US11253077B2 - Chair with return force mechanism - Google Patents

Chair with return force mechanism Download PDF

Info

Publication number
US11253077B2
US11253077B2 US16/464,384 US201616464384A US11253077B2 US 11253077 B2 US11253077 B2 US 11253077B2 US 201616464384 A US201616464384 A US 201616464384A US 11253077 B2 US11253077 B2 US 11253077B2
Authority
US
United States
Prior art keywords
seat
reference position
return force
return
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/464,384
Other versions
US20210112988A1 (en
Inventor
Toshiki Yajima
Takao Sugano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokuyo Co Ltd
Original Assignee
Kokuyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokuyo Co Ltd filed Critical Kokuyo Co Ltd
Assigned to KOKUYO CO., LTD. reassignment KOKUYO CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUGANO, TAKAO, YAJIMA, TOSHIKI
Publication of US20210112988A1 publication Critical patent/US20210112988A1/en
Application granted granted Critical
Publication of US11253077B2 publication Critical patent/US11253077B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/022Reclining or easy chairs having independently-adjustable supporting parts
    • A47C1/024Reclining or easy chairs having independently-adjustable supporting parts the parts, being the back-rest, or the back-rest and seat unit, having adjustable and lockable inclination
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/56Parts or details of tipping-up chairs, e.g. of theatre chairs
    • A47C7/566Resiliently mounted seat or back-rest
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/022Reclining or easy chairs having independently-adjustable supporting parts
    • A47C1/024Reclining or easy chairs having independently-adjustable supporting parts the parts, being the back-rest, or the back-rest and seat unit, having adjustable and lockable inclination
    • A47C1/0244Reclining or easy chairs having independently-adjustable supporting parts the parts, being the back-rest, or the back-rest and seat unit, having adjustable and lockable inclination by fluid means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03266Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with adjustable elasticity
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03272Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with coil springs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/031Reclining or easy chairs having coupled concurrently adjustable supporting parts
    • A47C1/032Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest
    • A47C1/03261Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means
    • A47C1/03283Reclining or easy chairs having coupled concurrently adjustable supporting parts the parts being movably-coupled seat and back-rest characterised by elastic means with fluid springs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C3/00Chairs characterised by structural features; Chairs or stools with rotatable or vertically-adjustable seats
    • A47C3/02Rocking chairs
    • A47C3/025Rocking chairs with seat, or seat and back-rest unit elastically or pivotally mounted in a rigid base frame
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C3/00Chairs characterised by structural features; Chairs or stools with rotatable or vertically-adjustable seats
    • A47C3/02Rocking chairs
    • A47C3/025Rocking chairs with seat, or seat and back-rest unit elastically or pivotally mounted in a rigid base frame
    • A47C3/026Rocking chairs with seat, or seat and back-rest unit elastically or pivotally mounted in a rigid base frame with central column, e.g. rocking office chairs; Tilting chairs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/002Chair or stool bases
    • A47C7/004Chair or stool bases for chairs or stools with central column, e.g. office chairs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/44Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame
    • A47C7/441Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame with adjustable elasticity
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/44Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame
    • A47C7/443Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame with coil springs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/56Parts or details of tipping-up chairs, e.g. of theatre chairs
    • A47C7/563Parts or details of tipping-up chairs, e.g. of theatre chairs provided with a back-rest moving with the seat
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C9/00Stools for specified purposes
    • A47C9/002Stools for specified purposes with exercising means or having special therapeutic or ergonomic effects

Definitions

  • the present invention relates to a chair applicable in an office or the like.
  • Each of the chairs is configured to tilt a seat or a backrest in accordance with backward tilting of a sitting person such that a sitting person can comfortably move while doing work. Also, the chair is configured to fix the seat or the backrest in position such that the sitting person can take a desirable posture, and the chair is designed so that a spring reaction force can be appropriately set.
  • the present invention is made in view of the problem above and is intended to newly realize a chair configured such that even when being moved from a reference position forward or backward, a seat can stop in an appropriate position or return back to the initial reference position.
  • a chair according to the present invention has a reference position located midway in a front-back direction in a movable range of a seat, and the chair includes a return force generation mechanism configured to generate a return force in a direction to return the seat moved from the reference position at least in the front-back direction to the reference position.
  • the return force generation mechanism includes an elastic member configured to increase the return force in the direction to return the seat to the reference position as an amount of movement of the seat from the reference position increases.
  • the chair is different from a conventional chair movable only backward in that the chair according to the present invention is movable in the opposite direction; therefore, increasing a posture changeable range.
  • the center of the gravity of the seat is likely to shift downward as the seat moves.
  • the force to shift upward the center of gravity that has been shifted downward is needed to return the seat to the reference position.
  • the return force is set so as to increase in accordance with the amount of either forward or backward movement of the seat from the reference positions.
  • the seat can stop at an appropriate position in a balanced manner, or the assist force for allowing a sitting person to change his/her posture can be obtained from the return force generation mechanism. Consequently, according to the chair of the present invention, the sitting person can be appropriately seated not only in a normal sitting posture in a state where the chair is located at or adjacent to the reference position or in a backward tilted posture when the seat is moved backward, but also in a forward tilted posture when the seat is moved forward. As a result, the chair allowing the sitting person not to easily get tired even when being seated for a long time can be realized.
  • the reference position may be located midway in the front-back direction in the movable range and may be defined as a position when a person is not seated; and the seat may be stationary on that the elastic force in the front-back direction is zero or balanced is located at the reference position.
  • the elastic force is zero, the smooth behavior of the seat located from a position adjacent to the reference position can be effectively realized.
  • an initial reaction force can be appropriately applied at the time of the forward or backward movement of the seat from the reference position.
  • the return force generation mechanism is configured to make an elastic biasing force variably adjustable. Therefore, even if the force required to return the seat to the reference position increases in accordance with the increase of the physical size of a sitting person, the return force can be adjusted in accordance with the physical size or preference of the sitting person.
  • the elastic member includes an elastic member for applying an elastic biasing force toward the reference position when the seat is located forward of the reference position, and an elastic member for applying an elastic biasing force toward the reference position when the seat is located backward of the reference position, respectively, and the elastic biasing forces are separately set, an appropriate usage environment can be offered suitably with each of directions.
  • the chair includes a forward elastic member configured to apply an elastic biasing force in the front-back direction of the seat only when the seat is located forward of the reference position, and a backward elastic member configured to apply an elastic biasing force in the front-back direction of the seat only when the seat is located backward of the reference position.
  • repelling force properties of each of the elastic members are variably adjustable, the elastic force at the time of the forward movement of the seat and the elastic force at the time of the backward movement of the seat can be adjusted to have different strengths from each other without moving the reference position.
  • the elastic member includes a single elastic member for applying an elastic biasing force toward the reference position when the seat is located forward of the reference position, and a single elastic member for applying an elastic biasing force toward the reference position when the seat is located backward of the reference position, the number of components of the elastic member can be reduced, and in addition, the basic function of the present invention can be simply configured.
  • the mode to change repelling force properties may include a configuration where an initial displacement of the elastic member is changed to make an elastic biasing force variably adjustable, or a configuration where an initial position of the elastic member is changed to change the displacement of the elastic member due to the positional change of the seat to make repelling force properties of the elastic member variably adjustable.
  • the initial displacement or the initial position of the elastic member may be changed so as to shift the reference position.
  • the seat is supported by a front-back movement mechanism and a left-right movement mechanism that are separate members, and the seat is configured to be movable in the front-back direction and in a left-right direction.
  • the chair includes an independent return force generation mechanism in left-right direction.
  • the seat is independently movable not only in the front-back direction and but also in the left-right direction.
  • the independent return force generation mechanism for left-right direction is provided. Therefore, it is possible to realize that the seat can be smoothly moved and more various usages of the seat can be offered.
  • the return force generation mechanism for left-right direction is configured such that the center of gravity of the seat shifts upward in accordance with the movement of the seat from the reference position. Accordingly, since the seat is less likely to largely or frequently move in the left-right direction compared with in the front-back direction, an appropriate return force to return the seat to the reference position can be obtained by the use of the return due to gravity and the structure is simply obtained. Therefore, cost reduction can be obtained.
  • the return due to gravity is as follows. When the seat is located at the reference position, the center of gravity of the seat is located at the lowest position. When the seat is moved right or left, the center of gravity is shifted upward. And an appropriate return force can be automatically obtained regardless of the weight of a sitting person.
  • the present invention described above can newly provide a chair configured such that even when being moved from a reference position forward or backward, a seat can stop in an appropriate position or return back to the initial reference position.
  • FIG. 1 is a perspective view of a chair according to a first embodiment of the present invention.
  • FIG. 2 is a right-side view of the chair according to the first embodiment of the present invention.
  • FIG. 3 is a front view of the chair according to the first embodiment of the present invention.
  • FIG. 4 is a right-side view illustrating a state where a seat according to the first embodiment of the present invention is moved forward.
  • FIGS. 5A to 5 B 3 are a drawing illustrating a return force generation mechanism according to the first embodiment of the present invention.
  • FIG. 6 is a drawing illustrating a state where a return force is increased by a change of the position of an elastic member in the first embodiment of the present invention.
  • FIG. 7 is a drawing illustrating a left-right movement mechanism according to the first embodiment of the present invention.
  • FIG. 8 is a perspective view of the chair according to a second embodiment of the present invention.
  • FIG. 9 is a right-side view of the chair according to the second embodiment of the present invention.
  • FIG. 10 is a right-side view illustrating a state where the seat according to the second embodiment of the present invention is moved forward.
  • FIG. 11 is a right-side view illustrating a state where the seat according to the second embodiment of the present invention is moved backward.
  • FIG. 12 is a drawing illustrating a state where the reference position of the seat is shifted backward by a change of the position of the elastic member in the second embodiment of the present invention.
  • FIG. 13 is a drawing illustrating a modified example of the present invention.
  • FIGS. 1 and 5A to 5 B 3 a first embodiment of the present invention will be described with reference to FIGS. 1 and 5A to 5 B 3 .
  • FIGS. 1 to 3 are respectively perspective, right-side, and front views of a chair according to the first embodiment.
  • FIG. 4 is an explanatory drawing of movement of the chair according to the first embodiment.
  • the chair is configured such that a seat 2 integrally formed with a backrest 3 is rotatably supported by a leg support pole 11 protruding from a leg 1 .
  • the position of the seat 2 when no one is seated is defined as a reference position P.
  • the chair includes a function to move and return the seat 2 with respect to the reference position P.
  • the leg 1 of the chair includes leg blades 1 b having ends to which casters 1 a are respectively attached.
  • the leg support pole 11 is attached to a center hole of the leg blades 1 b .
  • a support base 12 adapted to support the seat 2 is rotatably attached to an upper end of the leg support pole 11 .
  • the seat 2 is supported by the support base 12 to be movable forward or backward by a front-back movement mechanism 6 and to be movable right or left by a left-right movement mechanism 7 .
  • the front-back movement mechanism 6 includes a front link member 61 having a lower end pivotally supported around a left-right shaft n 1 by a casing 8 , and a back link member 62 having a lower end pivotally supported around a left-right shaft n 2 by the casing 8 .
  • an upper end of the front link member 61 is attached in a forward tilted posture to a bracket 21 at a front end of the seat 2 to be pivotal around a left-right shaft n 3
  • an upper end of the back link member 62 is attached in a backward tilted posture to a bracket 22 at a back end of the seat 2 to be pivotal around a left-right shaft n 4 .
  • the seat 2 when the seat 2 is moved forward from the reference position P, the front link member 61 is brought into a further forward tilted posture and the back link member 62 is brought into an upright posture. Thus, the seat 2 is tilted forward. Meanwhile, when the seat 2 is moved backward, the back link member 62 is brought into a further backward tilted posture and the front link member 61 is brought into an upright posture. Thus, the seat 2 is tilted backward.
  • the left-right movement mechanism 7 includes a left link member 71 and a right link member 72 .
  • Upper ends of the respective link members 71 , 72 are pivotally supported around front-back shafts m 1 , m 2 by appropriate portions of the support base 12 .
  • lower ends of the respective link members 71 , 72 are pivotally attached to the casing 8 around front-back shafts m 3 , m 4 in a state where the link members 71 , 72 are tilted with the lower ends located near each other; thereby the casing 8 is suspended.
  • the casing 8 includes a hollow part opened downward, and the support base 12 is arranged in the hollow part without interfering with the hollow part.
  • the seat 2 is moved forward or backward with respect to the support base 12 via the casing 8 swingable right or left, therefore being configured to be movable independently in each of front-back or left-right directions.
  • multiple behaviors or movements of the seat 2 can be realized.
  • the chair includes a first return force generation mechanism 4 illustrated in FIGS. 2 and 5A to 5 B 3 and a second return force generation mechanism 5 illustrated in FIG. 3 .
  • Each of the return force generation mechanisms 4 , 5 are configured to generate a return force in a direction to return the seat moved in the front-back or left-right direction to the reference position P, and is designed to increase the return force for returning the seat to the reference position P as the amount of movement of the seat from the reference position P increases.
  • the first return force generation mechanism 4 includes a cylinder 40 as an elastic member supported through a support portion 40 x by the casing 8 , and rods 40 a 1 , 40 a 2 respectively protruding backward and forward from opposite ends of the cylinder 40 .
  • the first return force generation mechanism 4 is configured to store an elastic repelling force when each of the rods 40 a 1 , 40 a 2 is retracted in the cylinder 40 .
  • the rods 40 a 1 , 40 a 2 are respectively connected to retainers 40 b 1 , 40 b 2 in the cylinder 40 .
  • a compression spring 40 c is interposed between the retainers 40 b 1 , 40 b 2 .
  • Each of the rods 40 a 1 , 40 a 2 is independently retractable in the cylinder 40 while compressing the spring 40 c .
  • the cylinder 40 is fixed to the support base 12 .
  • contact plates 12 a , 12 b are provided at positions opposite to ends of respective rods 41 a , 42 a .
  • the contact plates 12 a , 12 b are configured to be integrally pivotal with the backlink member 62 and the front link member 61 , respectively.
  • the seat 2 is moved forward as illustrated from a state of FIG. 2 to a state of FIG. 4 .
  • the contact plate 12 a integral with the backlink member 62 compresses the rod 40 a 1 while pushing the rod 40 a 1 ; therefore, the front link member 61 tilts forward to separate from the rod 40 a 2 .
  • the spring 40 c is compressed to store a backward return force.
  • a reversed action to the above-mentioned forward movement allows the contact plate 12 b integral with the front link member 61 to compress the rod 40 a 2 ; therefore, the spring 40 c is compressed to store a forward return force.
  • the spring 40 c may be configured to have a natural length in a state where the seat 2 is located at the reference position P.
  • the spring 40 c may be initially compressed to be set in a condition that the repelling force is balanced when the seat 2 is located at the reference position P.
  • the first return force generation mechanism 4 may be configured by a pair of cylinders 41 , 42 as elastic members as illustrated in FIGS. 5A to 5 B 3 .
  • an elastic repelling force is stored when each of the rods 41 a , 42 a protruding from the respective cylinders 41 , 42 is retracted therein.
  • the cylinders 41 , 42 are arranged to be movable with the seat 2 in the front-back direction.
  • the cylinder 41 is configured such that the rod 41 a protrudes backward and faces to the contact plate 12 a
  • the cylinder 42 is configured such that the rod 42 a protrudes forward and faces to the contact plate 12 b .
  • the rod 41 a of the one cylinder 41 is compressed as illustrated in FIG. 5B 3 to store a backward return force.
  • the rod 42 a of the other cylinder 42 is compressed as illustrated in FIG. 5B 2 to store a forward returning force.
  • the repelling force may not be stored or may be balanced when the seat is located at the reference position in FIG. 5B 1 .
  • the compression properties of the both cylinders 41 , 42 may be changeable.
  • a spring coefficient of the cylinder 42 to be compressed at the time of the forward movement of the seat 2 is appropriately set to be smaller than a spring coefficient of the cylinder 41 to be compressed at the time of the backward movement of the seat 2 .
  • a pair of link members 71 , 72 configuring the left-right movement mechanism 7 illustrated in FIG. 3 also serves the second return force generation mechanism 5 configured to generate a return force in a direction to return the seat 2 moved from the reference position P in the left-right direction to the reference position P. That is, the pair of link members 71 , 72 is configured to hold an object to be suspended in the lowest position by gravity, and the position is defined as a stable position. Even when the object is moved from the stable position either right or left, the center of gravity of the seat shifts upward while a movement of the tip side is inclining downward in accordance with the amount of movement. Accordingly, a return force is generated and a return force at the reference position P becomes zero.
  • the reference position P is located midway in a front-back movable range.
  • the chair is configured such that the seat is integrally formed with the backrest, it is effective that for example, by application of an appropriate stopper, a backward movable distance of the seat 2 and the backrest 3 from the reference position P is set to be larger than a forward movable distance of the seat 2 and the backrest 3 from the reference position P.
  • a return force adjustment mechanism 40 z is provided in the first embodiment.
  • the return force adjustment mechanism 40 z is configured such that an initial position of the cylinder 40 as the elastic member is changed to change the displacement of the cylinder 40 due to the positional change of the seat 2 .
  • the return force adjustment mechanism 40 z is configured to move up/down the support portion 40 x supporting the cylinder 40 . Accordingly, a distance from the left-right shaft n 1 to the contact plate 12 a to be brought into contact with the rod 40 a 1 and a distance from the left-right shaft n 2 to the contact plate 12 b to be brought into contact with the rod 40 a 2 vary.
  • the chair according to the first embodiment includes the return force generation mechanism 4 configured to generate a return force in a direction to return the seat moved from the reference position P at least in the front-back direction to the reference position P.
  • the return force generation mechanism 4 includes the cylinder 40 as the elastic member configured to increase the return force for returning the seat to the reference position P as an amount of movement of the seat from the reference position P increases.
  • Such a chair is different from a conventional chair movable only backward in that the chair according to the first embodiment is movable in the opposite direction, i.e., movable forward; therefore, increasing a posture changeable range.
  • the center of the gravity of the seat is likely to shift downward as the seat moves.
  • the force to shift upward the center of gravity that has been shifted downward is needed to return the seat to the reference position P.
  • the return force is set so as to increase in accordance with the amount of either forward or backward movement of the seat 2 from the reference position P.
  • the seat 2 can stop at an appropriate position in a balanced manner, or the assist force for allowing a sitting person to change his/her posture can be obtained from the return force generation mechanism 4 . Consequently, according to the chair of the present invention, the sitting person can be appropriately seated not only in a normal sitting posture in a state where the chair is located at or adjacent to the reference position P or in a backward tilted posture when the seat is moved backward, but also in a forward tilted posture when the seat is moved forward. As a result, the chair allowing the sitting person not to easily get tired even when being seated for a long time can be realized.
  • the reference position P is located midway in the front-back movable range, and is a position when a person is not seated, and the seat 2 is stationary on that the elastic force in the front-back direction is zero or balanced at the reference position P. Consequently, the smooth behavior of the seat located from a position adjacent to the reference position P can be effectively realized, and in addition, at the time of the forward or backward movement of the seat from the reference position P, an initial reaction force can be appropriately applied.
  • the return force generation mechanism 4 is configured to variably adjustable an elastic biasing force. Therefore, even if the force required to return the seat to the reference position P increases in accordance with the increase of the physical size of a sitting person, the return force can be adjusted by the adjustment in accordance with the physical size or preference of the sitting person.
  • the cylinder 40 as a single elastic member realizes for applying an elastic biasing force toward the reference position P when the seat 2 is located forward of the reference position P, and a mechanism for applying an elastic force toward the reference position P when the seat 2 is located backward of the reference position P. Therefore, the number of components of the cylinder 40 or the like as the elastic member can be reduced, and in addition, the basic function of the present invention can be simply configured.
  • the chair is provided with: the cylinder 41 as an elastic member configured to apply an elastic biasing force toward the reference position P when the seat 2 is located forward of the reference position P; and the cylinder 42 as an elastic member configured to apply an elastic force toward the reference position P when the seat 2 is located backward of the reference position P.
  • the elastic biasing forces are separately set. In such a case, even for the same sitting person, the way that the center of gravity shifts downward at the time of the forward movement of the seat differs from the way that the center of gravity shifts downward at the time of the backward movement of the seat.
  • a portion of supporting positions of the shafts n 1 to n 4 is changed in the front-back direction and thereby an initial displacement of the elastic member may be changed so that the elastic biasing force is variably adjustable.
  • the initial position of the elastic member is changed so that the displacement of the elastic member 40 due to the positional change of the seat 2 is changed; therefore, repelling force properties of the elastic member 40 are variably adjustable.
  • a return force can be changed by changing a lever ratio.
  • the backrest 3 is provided backward of the seat 2 , and the backrest 3 and the seat 2 are movable in conjunction with each other in the front-back direction.
  • the seat 2 is configured such that a movement end inclines downward in accordance with the amount of movement. Therefore, the chair with appropriate usability including a forward or backward tilted posture can be realized.
  • the seat 2 is movably supported in the front-back direction and the left-right direction by the front-back movement mechanism 6 and the left-right movement mechanism 7 that are separate mechanisms.
  • the separate return force generation mechanism 5 for left-right direction is also provided. Therefore, the seat 2 is independently movable not only in the front-back direction and but also in the left-right direction.
  • the separate return force generation mechanism 4 , 5 for left-right direction is provided. Therefore, the seat 2 can be smoothly moved and more various usages of the seat 2 can be offered.
  • the left-right return force generation mechanism 7 is configured to shift the center of gravity of the seat 2 upward in accordance with the movement of the seat 2 from the reference position P.
  • the center of gravity of the seat is located at the lowest position.
  • the center of gravity is shifted upward.
  • the return force is appropriately suitable for the weight of a sitting person.
  • the foregoing elastic member is not limited to a spring.
  • the chair according to a second embodiment of the present invention is different from the chair according to the first embodiment mainly in a front-back movement mechanism 206 and a first elastic force return mechanism 204 for front-back direction, and is substantially the same as the chair according to the first embodiment regarding the left-right movement mechanism and the second return force generation mechanism for left-right direction. Therefore, differences will be mainly described below.
  • the front-back movement mechanism 206 includes a front link member 261 having a lower end pivotally supported around a left-right shaft s 1 by a support base 212 , and a guide hole t 1 provided in the support base 212 and formed in an upward recessed shape inclined downward from the front side toward the back side.
  • a front link member 261 having a lower end pivotally supported around a left-right shaft s 1 by a support base 212 , and a guide hole t 1 provided in the support base 212 and formed in an upward recessed shape inclined downward from the front side toward the back side.
  • an upper end of the front link member 261 is attached in a forward tilted posture to a bracket 221 at the front end of the seat 2 to be pivotal around a left-right shaft s 3 .
  • An intermediate position of the guide hole t 1 is engaged with a left-right shaft s 4 provided at the back end of the seat 2 .
  • the left-right shaft s 4 located on the back side is lifted forward and upward along the guide hole t 1 .
  • the seat 2 is tilted forward.
  • the front link member 261 is brought into an upright posture and the left-right shaft s 4 located on the back side is moved backward and downward.
  • the seat 2 is tilted backward.
  • the first return force generation mechanism 204 is configured such that an extension spring 241 as a single elastic member realizes a mechanism for applying an elastic biasing force toward the reference position P when the seat 2 is located forward of the reference position P, and a mechanism for applying an elastic force toward the reference position P when the seat 2 is located backward of the reference position P.
  • the spring 241 is attached between a link member 263 provided continuously with the upper end of the link member 261 to integrally rotate with the link member 261 around the left-right shaft s 3 , and a bracket 222 provided on a lower surface of the seat 2 .
  • the spring 241 is pulled in a bent manner such that the link member 263 and the spring 241 project upward. Therefore, the spring 241 stores a backward return force. Meanwhile, when the seat 2 is moved backward as illustrated from a state of FIG. 9 to a state of FIG. 11 , the spring 241 is pulled backward in a bent manner such that the link member 263 and the spring 241 project downward. Therefore, the spring 241 stores a forward return force. In other words, even when the seat 2 is moved either forward or backward from the reference position P, the spring 241 is pulled. In addition, the reference position is obtained in a state where the link member 263 and the spring 241 are linearly arranged.
  • the chair according to the second embodiment includes the return force generation mechanism 204 configured to generate a return force in a direction to return the seat 2 moved from the reference position P at least in the front-back direction to the reference position P.
  • the return force generation mechanism 204 includes the spring 241 as the elastic member configured to increase the return force for returning the seat to the reference position P as the amount of movement of the seat from the reference position P increases. Therefore, the appropriate return force is obtained from the return force generation mechanism 204 . Consequently, a sitting person can be appropriately seated not only in a normal sitting posture in a state where the seat is located at or adjacent to the reference position P or in a backward tilted posture when the seat is moved backward, but also in a forward tilted posture when the seat is moved forward. As a result, the chair allowing a sitting person not to easily get tired even when being seated for a long time can be realized.
  • the single elastic member 204 realizes a mechanism for applying an elastic biasing force toward the reference position P when the seat 2 is located forward of the reference position P, and a mechanism for applying an elastic force toward the reference position P when the seat 2 is located backward of the reference position P. Therefore, the number of components of the elastic member can be reduced, and in addition, the basic function of the present invention can be simply configured. Further, the extension spring is applied and thereby a large movable range can be secured and a flexible movement can be realized.
  • the chair according to the second embodiment includes an initial position adjustment mechanism 40 z 2 configured to change an initial position of the spring 241 as the elastic member.
  • the initial position adjustment mechanism 40 z 2 is provided with a function to move up/down the bracket 222 supporting the spring 241 and change an attachment position of the spring 241 to the bracket 222 .
  • the link member 263 is rotated together with the link member 261 from a state of FIG. 9 , and the horizontal shaft s 4 located on the back side is moved backward and downward along the guide hole t 1 . Therefore, the reference position P of the seat 2 shifts backward.
  • the reference position is effectively adjustable with the use of the return force adjustment mechanism 204 .
  • an initial displacement of the elastic member may be surely changed to change the reference position.
  • a grip 140 G is operated to project or retract a retainer 140 b 1 , and thereby an initial compressed state may be changed to change the amount of an initial compression of a spring 140 c of a cylinder 140 .
  • the grip 140 G and the retainer 140 b 1 are connected by a threaded shaft 140 R having an external thread, and the external thread of the threaded shaft 140 R is screwed with an internal thread provided on the cylinder 140 .
  • a spring reaction force according to the amount of operation of the grip can be applied to a rod 140 a 2 .
  • Such a configuration is effectively applicable to the cylinder of FIG. 5A or the like.
  • the reference position is not necessarily balanced at an intermediate position in the front-back direction and may be obtained in such a way that the seat is elastically pressed at a front limit position in a movable range.
  • the chair is configured so as not to be movable forward from the reference position.
  • the present invention is applicable to a chair suitably used in an office or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chairs Characterized By Structure (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)

Abstract

A chair according to the present invention has a reference position P located midway in a front-back direction in a movable range of a seat 2. The chair includes a return force generation mechanism 4 configured to generate a return force in a direction to return the seat 2 moved from the reference position P at least in the front-back direction to the reference position P. The return force generation mechanism 4 includes an elastic member 40 configured to increase the return force in the direction to return the seat to the reference position P as the amount of movement of the seat from the reference position P increases.

Description

TECHNICAL FIELD
The present invention relates to a chair applicable in an office or the like.
BACKGROUND ART
Many chairs such as chairs intended for a sitting person to maintain a comfortable sitting posture for a long time in an office, at home, or the like have been conventionally provided (for example, see Patent Document 1). Each of the chairs is configured to tilt a seat or a backrest in accordance with backward tilting of a sitting person such that a sitting person can comfortably move while doing work. Also, the chair is configured to fix the seat or the backrest in position such that the sitting person can take a desirable posture, and the chair is designed so that a spring reaction force can be appropriately set.
CITATION LIST Patent Literature
  • Patent Document 1: Japanese Unexamined Patent Application Publication No. S61-45707
SUMMARY OF THE INVENTION Problem to be Solved by the Invention
However, some of conventionally typical chairs have been known as chairs each provided with integral seat and backrest or chairs each provided with so-called synchronized locking mechanism. Each of the chairs is typically configured such that an elastic member for applying a repelling force of a backrest is utilized to return a seat from a backward moved position to a forward normal position. Meanwhile, in recent years, some chairs have been considered as so-called swingable chairs such that a seat of each of the chairs is movable not only backward but also forward to enhance the efficiency of deskwork or to improve an appropriate posture. In a case where it is intended to realize such a chair, a conventional reaction force mechanism is utilized and therefore even when the seat is moved to a front end, the reaction force mechanism of a backrest acts. Consequently, the chair swings forward or backward from a reference position and the function to return the chair back to the reference position may not be realized. As a result, it is desired to create some of new structures for realizing such a function.
The present invention is made in view of the problem above and is intended to newly realize a chair configured such that even when being moved from a reference position forward or backward, a seat can stop in an appropriate position or return back to the initial reference position.
Means for Solving the Problem
The present invention adopts the following means in order to achieve such an object. In other words, a chair according to the present invention has a reference position located midway in a front-back direction in a movable range of a seat, and the chair includes a return force generation mechanism configured to generate a return force in a direction to return the seat moved from the reference position at least in the front-back direction to the reference position. The return force generation mechanism includes an elastic member configured to increase the return force in the direction to return the seat to the reference position as an amount of movement of the seat from the reference position increases.
With such a configuration, the chair is different from a conventional chair movable only backward in that the chair according to the present invention is movable in the opposite direction; therefore, increasing a posture changeable range. Further, at the time of either forward or backward movement of the seat, the center of the gravity of the seat is likely to shift downward as the seat moves. In this case, the force to shift upward the center of gravity that has been shifted downward is needed to return the seat to the reference position. Accordingly, the return force is set so as to increase in accordance with the amount of either forward or backward movement of the seat from the reference positions. With such a configuration, the seat can stop at an appropriate position in a balanced manner, or the assist force for allowing a sitting person to change his/her posture can be obtained from the return force generation mechanism. Consequently, according to the chair of the present invention, the sitting person can be appropriately seated not only in a normal sitting posture in a state where the chair is located at or adjacent to the reference position or in a backward tilted posture when the seat is moved backward, but also in a forward tilted posture when the seat is moved forward. As a result, the chair allowing the sitting person not to easily get tired even when being seated for a long time can be realized.
In that case, it is desirable that the reference position may be located midway in the front-back direction in the movable range and may be defined as a position when a person is not seated; and the seat may be stationary on that the elastic force in the front-back direction is zero or balanced is located at the reference position.
If the elastic force is zero, the smooth behavior of the seat located from a position adjacent to the reference position can be effectively realized. In addition, if the elastic force is balanced, an initial reaction force can be appropriately applied at the time of the forward or backward movement of the seat from the reference position.
Further, the return force generation mechanism is configured to make an elastic biasing force variably adjustable. Therefore, even if the force required to return the seat to the reference position increases in accordance with the increase of the physical size of a sitting person, the return force can be adjusted in accordance with the physical size or preference of the sitting person.
Furthermore, even for the same sitting person, the way that the center of gravity shifts downward at the time of the forward movement of the seat differs from the way that the center of gravity shifts downward at the time of the backward movement of the seat. Consequently, the force required to return the seat at the time of the forward movement differs from the force required to return the seat at the time of the backward movement. Therefore, if the elastic member includes an elastic member for applying an elastic biasing force toward the reference position when the seat is located forward of the reference position, and an elastic member for applying an elastic biasing force toward the reference position when the seat is located backward of the reference position, respectively, and the elastic biasing forces are separately set, an appropriate usage environment can be offered suitably with each of directions.
Moreover, the chair includes a forward elastic member configured to apply an elastic biasing force in the front-back direction of the seat only when the seat is located forward of the reference position, and a backward elastic member configured to apply an elastic biasing force in the front-back direction of the seat only when the seat is located backward of the reference position. In addition, if repelling force properties of each of the elastic members are variably adjustable, the elastic force at the time of the forward movement of the seat and the elastic force at the time of the backward movement of the seat can be adjusted to have different strengths from each other without moving the reference position.
On the other hand, if the elastic member includes a single elastic member for applying an elastic biasing force toward the reference position when the seat is located forward of the reference position, and a single elastic member for applying an elastic biasing force toward the reference position when the seat is located backward of the reference position, the number of components of the elastic member can be reduced, and in addition, the basic function of the present invention can be simply configured.
The mode to change repelling force properties may include a configuration where an initial displacement of the elastic member is changed to make an elastic biasing force variably adjustable, or a configuration where an initial position of the elastic member is changed to change the displacement of the elastic member due to the positional change of the seat to make repelling force properties of the elastic member variably adjustable.
In order to adjust the reference position with the use of the above configuration, it is desirable that the initial displacement or the initial position of the elastic member may be changed so as to shift the reference position.
Moreover, according to the present invention, more preferably, the seat is supported by a front-back movement mechanism and a left-right movement mechanism that are separate members, and the seat is configured to be movable in the front-back direction and in a left-right direction. In addition, the chair includes an independent return force generation mechanism in left-right direction.
With such a configuration, the seat is independently movable not only in the front-back direction and but also in the left-right direction. In addition, the independent return force generation mechanism for left-right direction is provided. Therefore, it is possible to realize that the seat can be smoothly moved and more various usages of the seat can be offered.
In this case, the return force generation mechanism for left-right direction is configured such that the center of gravity of the seat shifts upward in accordance with the movement of the seat from the reference position. Accordingly, since the seat is less likely to largely or frequently move in the left-right direction compared with in the front-back direction, an appropriate return force to return the seat to the reference position can be obtained by the use of the return due to gravity and the structure is simply obtained. Therefore, cost reduction can be obtained. Here, the return due to gravity is as follows. When the seat is located at the reference position, the center of gravity of the seat is located at the lowest position. When the seat is moved right or left, the center of gravity is shifted upward. And an appropriate return force can be automatically obtained regardless of the weight of a sitting person.
Effect of the Invention
The present invention described above can newly provide a chair configured such that even when being moved from a reference position forward or backward, a seat can stop in an appropriate position or return back to the initial reference position.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a chair according to a first embodiment of the present invention.
FIG. 2 is a right-side view of the chair according to the first embodiment of the present invention.
FIG. 3 is a front view of the chair according to the first embodiment of the present invention.
FIG. 4 is a right-side view illustrating a state where a seat according to the first embodiment of the present invention is moved forward.
FIGS. 5A to 5B3 are a drawing illustrating a return force generation mechanism according to the first embodiment of the present invention.
FIG. 6 is a drawing illustrating a state where a return force is increased by a change of the position of an elastic member in the first embodiment of the present invention.
FIG. 7 is a drawing illustrating a left-right movement mechanism according to the first embodiment of the present invention.
FIG. 8 is a perspective view of the chair according to a second embodiment of the present invention.
FIG. 9 is a right-side view of the chair according to the second embodiment of the present invention.
FIG. 10 is a right-side view illustrating a state where the seat according to the second embodiment of the present invention is moved forward.
FIG. 11 is a right-side view illustrating a state where the seat according to the second embodiment of the present invention is moved backward.
FIG. 12 is a drawing illustrating a state where the reference position of the seat is shifted backward by a change of the position of the elastic member in the second embodiment of the present invention.
FIG. 13 is a drawing illustrating a modified example of the present invention.
MODE FOR CARRYING OUT THE INVENTION
Herein, a first embodiment of the present invention will be described with reference to FIGS. 1 and 5A to 5B3.
FIGS. 1 to 3 are respectively perspective, right-side, and front views of a chair according to the first embodiment. FIG. 4 is an explanatory drawing of movement of the chair according to the first embodiment. The chair is configured such that a seat 2 integrally formed with a backrest 3 is rotatably supported by a leg support pole 11 protruding from a leg 1. The position of the seat 2 when no one is seated is defined as a reference position P. The chair includes a function to move and return the seat 2 with respect to the reference position P.
Specifically, the leg 1 of the chair includes leg blades 1 b having ends to which casters 1 a are respectively attached. The leg support pole 11 is attached to a center hole of the leg blades 1 b. A support base 12 adapted to support the seat 2 is rotatably attached to an upper end of the leg support pole 11.
The seat 2 is supported by the support base 12 to be movable forward or backward by a front-back movement mechanism 6 and to be movable right or left by a left-right movement mechanism 7.
The front-back movement mechanism 6 includes a front link member 61 having a lower end pivotally supported around a left-right shaft n1 by a casing 8, and a back link member 62 having a lower end pivotally supported around a left-right shaft n2 by the casing 8. When the seat 2 is located at the reference position P, an upper end of the front link member 61 is attached in a forward tilted posture to a bracket 21 at a front end of the seat 2 to be pivotal around a left-right shaft n3 and an upper end of the back link member 62 is attached in a backward tilted posture to a bracket 22 at a back end of the seat 2 to be pivotal around a left-right shaft n4. In other words, when the seat 2 is moved forward from the reference position P, the front link member 61 is brought into a further forward tilted posture and the back link member 62 is brought into an upright posture. Thus, the seat 2 is tilted forward. Meanwhile, when the seat 2 is moved backward, the back link member 62 is brought into a further backward tilted posture and the front link member 61 is brought into an upright posture. Thus, the seat 2 is tilted backward.
Also, the left-right movement mechanism 7 includes a left link member 71 and a right link member 72. Upper ends of the respective link members 71, 72 are pivotally supported around front-back shafts m1, m2 by appropriate portions of the support base 12. When the seat 2 is located at the reference position P, lower ends of the respective link members 71, 72 are pivotally attached to the casing 8 around front-back shafts m3, m4 in a state where the link members 71, 72 are tilted with the lower ends located near each other; thereby the casing 8 is suspended. The casing 8 includes a hollow part opened downward, and the support base 12 is arranged in the hollow part without interfering with the hollow part.
That is, when the seat 2 is moved left with respect to the support base 12, the inclination of the left link member 71 decreases to come close to a vertical posture and the inclination of the right link member 72 increases to come close to a horizontal posture. As a result, the casing 8 is tilted left in front view as illustrated in FIG. 7. Meanwhile, when the seat 2 is moved right with respect to the support base 12, the inclination of the right link member 72 decreases to come close to a vertical posture and the inclination of the left link member 71 increases to come close to a horizontal posture. As a result, the casing 8 moves right in front view, i.e., moves in the opposite direction illustrated in FIG. 3.
In other words, the seat 2 is moved forward or backward with respect to the support base 12 via the casing 8 swingable right or left, therefore being configured to be movable independently in each of front-back or left-right directions. As a result, multiple behaviors or movements of the seat 2 can be realized.
In addition, the chair includes a first return force generation mechanism 4 illustrated in FIGS. 2 and 5A to 5B3 and a second return force generation mechanism 5 illustrated in FIG. 3. Each of the return force generation mechanisms 4, 5 are configured to generate a return force in a direction to return the seat moved in the front-back or left-right direction to the reference position P, and is designed to increase the return force for returning the seat to the reference position P as the amount of movement of the seat from the reference position P increases.
The first return force generation mechanism 4 includes a cylinder 40 as an elastic member supported through a support portion 40 x by the casing 8, and rods 40 a 1, 40 a 2 respectively protruding backward and forward from opposite ends of the cylinder 40. The first return force generation mechanism 4 is configured to store an elastic repelling force when each of the rods 40 a 1, 40 a 2 is retracted in the cylinder 40. Specifically, as illustrated in FIG. 5A, the rods 40 a 1, 40 a 2 are respectively connected to retainers 40 b 1, 40 b 2 in the cylinder 40. A compression spring 40 c is interposed between the retainers 40 b 1, 40 b 2. Each of the rods 40 a 1, 40 a 2 is independently retractable in the cylinder 40 while compressing the spring 40 c. In addition, the cylinder 40 is fixed to the support base 12.
Also, contact plates 12 a, 12 b are provided at positions opposite to ends of respective rods 41 a, 42 a. The contact plates 12 a, 12 b are configured to be integrally pivotal with the backlink member 62 and the front link member 61, respectively. Thus, the seat 2 is moved forward as illustrated from a state of FIG. 2 to a state of FIG. 4. At this time, in accordance with a standing movement of the backlink member 62, the contact plate 12 a integral with the backlink member 62 compresses the rod 40 a 1 while pushing the rod 40 a 1; therefore, the front link member 61 tilts forward to separate from the rod 40 a 2. Consequently, the spring 40 c is compressed to store a backward return force. When the seat 2 is moved backward, a reversed action to the above-mentioned forward movement allows the contact plate 12 b integral with the front link member 61 to compress the rod 40 a 2; therefore, the spring 40 c is compressed to store a forward return force. The spring 40 c may be configured to have a natural length in a state where the seat 2 is located at the reference position P. Alternatively, the spring 40 c may be initially compressed to be set in a condition that the repelling force is balanced when the seat 2 is located at the reference position P.
In such a case, the first return force generation mechanism 4 may be configured by a pair of cylinders 41, 42 as elastic members as illustrated in FIGS. 5A to 5B3. In this case, an elastic repelling force is stored when each of the rods 41 a, 42 a protruding from the respective cylinders 41, 42 is retracted therein. The cylinders 41, 42 are arranged to be movable with the seat 2 in the front-back direction. The cylinder 41 is configured such that the rod 41 a protrudes backward and faces to the contact plate 12 a, and the cylinder 42 is configured such that the rod 42 a protrudes forward and faces to the contact plate 12 b. Thus, when the seat 2 is moved forward, the rod 41 a of the one cylinder 41 is compressed as illustrated in FIG. 5B 3 to store a backward return force. Meanwhile, when the seat 2 is moved backward, the rod 42 a of the other cylinder 42 is compressed as illustrated in FIG. 5B 2 to store a forward returning force. In such a case, the repelling force may not be stored or may be balanced when the seat is located at the reference position in FIG. 5B 1.
With such a configuration, the compression properties of the both cylinders 41, 42 may be changeable. In the first embodiment, a spring coefficient of the cylinder 42 to be compressed at the time of the forward movement of the seat 2 is appropriately set to be smaller than a spring coefficient of the cylinder 41 to be compressed at the time of the backward movement of the seat 2.
Further, a pair of link members 71, 72 configuring the left-right movement mechanism 7 illustrated in FIG. 3 also serves the second return force generation mechanism 5 configured to generate a return force in a direction to return the seat 2 moved from the reference position P in the left-right direction to the reference position P. That is, the pair of link members 71, 72 is configured to hold an object to be suspended in the lowest position by gravity, and the position is defined as a stable position. Even when the object is moved from the stable position either right or left, the center of gravity of the seat shifts upward while a movement of the tip side is inclining downward in accordance with the amount of movement. Accordingly, a return force is generated and a return force at the reference position P becomes zero.
In the first embodiment, the reference position P is located midway in a front-back movable range. However, since the chair is configured such that the seat is integrally formed with the backrest, it is effective that for example, by application of an appropriate stopper, a backward movable distance of the seat 2 and the backrest 3 from the reference position P is set to be larger than a forward movable distance of the seat 2 and the backrest 3 from the reference position P.
Additionally, as illustrated in FIG. 6, a return force adjustment mechanism 40 z is provided in the first embodiment. The return force adjustment mechanism 40 z is configured such that an initial position of the cylinder 40 as the elastic member is changed to change the displacement of the cylinder 40 due to the positional change of the seat 2. The return force adjustment mechanism 40 z is configured to move up/down the support portion 40 x supporting the cylinder 40. Accordingly, a distance from the left-right shaft n1 to the contact plate 12 a to be brought into contact with the rod 40 a 1 and a distance from the left-right shaft n2 to the contact plate 12 b to be brought into contact with the rod 40 a 2 vary. Therefore, according to the principle of leverage, for the same amount of movement of the seat 2, the displacement of the cylinder 40 increases as the cylinder 40 is moved upward. Consequently, a reaction force increases. On the other hand, the displacement of the cylinder 40 decreases as the cylinder 40 is moved downward; therefore, a reaction force decreases.
As described above, the chair according to the first embodiment includes the return force generation mechanism 4 configured to generate a return force in a direction to return the seat moved from the reference position P at least in the front-back direction to the reference position P. The return force generation mechanism 4 includes the cylinder 40 as the elastic member configured to increase the return force for returning the seat to the reference position P as an amount of movement of the seat from the reference position P increases.
Such a chair is different from a conventional chair movable only backward in that the chair according to the first embodiment is movable in the opposite direction, i.e., movable forward; therefore, increasing a posture changeable range. Further, at the time of either forward or backward movement of the seat 2, the center of the gravity of the seat is likely to shift downward as the seat moves. In this case, the force to shift upward the center of gravity that has been shifted downward is needed to return the seat to the reference position P. Accordingly, the return force is set so as to increase in accordance with the amount of either forward or backward movement of the seat 2 from the reference position P. With such a configuration, the seat 2 can stop at an appropriate position in a balanced manner, or the assist force for allowing a sitting person to change his/her posture can be obtained from the return force generation mechanism 4. Consequently, according to the chair of the present invention, the sitting person can be appropriately seated not only in a normal sitting posture in a state where the chair is located at or adjacent to the reference position P or in a backward tilted posture when the seat is moved backward, but also in a forward tilted posture when the seat is moved forward. As a result, the chair allowing the sitting person not to easily get tired even when being seated for a long time can be realized.
Further, the reference position P is located midway in the front-back movable range, and is a position when a person is not seated, and the seat 2 is stationary on that the elastic force in the front-back direction is zero or balanced at the reference position P. Consequently, the smooth behavior of the seat located from a position adjacent to the reference position P can be effectively realized, and in addition, at the time of the forward or backward movement of the seat from the reference position P, an initial reaction force can be appropriately applied.
Further, the return force generation mechanism 4 is configured to variably adjustable an elastic biasing force. Therefore, even if the force required to return the seat to the reference position P increases in accordance with the increase of the physical size of a sitting person, the return force can be adjusted by the adjustment in accordance with the physical size or preference of the sitting person.
Moreover, as illustrated in FIG. 5A, the cylinder 40 as a single elastic member realizes for applying an elastic biasing force toward the reference position P when the seat 2 is located forward of the reference position P, and a mechanism for applying an elastic force toward the reference position P when the seat 2 is located backward of the reference position P. Therefore, the number of components of the cylinder 40 or the like as the elastic member can be reduced, and in addition, the basic function of the present invention can be simply configured.
Also, as illustrated in FIGS. 5B1 to 5B3, the chair is provided with: the cylinder 41 as an elastic member configured to apply an elastic biasing force toward the reference position P when the seat 2 is located forward of the reference position P; and the cylinder 42 as an elastic member configured to apply an elastic force toward the reference position P when the seat 2 is located backward of the reference position P. The elastic biasing forces are separately set. In such a case, even for the same sitting person, the way that the center of gravity shifts downward at the time of the forward movement of the seat differs from the way that the center of gravity shifts downward at the time of the backward movement of the seat. Therefore, likewise, the force required to return the seat at the time of the forward movement differs from the force required to return the seat at the time of the backward movement. However, with the above-mentioned configuration, an appropriate usage environment can be offered suitably with each of directions.
Additionally, in FIG. 1, a portion of supporting positions of the shafts n1 to n4 is changed in the front-back direction and thereby an initial displacement of the elastic member may be changed so that the elastic biasing force is variably adjustable.
Further, as illustrated in FIG. 6, the initial position of the elastic member is changed so that the displacement of the elastic member 40 due to the positional change of the seat 2 is changed; therefore, repelling force properties of the elastic member 40 are variably adjustable. In such a case, without changing the reference position, a return force can be changed by changing a lever ratio.
Furthermore, as in the first embodiment, the backrest 3 is provided backward of the seat 2, and the backrest 3 and the seat 2 are movable in conjunction with each other in the front-back direction. In this case, the seat 2 is configured such that a movement end inclines downward in accordance with the amount of movement. Therefore, the chair with appropriate usability including a forward or backward tilted posture can be realized.
Moreover, the seat 2 is movably supported in the front-back direction and the left-right direction by the front-back movement mechanism 6 and the left-right movement mechanism 7 that are separate mechanisms. The separate return force generation mechanism 5 for left-right direction is also provided. Therefore, the seat 2 is independently movable not only in the front-back direction and but also in the left-right direction. In addition, the separate return force generation mechanism 4, 5 for left-right direction is provided. Therefore, the seat 2 can be smoothly moved and more various usages of the seat 2 can be offered.
In this case, the left-right return force generation mechanism 7 is configured to shift the center of gravity of the seat 2 upward in accordance with the movement of the seat 2 from the reference position P. When the seat 2 is located at the reference position P, the center of gravity of the seat is located at the lowest position. When the seat 2 is moved right or left, the center of gravity is shifted upward. Thus, without the application of an elastic member or the like, a return force due to gravity can be automatically obtained. Also, the return force is appropriately suitable for the weight of a sitting person.
In addition, the foregoing elastic member is not limited to a spring.
Second Embodiment
Next, an example where an extension spring is applied to an elastic member configuring an elastic return mechanism will be described with reference to FIGS. 8 to 12.
The chair according to a second embodiment of the present invention is different from the chair according to the first embodiment mainly in a front-back movement mechanism 206 and a first elastic force return mechanism 204 for front-back direction, and is substantially the same as the chair according to the first embodiment regarding the left-right movement mechanism and the second return force generation mechanism for left-right direction. Therefore, differences will be mainly described below.
The front-back movement mechanism 206 includes a front link member 261 having a lower end pivotally supported around a left-right shaft s1 by a support base 212, and a guide hole t1 provided in the support base 212 and formed in an upward recessed shape inclined downward from the front side toward the back side. With respect to the illustrated seating part 2 located at the reference position P, an upper end of the front link member 261 is attached in a forward tilted posture to a bracket 221 at the front end of the seat 2 to be pivotal around a left-right shaft s3. An intermediate position of the guide hole t1 is engaged with a left-right shaft s4 provided at the back end of the seat 2. In other words, when the seat 2 is moved forward from the reference position P as illustrated from a state of FIG. 9 to a state of FIG. 10, the front link member 261 is brought into a further forward tilted posture and the left-right shaft s3 is moved.
In addition, the left-right shaft s4 located on the back side is lifted forward and upward along the guide hole t1. Thus, the seat 2 is tilted forward. Meanwhile, when the seat 2 is moved backward from the reference position P as illustrated from a state of FIG. 9 to a state of FIG. 11, the front link member 261 is brought into an upright posture and the left-right shaft s4 located on the back side is moved backward and downward. Thus, the seat 2 is tilted backward.
In addition, the first return force generation mechanism 204 is configured such that an extension spring 241 as a single elastic member realizes a mechanism for applying an elastic biasing force toward the reference position P when the seat 2 is located forward of the reference position P, and a mechanism for applying an elastic force toward the reference position P when the seat 2 is located backward of the reference position P. The spring 241 is attached between a link member 263 provided continuously with the upper end of the link member 261 to integrally rotate with the link member 261 around the left-right shaft s3, and a bracket 222 provided on a lower surface of the seat 2. When the seat 2 is moved forward as illustrated from a state of FIG. 9 to a state of FIG. 10, the spring 241 is pulled in a bent manner such that the link member 263 and the spring 241 project upward. Therefore, the spring 241 stores a backward return force. Meanwhile, when the seat 2 is moved backward as illustrated from a state of FIG. 9 to a state of FIG. 11, the spring 241 is pulled backward in a bent manner such that the link member 263 and the spring 241 project downward. Therefore, the spring 241 stores a forward return force. In other words, even when the seat 2 is moved either forward or backward from the reference position P, the spring 241 is pulled. In addition, the reference position is obtained in a state where the link member 263 and the spring 241 are linearly arranged.
As described above, the chair according to the second embodiment includes the return force generation mechanism 204 configured to generate a return force in a direction to return the seat 2 moved from the reference position P at least in the front-back direction to the reference position P. The return force generation mechanism 204 includes the spring 241 as the elastic member configured to increase the return force for returning the seat to the reference position P as the amount of movement of the seat from the reference position P increases. Therefore, the appropriate return force is obtained from the return force generation mechanism 204. Consequently, a sitting person can be appropriately seated not only in a normal sitting posture in a state where the seat is located at or adjacent to the reference position P or in a backward tilted posture when the seat is moved backward, but also in a forward tilted posture when the seat is moved forward. As a result, the chair allowing a sitting person not to easily get tired even when being seated for a long time can be realized.
Also, in the chair according to the second embodiment, the single elastic member 204 realizes a mechanism for applying an elastic biasing force toward the reference position P when the seat 2 is located forward of the reference position P, and a mechanism for applying an elastic force toward the reference position P when the seat 2 is located backward of the reference position P. Therefore, the number of components of the elastic member can be reduced, and in addition, the basic function of the present invention can be simply configured. Further, the extension spring is applied and thereby a large movable range can be secured and a flexible movement can be realized.
Furthermore, the chair according to the second embodiment includes an initial position adjustment mechanism 40 z 2 configured to change an initial position of the spring 241 as the elastic member. The initial position adjustment mechanism 40 z 2 is provided with a function to move up/down the bracket 222 supporting the spring 241 and change an attachment position of the spring 241 to the bracket 222. In accordance with the adjustment of the attachment position of the spring, the link member 263 is rotated together with the link member 261 from a state of FIG. 9, and the horizontal shaft s4 located on the back side is moved backward and downward along the guide hole t1. Therefore, the reference position P of the seat 2 shifts backward.
Thus, the reference position is effectively adjustable with the use of the return force adjustment mechanism 204.
Also, an initial displacement of the elastic member may be surely changed to change the reference position.
Moreover, as illustrated in FIG. 13, a grip 140G is operated to project or retract a retainer 140 b 1, and thereby an initial compressed state may be changed to change the amount of an initial compression of a spring 140 c of a cylinder 140. In FIG. 13, the grip 140G and the retainer 140 b 1 are connected by a threaded shaft 140R having an external thread, and the external thread of the threaded shaft 140R is screwed with an internal thread provided on the cylinder 140. Thus, a spring reaction force according to the amount of operation of the grip can be applied to a rod 140 a 2. Such a configuration is effectively applicable to the cylinder of FIG. 5A or the like.
Some embodiments of the present invention are described above; however, specific configurations of respective components may not be limited only to the foregoing embodiments. Various modifications can be made to the configurations without departing from the scope of the present invention.
For example, the reference position is not necessarily balanced at an intermediate position in the front-back direction and may be obtained in such a way that the seat is elastically pressed at a front limit position in a movable range. In this case, the chair is configured so as not to be movable forward from the reference position.
INDUSTRIAL APPLICABILITY
The present invention is applicable to a chair suitably used in an office or the like.
DESCRIPTION OF REFERENCE NUMERALS
  • P: reference position
  • 2: seat
  • 4: first return force generation mechanism (front-back direction)
  • 40, 41, 42: elastic member
  • 5: second return force generation mechanism (left-right direction)

Claims (12)

The invention claimed is:
1. A chair configured to be movable in the front-back direction and in a left-right direction and having a reference position located midway in a front-back direction and in a left-right direction in a movable range of a seat, the chair comprising:
a first return force generation mechanism configured to generate a return force in a direction to return the seat moved from the reference position in the front-back direction to the reference position; and
a second return force generation mechanism configured to generate a return force in a direction to return the seat moved from the reference position in the left-right direction to the reference position,
wherein the first return force generation mechanism comprises an elastic member configured to increase the return force in the direction to return the seat to the reference position as an amount of movement of the seat from the reference position increases,
wherein the second return force generation mechanism is configured to shift the center of gravity of the seat upward in accordance with the movement of the seat from the reference position,
wherein regardless of whether the seat moves front, back, left or right, a movement end of the seat inclines downward in accordance with the amount of movement of the seat.
2. The chair according to claim 1, wherein in the first return force generation mechanism, the reference position is located midway in the front-back direction in the movable range and is a position when a person is not seated, and the seat is stationary on that the elastic force in the front-back direction is zero or balanced at the reference position in the front-back direction.
3. The chair according to claim 1, wherein the first return force generation mechanism is configured to variably adjust an elastic biasing force.
4. The chair according to claim 1, wherein the elastic member of the first return force generation mechanism comprises a first elastic member for applying an elastic biasing force toward the reference position when the seat is located forward of the reference position, and a second elastic member for applying an elastic biasing force toward the reference position when the seat is located backward of the reference position.
5. The chair according to claim 1, wherein the first return force generation mechanism includes a single elastic member for applying an elastic biasing force toward the reference position when the seat is located forward of the reference position, and for applying an elastic biasing force toward the reference position when the seat is located backward of the reference position.
6. The chair according to claim 1, wherein the first return force generation mechanism includes a front link member having a lower end pivotally supported around a left-right shaft n1 by a casing, and a back link member having a lower end pivotally supported around a left-right shaft n2 by the casing, and the seat is attached to upper ends of the front link member and the back link member via left-right shafts n3 and n4, wherein a portion of supporting positions of the left-right shafts n1, n2, n3 and n4 can be changed in the front-back direction such that an initial displacement of the elastic member is changed to make an elastic biasing force variably adjustable.
7. The chair according to claim 1, wherein the first return force generation mechanism includes a front link member having a lower end pivotally supported around a left-right shaft n1 by a casing, and a back link member having a lower end pivotally supported around a left-right shaft n2 by the casing, and the seat is attached to the upper ends of the front link member and the back link member via the left-right shafts n3 and n4,
wherein a first contact plate and a second contact plate are configured to be integrally pivotal with the back link member and the front link member, respectively, so as to be configured to vary a distance from the left-right shaft n1 to the portion of the first contact plate to be brought into contact with the elastic member and a distance from the left-right shaft n2 to the portion of the second contact plate to be brought into contact with the elastic member, such that an initial position of the elastic member is changed to change the displacement of the elastic member due to the positional change of the seat to make repelling force properties of the elastic member variably adjustable.
8. The chair according to claim 1, wherein the first return force generating mechanism is configured to shift the reference position to a position where the elastic force in the front-back direction is zero or balanced by changing the initial displacement of the elastic member.
9. The chair according to claim 1, comprising a backrest located backward of the seat, wherein the seat and the backrest are movable in conjunction with each other in the front-back direction, and a movement end of the seat inclines downward in accordance with the amount of movement of the seat.
10. The chair according to claim 7, wherein the first return force generating mechanism is configured to shift the reference position to a position where the elastic force in the front-back direction is zero or balanced by changing the initial position of the elastic member.
11. The chair according to claim 1, wherein the second returning force generating mechanism is composed of a pair of link members.
12. The chair according to claim 11, wherein the pair of link members have a stable position at a portion that holds the object to be suspended by gravity at the lowest position, and regardless of the moving direction from this position to the left or right, the tip side in the moving direction is tilted downward and the center of gravity of the seat is raised with generating a return force in accordance with the above accordingly.
US16/464,384 2016-12-21 2016-12-21 Chair with return force mechanism Active 2037-08-03 US11253077B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088208 WO2018116426A1 (en) 2016-12-21 2016-12-21 Chair

Publications (2)

Publication Number Publication Date
US20210112988A1 US20210112988A1 (en) 2021-04-22
US11253077B2 true US11253077B2 (en) 2022-02-22

Family

ID=62627024

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/464,384 Active 2037-08-03 US11253077B2 (en) 2016-12-21 2016-12-21 Chair with return force mechanism

Country Status (6)

Country Link
US (1) US11253077B2 (en)
EP (1) EP3560386B1 (en)
JP (1) JP6978433B2 (en)
CN (1) CN110022723B (en)
CA (1) CA3044190C (en)
WO (1) WO2018116426A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533998B2 (en) * 2018-10-19 2022-12-27 Kokuyo Co., Ltd. Chair

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735851B2 (en) * 2016-12-20 2020-08-05 コクヨ株式会社 Chair
JP6785644B2 (en) * 2016-12-20 2020-11-18 コクヨ株式会社 Chairs and chair cover members
WO2018116386A1 (en) * 2016-12-20 2018-06-28 コクヨ株式会社 Chair and chair cover member
EP3560386B1 (en) * 2016-12-21 2023-03-22 Kokuyo Co., Ltd. Chair

Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US455866A (en) * 1891-07-14 Alfred e
US1961530A (en) * 1931-08-11 1934-06-05 Otto C Spanenberg Universal seat
US2619153A (en) * 1950-02-22 1952-11-25 Gispen S Fabriek Voor Metaalbe Tilting chair
US2681686A (en) * 1950-03-06 1954-06-22 George W Sheron Universal seat
US3024067A (en) * 1959-10-12 1962-03-06 Brandoli Marino Seat having adjustable back
US3278228A (en) * 1966-01-03 1966-10-11 Doerner Products Co Ltd Chair control pressure plate having replaceable thrust bearings
DE2437059A1 (en) * 1973-08-20 1975-02-27 Fehlbaum Fa Pivoting chair with rubber spring element - has plastic foam upholstered seat mounted on tubular frame
DE2514590A1 (en) * 1974-04-09 1975-10-30 Carmet Ponte Sesto Di Rozzano TILTING UNIT FOR SEATS, ARMCHAIRS AND THE DGL.
US4143910A (en) * 1977-09-12 1979-03-13 Klaus Geffers Chair having synchronously coupled tiltable seat and back rest
US4200332A (en) * 1977-07-23 1980-04-29 Protoned B.V. Adjustable chair
US4364605A (en) * 1979-07-20 1982-12-21 Willibald Grammer Seat with a seat plate of adjustable inclination and a backrest of adjustable inclination
JPS58100656U (en) 1981-12-28 1983-07-08 スガツネ工業株式会社 front and back rocking chair
US4431157A (en) * 1981-11-18 1984-02-14 Tor Arild Pivotal adjustment mechanism
US4521053A (en) * 1981-06-23 1985-06-04 Gispen+Staalmeubel B.V. Chair
EP0164266A2 (en) 1984-06-08 1985-12-11 Hauserman Inc. Chair
US4575151A (en) * 1983-09-13 1986-03-11 Maridyne, Inc. Chair tilting mechanism
US4589697A (en) * 1983-09-30 1986-05-20 Fritz Bauer & Sohne Ohg Bearing device for a chair with incline-adjustable back-rest bearer and incline-adjustable seat
US4605334A (en) * 1982-11-17 1986-08-12 Ari Associates, Inc. Linkage mechanism for coupling two movable members
US4682814A (en) * 1983-05-06 1987-07-28 Provenda Marketing Ag Tilting seat and back chair, particularly tilting desk chair
EP0298928A2 (en) * 1987-07-09 1989-01-11 Castelli S.P.A. A chair with a forwardly pivotable seat
US4906045A (en) 1989-03-20 1990-03-06 The Shaw-Walker Company Chair control for a pedestal chair having a knee-tilt seat
US4962962A (en) * 1987-01-09 1990-10-16 Voko Franz Vogt & Co. Piece of seating furniture
US4966411A (en) * 1987-10-24 1990-10-30 Kokuyo Co., Ltd. Chair provided with a backrest
US5160184A (en) * 1989-07-18 1992-11-03 Steelcase, Inc. Controller for seating and the like
US5536067A (en) * 1994-08-10 1996-07-16 Pinto; Shlomo Chair
US5573303A (en) * 1995-05-16 1996-11-12 Doerner Products Ltd. Chair seat tilting mechanism
US6234573B1 (en) * 1998-05-27 2001-05-22 Peter Röder Chair, in particular office chair
US6238000B1 (en) * 1998-02-04 2001-05-29 Unit Press Limited Mechanism for chair
US6935689B2 (en) * 2002-07-03 2005-08-30 Kokuyo Co., Ltd. Chair
JP2007037600A (en) 2005-07-29 2007-02-15 Kokuyo Furniture Co Ltd Reaction device and chair
US20080088163A1 (en) * 2005-03-26 2008-04-17 Armin Sander Chair, In Particular Office Chair
JP2008167908A (en) 2007-01-11 2008-07-24 Family Co Ltd Chair
US20090261642A1 (en) * 2008-04-18 2009-10-22 Dickie Robert G Hydraulic adjustable seat
US7637570B2 (en) * 2002-09-12 2009-12-29 Wilkhahn Wilkening + Hahne Gmbh + Co. Chair
US20100117427A1 (en) 2007-01-11 2010-05-13 Yoshifumi Fukuyama Chair
EP2387913A1 (en) 2010-05-21 2011-11-23 Karl-Heinz Brändle Device for improving human sitting posture
WO2011144660A1 (en) 2010-05-18 2011-11-24 Rieck Juergen Chair with a tilting apparatus
US20120175929A1 (en) * 2011-01-11 2012-07-12 Aichi Co., Ltd. Chair
US8272692B1 (en) * 2009-10-26 2012-09-25 Epperson Ronald B Office chair having tiltable seat and back
JP2012217845A (en) * 2011-04-05 2012-11-12 Wilkhahn Wolkening + Hahne Gmbh & Co Chair
US8662586B2 (en) * 2006-10-10 2014-03-04 Hector Serber Dynamically balanced seat assembly having independently and arcuately movable backrest and method
DE102016104644A1 (en) 2015-03-14 2016-09-15 Burkhard Schmitz Mechanism assembly for a chair and chair with such a mechanical assembly
EP3195761A1 (en) * 2016-01-22 2017-07-26 Lukas Erckert Seating system
CA3009482A1 (en) * 2016-02-23 2017-08-31 Kokuyo Co., Ltd. Chair and seat support mechanism
CA3044190A1 (en) * 2016-12-21 2018-06-28 Toshiki Yajima Chair
US10058180B2 (en) * 2012-08-23 2018-08-28 Haworth, Inc. Chair, in particular office chair
WO2018173085A1 (en) * 2017-03-22 2018-09-27 Co.Fe.Mo. Industrie S.R.L. Articulation machanism for chairs
JP2019037383A (en) * 2017-08-23 2019-03-14 コクヨ株式会社 Chair
US10272282B2 (en) * 2016-09-20 2019-04-30 Corecentric LLC Systems and methods for providing ergonomic chairs
US20200085195A1 (en) * 2017-06-20 2020-03-19 Kokuyo Co., Ltd. Chair
US20200315355A1 (en) * 2016-06-20 2020-10-08 Kokuyo Co., Ltd. Chair and seat support mechanism
US10806260B2 (en) * 2016-12-20 2020-10-20 Kokuyo Co., Ltd. Chair
US10820704B2 (en) * 2016-06-20 2020-11-03 Kokuyo Co., Ltd. Chair and seat support mechanism
US10842276B2 (en) * 2016-12-20 2020-11-24 Kokuyo Co., Ltd. Chair and cover member of the chair
US10945529B2 (en) * 2017-02-03 2021-03-16 Zhejiang Sunon Furniture Manufacture Co., Ltd. Chair

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9902331D0 (en) * 1999-02-02 1999-03-24 Davison John B Chairs
JP4743013B2 (en) * 2006-06-21 2011-08-10 パナソニック電工株式会社 Balance training equipment
DE202007016488U1 (en) * 2007-11-06 2008-02-21 Prömm, Felix Tobias seat device
KR101267804B1 (en) * 2011-12-08 2013-05-31 한국생산기술연구원 Tilting seat plate for chair and chair having it
JP6141634B2 (en) * 2012-12-21 2017-06-07 コクヨ株式会社 Chair
JP5666670B2 (en) * 2013-04-09 2015-02-12 株式会社馬場家具 Chair with auxiliary mechanism
JP6215659B2 (en) * 2013-11-12 2017-10-18 コクヨ株式会社 Chair

Patent Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US455866A (en) * 1891-07-14 Alfred e
US1961530A (en) * 1931-08-11 1934-06-05 Otto C Spanenberg Universal seat
US2619153A (en) * 1950-02-22 1952-11-25 Gispen S Fabriek Voor Metaalbe Tilting chair
US2681686A (en) * 1950-03-06 1954-06-22 George W Sheron Universal seat
US3024067A (en) * 1959-10-12 1962-03-06 Brandoli Marino Seat having adjustable back
US3278228A (en) * 1966-01-03 1966-10-11 Doerner Products Co Ltd Chair control pressure plate having replaceable thrust bearings
DE2437059A1 (en) * 1973-08-20 1975-02-27 Fehlbaum Fa Pivoting chair with rubber spring element - has plastic foam upholstered seat mounted on tubular frame
DE2514590A1 (en) * 1974-04-09 1975-10-30 Carmet Ponte Sesto Di Rozzano TILTING UNIT FOR SEATS, ARMCHAIRS AND THE DGL.
US4200332A (en) * 1977-07-23 1980-04-29 Protoned B.V. Adjustable chair
US4143910A (en) * 1977-09-12 1979-03-13 Klaus Geffers Chair having synchronously coupled tiltable seat and back rest
US4364605A (en) * 1979-07-20 1982-12-21 Willibald Grammer Seat with a seat plate of adjustable inclination and a backrest of adjustable inclination
US4521053A (en) * 1981-06-23 1985-06-04 Gispen+Staalmeubel B.V. Chair
US4431157A (en) * 1981-11-18 1984-02-14 Tor Arild Pivotal adjustment mechanism
JPS58100656U (en) 1981-12-28 1983-07-08 スガツネ工業株式会社 front and back rocking chair
US4605334A (en) * 1982-11-17 1986-08-12 Ari Associates, Inc. Linkage mechanism for coupling two movable members
US4682814A (en) * 1983-05-06 1987-07-28 Provenda Marketing Ag Tilting seat and back chair, particularly tilting desk chair
US4575151A (en) * 1983-09-13 1986-03-11 Maridyne, Inc. Chair tilting mechanism
US4589697A (en) * 1983-09-30 1986-05-20 Fritz Bauer & Sohne Ohg Bearing device for a chair with incline-adjustable back-rest bearer and incline-adjustable seat
EP0164266A2 (en) 1984-06-08 1985-12-11 Hauserman Inc. Chair
JPS6145707A (en) 1984-06-08 1986-03-05 ハウザ−マン・インコ−ポレ−テツド Chair
US4962962A (en) * 1987-01-09 1990-10-16 Voko Franz Vogt & Co. Piece of seating furniture
EP0298928A2 (en) * 1987-07-09 1989-01-11 Castelli S.P.A. A chair with a forwardly pivotable seat
US4966411A (en) * 1987-10-24 1990-10-30 Kokuyo Co., Ltd. Chair provided with a backrest
US4906045A (en) 1989-03-20 1990-03-06 The Shaw-Walker Company Chair control for a pedestal chair having a knee-tilt seat
US5160184A (en) * 1989-07-18 1992-11-03 Steelcase, Inc. Controller for seating and the like
US5536067A (en) * 1994-08-10 1996-07-16 Pinto; Shlomo Chair
US5573303A (en) * 1995-05-16 1996-11-12 Doerner Products Ltd. Chair seat tilting mechanism
US6238000B1 (en) * 1998-02-04 2001-05-29 Unit Press Limited Mechanism for chair
US6234573B1 (en) * 1998-05-27 2001-05-22 Peter Röder Chair, in particular office chair
US6935689B2 (en) * 2002-07-03 2005-08-30 Kokuyo Co., Ltd. Chair
US7637570B2 (en) * 2002-09-12 2009-12-29 Wilkhahn Wilkening + Hahne Gmbh + Co. Chair
US20080088163A1 (en) * 2005-03-26 2008-04-17 Armin Sander Chair, In Particular Office Chair
JP2007037600A (en) 2005-07-29 2007-02-15 Kokuyo Furniture Co Ltd Reaction device and chair
US8662586B2 (en) * 2006-10-10 2014-03-04 Hector Serber Dynamically balanced seat assembly having independently and arcuately movable backrest and method
JP2008167908A (en) 2007-01-11 2008-07-24 Family Co Ltd Chair
US20100117427A1 (en) 2007-01-11 2010-05-13 Yoshifumi Fukuyama Chair
US20090261642A1 (en) * 2008-04-18 2009-10-22 Dickie Robert G Hydraulic adjustable seat
US8272692B1 (en) * 2009-10-26 2012-09-25 Epperson Ronald B Office chair having tiltable seat and back
WO2011144660A1 (en) 2010-05-18 2011-11-24 Rieck Juergen Chair with a tilting apparatus
DE102010016989A1 (en) 2010-05-18 2011-11-24 Jürgen Rieck Chair with tilting device
EP2387913A1 (en) 2010-05-21 2011-11-23 Karl-Heinz Brändle Device for improving human sitting posture
US20120175929A1 (en) * 2011-01-11 2012-07-12 Aichi Co., Ltd. Chair
JP2012217845A (en) * 2011-04-05 2012-11-12 Wilkhahn Wolkening + Hahne Gmbh & Co Chair
US10058180B2 (en) * 2012-08-23 2018-08-28 Haworth, Inc. Chair, in particular office chair
US20180153306A1 (en) 2015-03-14 2018-06-07 Johann Burkhard Schmitz Mechanical assembly for a chair and chair with such a mechanical assembly
DE102016104644A1 (en) 2015-03-14 2016-09-15 Burkhard Schmitz Mechanism assembly for a chair and chair with such a mechanical assembly
EP3195761A1 (en) * 2016-01-22 2017-07-26 Lukas Erckert Seating system
US10881208B2 (en) * 2016-02-23 2021-01-05 Kokuyo Co., Ltd. Chair and seat support mechanism
CA3009482A1 (en) * 2016-02-23 2017-08-31 Kokuyo Co., Ltd. Chair and seat support mechanism
US20200315355A1 (en) * 2016-06-20 2020-10-08 Kokuyo Co., Ltd. Chair and seat support mechanism
US10820704B2 (en) * 2016-06-20 2020-11-03 Kokuyo Co., Ltd. Chair and seat support mechanism
US10272282B2 (en) * 2016-09-20 2019-04-30 Corecentric LLC Systems and methods for providing ergonomic chairs
US10842276B2 (en) * 2016-12-20 2020-11-24 Kokuyo Co., Ltd. Chair and cover member of the chair
US10806260B2 (en) * 2016-12-20 2020-10-20 Kokuyo Co., Ltd. Chair
WO2018116426A1 (en) * 2016-12-21 2018-06-28 コクヨ株式会社 Chair
CA3044190A1 (en) * 2016-12-21 2018-06-28 Toshiki Yajima Chair
US10945529B2 (en) * 2017-02-03 2021-03-16 Zhejiang Sunon Furniture Manufacture Co., Ltd. Chair
WO2018173085A1 (en) * 2017-03-22 2018-09-27 Co.Fe.Mo. Industrie S.R.L. Articulation machanism for chairs
US20200085195A1 (en) * 2017-06-20 2020-03-19 Kokuyo Co., Ltd. Chair
JP2019037383A (en) * 2017-08-23 2019-03-14 コクヨ株式会社 Chair

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
20 page PDF of machine translation of DE 10 2010 016 989A1 cited as an X reference in a corresponding EP search report. (Year: 2011). *
Extended (Supplementary) European Search Report dated Jul. 21, 2020, issued in counterpart EP Application No. 16924780.6. (7 pages).
International Search Report dated Apr. 4, 2017, issued in counterpart International Application No. PCT/JP2016/088208 (2 pages).
Office Action dated Feb. 2, 2021, issued in counterpart CA Application No. 3044190. (5 pages).
Office Action dated Jun. 23, 2020, issued in counterpart JP Application No. 2018-557469, with English Translation (11 pages).
Office Action dated Mar. 30, 2021, issued in counterpart JP Application No. 2018-557469, with English translation. (5 pages).
Office Action dated Oct. 14, 2021, issued in counterpart CA Application No. 3,044,190. (3 pages).

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533998B2 (en) * 2018-10-19 2022-12-27 Kokuyo Co., Ltd. Chair

Also Published As

Publication number Publication date
US20210112988A1 (en) 2021-04-22
CN110022723B (en) 2022-08-23
CN110022723A (en) 2019-07-16
JPWO2018116426A1 (en) 2019-10-24
EP3560386A1 (en) 2019-10-30
WO2018116426A1 (en) 2018-06-28
CA3044190C (en) 2023-03-14
JP6978433B2 (en) 2021-12-08
EP3560386B1 (en) 2023-03-22
EP3560386A4 (en) 2020-08-19
CA3044190A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US11253077B2 (en) Chair with return force mechanism
CN111329271B (en) Chair and seat support mechanism
US10537181B2 (en) Chair
US8944507B2 (en) Ergonomic adjustable chair mechanisms
AU2015100426A4 (en) Leisure chair
CN103237479B (en) Be provided with the office chair mechanism of the device for adjusting revolving force
JP6735825B2 (en) Chair and seat support mechanism
JP6527623B1 (en) Chair
JP6775015B2 (en) Chair and seat support mechanism
JP2019037383A (en) Chair
JP5342643B2 (en) Priority control mechanism
CN107536314B (en) Seat reclining mechanism
KR102325199B1 (en) A foldable chair based on tilting structure
JP6524385B2 (en) Standing support chair
JP5059888B2 (en) Chair backrest device
KR101369405B1 (en) Forward-sloping apparatus and chair using it
KR101584046B1 (en) Locking assembly for chair and chair having the same
US20210022508A1 (en) Horizontal-moving & rocking appliance and rocking chair
KR101753786B1 (en) Chair with adjustable chair arm
KR101133846B1 (en) Tilting control system for chair
KR102083157B1 (en) Device for alternately tilting chair
KR102303651B1 (en) Partially adjustable structure for chair seat
KR101524916B1 (en) Tilting Device of Chair
KR20230018673A (en) Seat assembly
JP2011200475A (en) Chair for game hall

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOKUYO CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAJIMA, TOSHIKI;SUGANO, TAKAO;REEL/FRAME:049292/0202

Effective date: 20190523

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE