively large. For this reason, the shape of the back surface 11 f includes an inclined plane in which the thickness between the surface 11 e and the back surface 11 f increases from the bent portion 11 d toward the incident surface 11 a.
- the first attachment members 12 and the second attachment members 13 are formed in, for example, the direction that is approximately orthogonal to the light guide main body 11 and they are disposed approximately in parallel with each other.
- the first attachment members 12 and the second attachment members 13 are connected to the side faces 11 c of the light guide main body 11 .
- the first attachment members 12 and the second attachment members 13 are formed by connection portions 12 a and 13 a , of which cross-sectional area in the thickness direction is relatively small, and attachment portions 12 b and 13 b , of which cross-sectional area in the thickness direction is relatively large.
- connection surfaces 12 aa and 13 aa between the connection portion 12 a and 13 a and the side faces 11 c of the light guide main body 11 is smaller than the cross-sectional area of each of the attachment portions 12 b and 13 b .
- Hole portions 7 a and 7 b are formed in the attachment portions 12 b and 13 b , respectively, so that the hole portions 7 a and 7 b penetrate the attachment portions 12 b and 13 b.
- two pairs of attachment members including the first attachment members 12 and the second attachment members 13 are formed, and thus the strength when the light guide 10 is attached to another member is high.
- a light guide unit 16 in which the light guide 10 is installed in a holding member 15 , will be described with reference to FIG. 5 and FIG. 6 .
- the shape of the holding member 15 is, for example, approximately a flat plate, and a recessed groove 17 to be fitted to the light guide 10 is formed in the front surface of the holding member 15 .
- a main groove portion 19 is formed at the center of the holding member 15 in the longitudinal direction, and a first attachment groove 20 and a second attachment groove 21 are formed in the direction that is approximately perpendicular to the main groove portion 19 so as to be approximately orthogonal to the main groove portion 19 .
- the bottom portion is removed along the direction toward the second attachment groove 21 , and the main groove portion 19 penetrates to the back surface except that an inclined plane 19 a is provided in the region of the first attachment groove 20 .
- the first attachment groove 20 is a recessed groove portion to which the first attachment members 12 are to be fitted, and first pins 23 a that are to be passed through the hole portions 7 a are formed so as to protrude at the positions where the first pins 23 a face the attachment portions 12 b on the both sides.
- the second attachment groove 21 is a recessed groove portion to which the second attachment members 13 are to be fitted, and second pins 23 b that are to be passed through the hole portions 7 b are formed so as to protrude at the positions where the second pins 23 b face the attachment portions 13 b on the both sides.
- first attachment groove 20 and the second attachment groove 21 are formed along their longitudinal directions so as to have the same depth, a difference in level that corresponds to the difference between the thickness of the connection portions 12 a and 13 a of the first attachment members 12 and the second attachment members 13 and the thickness of the attachment portions 12 b and 13 b may be provided.
- the light guide unit 16 is formed by the light guide 10 and the holding member 15 , which is provided with the recessed groove 17 , to which the light guide 10 is to be fitted.
- the light guide 10 is fitted to the recessed groove 17 of the holding member 15 .
- the first pins 23 a on the both sides in the first attachment groove 20 and the second pins 23 b on the both sides in the second attachment groove 21 are caused to penetrate the hole portions 7 a of the first attachment members 12 and the hole portions 7 b of the second attachment members 13 , respectively.
- the exit surface 11 b protrudes from the holding member 15 through the bent portion 11 d.
- the first pins 23 a and the second pins 23 b are melted and are integrated with the hole portions 7 a and the hole portions 7 b , respectively, by thermally welding the protruding first pins 23 a and the protruding second pins 23 b within the hole portions 7 a of the first attachment members 12 and the hole portions 7 b of the second attachment members 13 .
- the light guide unit 16 can be manufactured in this manner. In the light guide unit 16 , the incident surface 11 a , which is opposite to the exit surface 11 b and faces the optical receiving unit 2 , is exposed to the outside through an end face of the holding member 15 .
- a bezel 28 is disposed on the four circumference portions of a display surface 27 a of the display apparatus 27 shown in FIG. 7 , and these constitute the main body of the electronic device.
- As a fitting portion for example, an installation recess portion 29 is formed in, for example, the bottom of the lower end portion of the bezel 28 , and a light guide holding unit 30 , to which the light guide unit 16 is fixed, is installed in the installation recess portion 29 .
- the light guide holding unit 30 has the structure shown in FIG. 8 .
- part of the shape of the holding member 15 which holds the light guide 10 , is different from the above-described shape. Uneven portions are formed on the both end portions of the holding member 15 , these uneven portions are fitted to uneven portions that are provided in second holding portions 31 described below, and the hole portions and the pins are thermally welded.
- the uneven portions of the second holding members 31 are fitted to the both sides of the holding member 15 , which holds the light guide 10 used for remote control using infrared rays, and the second holding members 31 are attached to third holding members 32 , which are provided outside the second holding members 31 , so as to fit to uneven portions of the third holding members 32 .
- the fitting of the holding member 15 to the second holding members 31 and the fixing of the second holding members 31 to the third holding members 32 are achieved by, for example, inserting the pins 23 of one of the two members into the hole portions 7 of the other of the two members and thermally welding the pins 23 to couple the two members as described above.
- An engagement member 34 is provided on end portions of the holding members 15 , 31 , and 32 , and engagement pins 34 a that are to engage with the installation recess portion 29 of the bezel 28 and fitting pieces 34 b that are provided on the both sides of the engagement pins 34 a are formed on the both end portions of the engagement member 34 along the longitudinal direction of the engagement member 34 .
- the incident surface 11 a of the light guide 10 is exposed to the outside through an end face that is opposite to the engagement member 34 , and the exit surface 11 b , which faces the optical receiving unit 2 , protrudes from the engagement member 34 .
- the engagement member 34 of the light guide holding unit 30 is pushed in the installation recess portion 29 , which is formed on the bottom of the lower portion of the bezel 28 of the display apparatus 27 , to fit the engagement member 34 to the installation recess portion 29 , and the light guide holding unit 30 is fitted to the bezel 28 through the engagement pins 34 a and the fitting pieces 34 b of the engagement member 34 .
- FIG. 9 shows the display apparatus 27 , in which the light guide holding unit 30 is installed.
- an end portion of the light guide holding unit 30 in the thickness direction that is opposite to the engagement member 34 is exposed from the lower portion of the bezel 28 , and the incident surface 11 a of the light guide 10 , which optically receives infrared light, is located at the center of the end portion.
- the infrared light is input to the light guide main body 11 through the incident surface 11 a , emitted from the exit surface 11 b , and received by the optical receiving unit 2 , and the display apparatus 27 can be remotely operated.
- one pair of attachment members 4 or two pairs of attachment members including the first attachment members 12 and the second attachment members 13 , which fix the light guide main bodies 3 and 11 in the light guides 1 and 10 are used, but the number of the attachment portions can be appropriately selected depending on the sizes of the light guides 1 and 10 and/or the required fixing strength.
- the attachment members 4 , the first attachment members 12 , and the second attachment members 13 are not necessarily provided on the both sides of the light guide main bodies 3 and 11 , and they may be provided on one side thereof.
- the numbers of the attachment members 4 , 12 , and 13 which fix the light guide main bodies 3 and 11 , are preferably small because if the numbers of the attachment members 4 , 12 , and 13 are increased, the lost quantity of the infrared light that deviates from the optical path and is introduced to the attachment members 4 , 12 , or 13 is increased and thus the quantity of the light that arrives at the exit surface 3 b or 11 b is decreased.
- the light guide main body 3 and the attachment members 4 are formed by means of integral molding, but they may be formed separately.
- the side faces 3 c of the light guide main body 3 may be connected to the connection surfaces 4 aa of the attachment members 4 using an adhesive.
- the attachment members 4 may be fixed by means of pressure welding so that the connection surfaces 4 aa of the attachment members 4 contact the both side faces 3 c of the light guide main body 3 .
- a similar structure can also be employed in the light guide 10 in accordance with the second example embodiment.
- the light guide main bodies 3 and 11 , the attachment members 4 , the first attachment members 12 , and the second attachment members 13 are preferably made of the same transparent material having the same refractive index.
- adhesives it is preferable to use adhesives made of the same transparent material, such as a polycarbonate resin, or adhesives made of transparent materials having close refractive indices.
- the light guides 1 and 10 are not necessarily installed in the holding member 15 , and they may be directly fixed to another member, such as an electronic device. In this case, it is assumed that the incident surfaces 3 a and 11 a of the light guides 1 and 10 are exposed to the outside of another member, such as an electronic device. Moreover, the light radiated to the light guide main bodies 3 and 11 of the light guides 1 and 10 is not limited to infrared rays, and other appropriate kinds of light may be radiated.
- protrusions such as the pins 23 , the first pins 23 a , and the second pins 23 b , which penetrate the hole portions 7 , 7 a , and 7 b , are used as fixing members that fix the light guides 1 and 10 to the holding member 15 or another member, such as an electronic device, and they are thermally welded, but they may be fixed using fixing members, such as screws or an adhesive, instead.
- electronic devices in which the light guides 1 and 10 of the present invention are installed are not limited to the display apparatus 27 , and the present invention can be applied to appropriate devices, such as various kinds of AV devices, household devices such as air conditioners, and imaging apparatuses.
- the present invention provides a light guide that includes an attachment portion that can reduce loss of incident light, efficiently carry the light to an exit surface, and enter the light into an optical receiving unit, a light guide unit that is provided with the light guide, an electronic device that is provided with the light guide or the light guide unit, and a manufacturing method of the light guide unit.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Planar Illumination Modules (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
- Patent Document 1: Japanese Unexamined Patent Application, First Publication No. 2000-243985
- 1, 10 light guide
- 2 optical receiving unit
- 3, 11 light guide main body
- 3 a, 11 a incident surface
- 3 b, 11 b exit surface
- 4 attachment member
- 4 a, 12 a, 13 a connection portion
- 4 aa, 12 aa, 13 aa connection surface
- 4 b, 12 b, 13 b attachment portion
- 7, 7 a, 7 b hole portion
- 12 first attachment member
- 13 second attachment member
- 15 holding member
- 16 light guide unit
- 17 recessed groove
- 23 a first pin
- 23 b second pin
- 27 display apparatus
- 29 installation recess portion
- 30 light guide holding unit
Claims (18)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040353 WO2019092824A1 (en) | 2017-11-09 | 2017-11-09 | Light guide body, light guide body unit and method of manufacture therefor, and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200271846A1 US20200271846A1 (en) | 2020-08-27 |
US11269126B2 true US11269126B2 (en) | 2022-03-08 |
Family
ID=66438797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/647,438 Active US11269126B2 (en) | 2017-11-09 | 2017-11-09 | Light guide, light guide unit, manufacturing method of light guide unit, and electronic device |
Country Status (2)
Country | Link |
---|---|
US (1) | US11269126B2 (en) |
WO (1) | WO2019092824A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111511143A (en) * | 2020-05-18 | 2020-08-07 | 北京小米移动软件有限公司 | Integrated module and display device |
JP7177803B2 (en) * | 2020-07-08 | 2022-11-24 | シャープ株式会社 | Display device |
JP2023064288A (en) * | 2021-10-26 | 2023-05-11 | シャープ株式会社 | touch input display system |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57198803U (en) | 1981-06-15 | 1982-12-17 | ||
JPH1093255A (en) | 1996-09-13 | 1998-04-10 | Sharp Corp | Part attaching device |
JPH10170847A (en) | 1996-12-09 | 1998-06-26 | Ricoh Co Ltd | Light beam scanning device |
JP2000243985A (en) | 1999-02-22 | 2000-09-08 | Funai Electric Co Ltd | Infrared light guide member |
JP2004274407A (en) | 2003-03-07 | 2004-09-30 | Sony Corp | Infrared remote control signal reception device |
US20050094940A1 (en) * | 2003-09-25 | 2005-05-05 | Ju Gao | Integrated light source and optical waveguide and method |
US20070263411A1 (en) * | 1998-12-29 | 2007-11-15 | Franz Schellhorn | Light Source Element with Lateral, Oblique Light Infeed |
US20100209062A1 (en) * | 2009-02-13 | 2010-08-19 | Hosiden Corporation | Cable Fixing Structure, Optical Module, and Process of Manufacture of Cable |
US20110194034A1 (en) * | 2008-11-20 | 2011-08-11 | Sharp Kabushiki Kaisha | Lighting device, display device and television receiver |
US20120127141A1 (en) | 2010-11-23 | 2012-05-24 | Samsung Electronics Co., Ltd. | Display device |
JP2014180936A (en) | 2013-03-19 | 2014-09-29 | Howa Textile Industry Co Ltd | Indoor lighting apparatus for vehicle |
JP2015060094A (en) | 2013-09-19 | 2015-03-30 | Necディスプレイソリューションズ株式会社 | Display device, and assembly method of display device |
US20160085015A1 (en) * | 2010-12-23 | 2016-03-24 | Samsung Display Co., Ltd. | Display apparatus having thermally protected backlight assembly |
-
2017
- 2017-11-09 US US16/647,438 patent/US11269126B2/en active Active
- 2017-11-09 WO PCT/JP2017/040353 patent/WO2019092824A1/en active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57198803U (en) | 1981-06-15 | 1982-12-17 | ||
JPH1093255A (en) | 1996-09-13 | 1998-04-10 | Sharp Corp | Part attaching device |
JPH10170847A (en) | 1996-12-09 | 1998-06-26 | Ricoh Co Ltd | Light beam scanning device |
US20070263411A1 (en) * | 1998-12-29 | 2007-11-15 | Franz Schellhorn | Light Source Element with Lateral, Oblique Light Infeed |
JP2000243985A (en) | 1999-02-22 | 2000-09-08 | Funai Electric Co Ltd | Infrared light guide member |
JP2004274407A (en) | 2003-03-07 | 2004-09-30 | Sony Corp | Infrared remote control signal reception device |
US20050094940A1 (en) * | 2003-09-25 | 2005-05-05 | Ju Gao | Integrated light source and optical waveguide and method |
US20110194034A1 (en) * | 2008-11-20 | 2011-08-11 | Sharp Kabushiki Kaisha | Lighting device, display device and television receiver |
US20100209062A1 (en) * | 2009-02-13 | 2010-08-19 | Hosiden Corporation | Cable Fixing Structure, Optical Module, and Process of Manufacture of Cable |
US20120127141A1 (en) | 2010-11-23 | 2012-05-24 | Samsung Electronics Co., Ltd. | Display device |
US20160085015A1 (en) * | 2010-12-23 | 2016-03-24 | Samsung Display Co., Ltd. | Display apparatus having thermally protected backlight assembly |
JP2014180936A (en) | 2013-03-19 | 2014-09-29 | Howa Textile Industry Co Ltd | Indoor lighting apparatus for vehicle |
JP2015060094A (en) | 2013-09-19 | 2015-03-30 | Necディスプレイソリューションズ株式会社 | Display device, and assembly method of display device |
Non-Patent Citations (1)
Title |
---|
International Search Report (ISR) (PCT Form PCT/ISA/210), in PCT/JP2017/040353, dated Dec. 12, 2017. |
Also Published As
Publication number | Publication date |
---|---|
WO2019092824A1 (en) | 2019-05-16 |
US20200271846A1 (en) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11269126B2 (en) | Light guide, light guide unit, manufacturing method of light guide unit, and electronic device | |
JP5657763B2 (en) | Display device, liquid crystal display device | |
CN102297362B (en) | Backlight unit and display device including the same | |
US20100079697A1 (en) | Backlight unit and liquid crystal display having the same | |
KR100888638B1 (en) | Display device | |
US20160011364A1 (en) | Backlight Device and Display Apparatus | |
US8911136B2 (en) | Illumination apparatus and display device | |
KR101432899B1 (en) | Back Light Assembly | |
JP2007280770A (en) | Surface illuminant device and liquid crystal display device using the same | |
KR102272319B1 (en) | Curved display | |
KR20160035159A (en) | Light Guide Module and Backlight unit having the Same | |
US9658390B2 (en) | Light source cover including groove and backlight assembly including the light source cover | |
EP1975654B1 (en) | Backlight unit | |
JP4780216B2 (en) | Surface light source device, manufacturing method thereof, and image display device | |
TW201400944A (en) | Back light module and liquid crystal display device | |
JP4585916B2 (en) | Backlight device and liquid crystal display device | |
JP6483267B2 (en) | Display device | |
JP2017161691A (en) | Display device and assembly method for the same | |
WO2015076100A1 (en) | Display apparatus | |
JP5029413B2 (en) | Backlight device | |
JP5726947B2 (en) | Display device and television receiver | |
JP5722946B2 (en) | Back cabinet, display device, and television receiver | |
US11016393B2 (en) | Display apparatus | |
JP2003036715A (en) | Surface light source device and liquid crystal display device | |
KR101810124B1 (en) | Assembly structure for Backlight unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: NEC DISPLAY SOLUTIONS, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KURIHARA, SATOSHI;REEL/FRAME:052128/0286 Effective date: 20200311 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: SHARP NEC DISPLAY SOLUTIONS, LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:NEC DISPLAY SOLUTIONS, LTD.;REEL/FRAME:058495/0656 Effective date: 20201101 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |