US11035711B2 - Dispensers and related methods - Google Patents
Dispensers and related methods Download PDFInfo
- Publication number
- US11035711B2 US11035711B2 US16/530,655 US201916530655A US11035711B2 US 11035711 B2 US11035711 B2 US 11035711B2 US 201916530655 A US201916530655 A US 201916530655A US 11035711 B2 US11035711 B2 US 11035711B2
- Authority
- US
- United States
- Prior art keywords
- lid
- dispenser
- flange
- container
- sidewall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F11/00—Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
- G01F11/10—Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
- G01F11/26—Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus
- G01F11/261—Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus for fluent solid material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F11/00—Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
- G01F11/10—Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation
- G01F11/26—Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers moved during operation wherein the measuring chamber is filled and emptied by tilting or inverting the supply vessel, e.g. bottle-emptying apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D25/00—Details of other kinds or types of rigid or semi-rigid containers
- B65D25/38—Devices for discharging contents
- B65D25/52—Devices for discharging successive articles or portions of contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
Definitions
- the present disclosure pertains to dispensers and related methods and more particularly to dispensers for measured amounts of a substance.
- the present systems, devices, and methods provide a measured quantity of an ingredient without the need for separate measuring spoons or measuring cups.
- the conventional method of using measuring spoons or measuring cups has been the accepted practice so that the measuring spoon or measuring cup of a desired size can be used.
- the present devices and methods provide the ability to pour a measured quantity directly from a container without the need to find or clean a separate measuring spoon.
- the present devices and methods can provide both options of a measured quantity or freehand pouring as desired.
- FIG. 1 is a perspective view of a dispenser in accordance with an exemplary embodiment.
- FIG. 2 is a top plan view of the dispenser of FIG. 1 .
- FIG. 3 is a cross-sectional side view of the dispenser of FIG. 2 as taken along section line B-B.
- FIGS. 4A and 4B are exploded assembly perspective views of a container assembly including the dispenser of FIG. 1 .
- FIG. 5A is a side view of the container assembly of FIGS. 4A and 4B .
- FIG. 5B is a cross-sectional side view of the container assembly of FIG. 5A as taken along section line A-A.
- FIGS. 6A and 6B are exploded assembly perspective views of an exemplary embodiment of a container assembly.
- FIG. 7A is a side view of the container assembly of FIGS. 6A and 6B .
- FIG. 7B is a cross-sectional side view of the container assembly of FIG. 7A as taken along section line A-A.
- FIGS. 8A and 8B are exploded assembly perspective views of an exemplary embodiment of a container assembly.
- FIG. 9 is a side view of the container assembly of FIGS. 8A and 8B .
- FIGS. 1-3 illustrate various views of an exemplary embodiment of a measuring dispenser or dispenser 100 for fitment with a container.
- the dispenser 100 can comprise body with a top lip ring 102 , which is circular and defined by an outer diameter 120 , an inner diameter 122 , a top surface 124 , and an opposed bottom surface 126 .
- FIGS. 4A and 4B it can be understood that the relative orientation of a container assembly 1000 having an opening for coupling to a lid 800 , or lid side, as a top or upper side and a container body or container 900 having an enclosed based or bottom side as a bottom or lower side of the container assembly 1000 .
- the term lip ring 102 may alternative be referred to as lid ring 102 , which may be used interchangeably.
- FIG. 1 is a perspective view of the exemplary embodiment of a dispenser 100 for fitment with a container.
- the lip ring 102 can have an outer diameter 120 generally similar to an outer diameter of a neck 902 of a container 900 , such as that shown in FIG. 4A as described below.
- the lip ring 102 can have an inner diameter 122 smaller than an inner diameter of the neck 902 of the container 900 .
- a radial thickness of the lip 102 can be greater than a radial thickness of the neck 902 of the container 900 , notwithstanding any threading 950 .
- the smaller inner diameter 122 of the lip ring 102 relative to the inner diameter of the neck 902 of the container 900 allows for a side wall 104 projecting from the lip ring 102 , wherein the side wall 104 can be sized and shaped to protrude into the neck 902 of the container 900 when the dispenser 100 is assembled with the container 900 .
- the side wall 104 can project from the bottom surface 126 of the lid ring 102 .
- the side wall 104 can be defined by an arcuate section of the lid ring 102 , and does not form a full circular enclosure. In this way, the side wall 104 can be an arcuate side wall projecting from a portion of the circumference of the lid ring 102 .
- the side wall 104 can extend orthogonally relative to the bottom surface 126 .
- the side wall 104 can have the shape of an arcuate portion of a side of a truncated cone.
- the side wall 104 can extend perpendicularly from the lid ring 102 , thereby the side wall 104 having the shape of an arcuate portion of a cylinder.
- the side wall 104 can extend parallel to the neck 902 of the container 900 .
- FIGS. 1-3 show an embodiment where the side wall 104 extends orthogonally relative to the bottom surface 126 , such that the side wall 104 tapers radially inward as it extends away from the lid ring 102 .
- the side wall 104 can have the shape of an arcuate portion of a side of a truncated cone.
- the side wall 104 can be bounded by the lid ring 102 at one end and a bottom wall 110 at an opposed end.
- FIG. 2 shows an embodiment of the bottom wall 110 wherein the bottom wall 110 is planar and parallel to a plane defined by the lid ring 102 .
- the bottom wall 110 can be angled relative to the plane defined by the lid ring 102 .
- the bottom wall 110 can be curved or be comprised of multiple angled surfaces.
- the side wall 104 can extend in an arcuate manner and be bound by two edges 112 , 114 .
- FIG. 2 illustrates a top plan view of the dispenser of FIG. 1 .
- FIG. 3 illustrates a cross-sectional side view of the dispenser of FIG. 2 as taken along section line B-B.
- the side wall 104 can extend along approximately half of the circumference of the lid ring 102 .
- a divider wall 106 can extend across the two edges from the bottom wall 110 up to an intermediary height between the bottom wall 110 and the lid ring 102 .
- the two edges 112 , 114 of the side wall 104 can be orthogonal relative to the lid ring 102 such that the resulting divider wall 106 is orthogonal to the lid ring 102 .
- the divider wall 106 can be angled from the bottom wall 110 at a similar angle as the side wall 104 meets the bottom wall 110 .
- the space bounded by the side wall 104 , the bottom wall 110 , and the divider wall 106 can be understood as a measurement space 180 .
- the dimensions of the side wall 104 , the bottom wall 110 , and the divider wall 106 can be adjusted or sized and shaped such that the measurement space 180 is of a desired or preset volume. For example, for a set neck 902 size, with the side wall 104 and bottom wall 110 having fixed dimensions, the divider wall 106 can be taller or shorter in order to either provide for more measurement space 180 or less measurement space 180 , respectively.
- the divider wall 106 can be trapezoidal in shape, with a narrower lower section at the bottom of the tapering side wall 104 than an upper section nearer the lid ring 102 .
- the side wall can take different shapes, with a curved upper section.
- the upper edge or top of the sidewall 104 , at the ring 102 , along a line perpendicular to the surface of the bottom wall 106 defines a dispenser height.
- the dispenser height is greater or larger than the dividing height.
- the difference in the two heights defines a gap.
- the gap defines an opening 108 (( FIGS. 6B and 7B ) between the upper part of the dividing wall and the flip cover 804 .
- the dispensers 100 can still be stackable in a manufacturing process or for shipping as the only different between measurement sizes is the height of the divider wall 106 .
- the side wall 104 can be sized for different sizes of measurement spaces 180 by adjusting the arcuate length that the side wall 104 extends along the circumference of the lid ring 102 .
- the measurement space 180 can be sized accordingly.
- the divider wall 106 extends only to an intermediary height between the bottom wall 110 and the lid ring 102 .
- an opening 108 in the dispenser 100 is defined between the dividing wall 106 and a section of the lid ring 102 where the side wall 104 does not extend.
- the opening 108 provides a through opening between the measurement space 180 and a bottom side of the bottom wall.
- the lid ring 102 can define a flange 128 on the bottom surface 126 from the outer diameter 120 to the side wall 104 .
- the flange 128 of the lid ring 102 can be for mating with a container 900 as described below with respect to FIG. 5B .
- At least one retaining projection 190 can be provided on the top surface 124 of the lid ring.
- the retaining projection 190 can be sized and shaped to engage with a lid 800 of a container assembly.
- the retaining projection 190 can engage with the lid 800 to prevent rotation of the dispenser 100 relative to the lid 800 .
- the retaining projection 190 can be a rectangular projection projecting from the top surface 124 of the lid ring 102 .
- Alternative shapes can be used as appropriate to engage with the lid 800 .
- the retaining projection 190 can be a half dome, triangular, or have a hook shape as necessary.
- the retaining projection 190 can project from the top surface 124 with a footprint from the inner diameter 122 to an intermediary distance between the inner diameter 122 and the outer diameter 120 .
- the retaining projection 190 can project from the top surface 124 with a footprint from the outer diameter 120 to an intermediary distance between the inner diameter 122 and the outer diameter 120 .
- the retaining project can project from the top surface 124 with a footprint located between the inner diameter 122 and the outer diameter 120 .
- Embodiments of the retaining projection 190 can have a height sufficient to engage with the lid 800 while the lid 800 is rotated to be threadably engaged to a container 900 . That is, the retaining projection 190 can fix rotation of the dispenser 100 relative to the lid 800 prior to full seating of the lid 800 to the container 900 . For example, the retaining projection 190 can engage with the lid 800 to prevent relative rotation at least half a rotation prior to full seating of the lid 800 to the container 900 . Alternatively, it may be beneficial for assembly if the retaining projection 190 can engage with the lid 800 to prevent relative rotation at least one rotation prior to full seating of the lid 800 to the container 900 .
- two retaining projections 190 can be provided on the top surface 124 .
- the two retaining projections can be on opposed sides of the lid ring 102 .
- the two retaining projections can be spaced apart at a distance other than 180 degrees opposite one another. This can be useful for engaging with asymmetrical features of a lid 800 . Additional detail to one such embodiment is provided below with respect to FIGS. 6A-7B .
- Additional retaining projections 190 beyond two can be used as desired.
- the two or more retaining projections 190 can be similar in shape.
- the two or more retaining projections 190 can have at least one projection differently shaped from another.
- FIGS. 4A and 4B illustrate the dispenser 100 of FIGS. 1-3 as arranged in an exploded assembly perspective views of a container assembly 1000 .
- FIG. 4A is illustrated from approximately 90 degrees offset from FIG. 4B .
- the container assembly 1000 can include the dispenser 100 , a lid 800 , and a container 900 .
- FIGS. 4A and 4B illustrate a container 900 have a neck 902 and a body 904 .
- the body 904 can be one of a variety of shapes for storage or aesthetic reasons.
- the body 904 can have a generally rectangular shape.
- the lid 800 can have a lid ring body 802 , a flip cover 804 , and a hinge 806 coupling the lid ring body 802 with the flip cover 804 .
- the lid ring body 802 of the lid 800 and the neck 902 of the container 900 can be sized and shaped for fitment with one another.
- the lid 800 can be molded as conventionally provided and commercially available.
- the dispenser 100 for use with the lid 800 can also be molded, such as by plastic injection.
- the dispenser 100 can be assembled to the lid 800 and used as described herein.
- the dispenser 100 and the lid 800 can be singularly or unitarily formed as a unit.
- the unitarily formed combination lid and dispenser can be made from or by 3D printing.
- FIG. 5A is a side view of the container assembly of FIGS. 4A and 4B .
- FIG. 5B is a cross-sectional side view of the container assembly of FIG. 5A as taken along section line A-A.
- the neck 902 can support the flange 128 of the lid 102 . In this way, the flange 128 sits on top of the neck 902 and the measurement space 180 of the dispenser 100 extends into the neck 902 of the container 900 .
- the lid ring body 802 of the lid 800 and the neck 902 of the container 900 being sized and shaped for fitment with one another, the lid ring body 802 can have threading 850 corresponding to threading 950 of the neck 902 .
- the lid 800 can be threadably attached such that it retains the dispenser 100 between the lid 800 and the container 900 .
- the retaining projection 190 can engage with the lid 800 to prevent rotation of the dispenser 100 relative to the lid 800 .
- the measurement space 180 of the dispenser is located inside the area defined by the neck 902 of the container. In other embodiments, the measurement space 180 of the dispenser can extend into the body 904 of the container 900 .
- the lid 800 has a singular flip cover 804 .
- the singular flip cover can be connected to the lid ring body 802 by a hinge 806 .
- the hinge 806 can include a living hinge, a separate hinge component, a linking pin, or other suitable hinging.
- the opening 108 can provide a through space from the measurement space 180 to the body of the container.
- the container can be inverted.
- An upright state can be understood as the lid 800 being upward relative to the container 900 .
- An inverted state can be understood as the container 900 being upward relative to the lid 800 .
- an ingredient in the container can settle due to gravity to fill the measurement space 180 and the neck 902 of the container.
- the container assembly 1000 When the container assembly 1000 is flipped back to an upright state, the ingredient can settle due to gravity again, with some of the ingredient being retained by the measurement space 180 of the dispenser. Accordingly, the flip cover 804 of the lid 800 can then be opened for dispensing. When the container assembly 1000 is tilted, the ingredient retained by the measurement space can be dispensed, or poured out, to provide the measured quantity.
- the measurement space 180 can be arranged to be on an opposite side of the lid ring 102 from the hinge 806 . In other embodiments, the measurement space can be set at an angle relative to the hinge 806 . The relative rotation can be determined by the interfacing of the retaining projection 190 and the lid 800 .
- the lid 800 and the container 900 can be fitted by other means, such as snap fitting.
- the neck portion does not have to be circular in cross section to provide the rotational ability.
- other geometric shapes such as triangular or rectangular cross sections can be provided.
- the neck 902 , the lid ring body 802 , and the lip ring 102 can be shaped accordingly to correspond to one another to provide arrangement such that the dispenser 100 is retained between the lid 800 and the container 900 .
- FIGS. 6A and 6B illustrate the dispenser 100 of FIGS. 1-3 as arranged in an exploded assembly perspective views of another embodiment of a container assembly 1000 .
- FIG. 6A is illustrated from approximately 90 degrees offset from FIG. 6B .
- the container assembly 1000 can include the dispenser 100 , a lid 800 , and a container 900 .
- FIGS. 6A and 6B illustrate a container 900 have a neck 902 and a body 904 .
- the body 904 can be one of a variety of shapes for storage or aesthetic reasons.
- the body 904 can have a generally rectangular shape.
- the lid 800 can have a lid ring body 802 , a first flip cover 804 , a second flip cover 808 , and a first hinge 806 coupling the lid ring body 802 with the first flip cover 804 , and a second hinge 810 coupling the lid ring body 802 with the second flip cover 808 .
- the lid ring body 802 of the lid 800 and the neck 902 of the container 900 can be sized and shaped for fitment with one another.
- FIG. 7A is a side view of the container assembly of FIGS. 6A and 6B .
- FIG. 7B is a cross-sectional side view of the container assembly of FIG. 7A as taken along section line A-A.
- the neck 902 can support the flange 128 of the lid 102 . In this way, the flange 128 sits on top of the neck 902 and the measurement space 180 of the dispenser 100 extends into the neck 902 of the container 900 .
- the lid ring body 802 of the lid 800 and the neck 902 of the container 900 being sized and shaped for fitment with one another, the lid ring body 802 can have threading 850 corresponding to threading 950 of the neck 902 .
- the lid 800 can be threadably attached such that it retains the dispenser 100 between the lid 800 and the container 900 .
- the retaining projection 190 can engage with the lid 800 to prevent rotation of the dispenser 100 relative to the lid 800 .
- the measurement space 180 of the dispenser is located inside the area defined by the neck 902 of the container. In other embodiments, the measurement space 180 of the dispenser can extend into the body 904 of the container 900 .
- the lid 800 has a first flip cover 804 and a second flip cover 808 .
- the first and the second flip cover 804 , 808 can be connected to the lid ring body 802 by the first hinge 806 and the second hinge 810 , respectively.
- the hinges can include a living hinge, a separate hinge component, a linking pin, or other suitable hinging.
- the hinges can be the same type of hinge or different types of hinges.
- the first flip cover 804 and the second flip cover 808 can be utilized for different pouring methods.
- the first flip cover 804 can cover an opening 814 without restriction.
- the second flip cover 808 can cover a grate 812 of the lid 800 , wherein the grate 812 is designed to limit the flow of the ingredient when poured.
- the grate 812 can be circular cut outs, slits, or other geometric shaped openings.
- the opening 108 can provide a through space from the measurement space 180 to the body of the container.
- the container can be inverted.
- An upright state can be understood as the lid 800 being upward relative to the container 900 .
- An inverted state can be understood as the container 900 being upward relative to the lid 800 .
- an ingredient in the container can settle due to gravity to fill the measurement space 180 and the neck 902 of the container.
- the ingredient can settle due to gravity again, with some of the ingredient being retained by the measurement space 180 of the dispenser. Accordingly, the first flip cover 804 of the lid 800 can then be opened for dispensing. When the container assembly 1000 is tilted, the ingredient retained by the measurement space can be dispensed, or poured out, to provide the measured quantity.
- the measurement space 180 can be arranged to be underneath the first flip cover 804 . In this way, the ingredient to be poured from the measurement space can be poured out of the container 900 from the first flip cover 804 . As the measurement is already done by the measurement space 180 , there is no need to limit the rate of pour such as with the grate 812 . In other embodiments, the measurement space 180 can be arranged to be underneath the second flip cover 804 and the grating 812 . In this way, the dispenser 100 does not block a person from inserting a measuring spoon or utensil through the first flip cover 804 for direct access to the ingredient.
- the relative rotation can be determined by the interfacing of the retaining projection 190 and the lid 800 . In some embodiments, the retaining projection can engage with a middle portion of the lid 800 between the first hinge 806 and the second hinge 810 .
- the lid 800 and the container 900 can be fitted by other means, such as snap fitting.
- the neck portion does not have to be circular in cross section to provide the rotational ability.
- other geometric shapes such as triangular or rectangular cross sections can be provided.
- the neck 902 , the lid ring body 802 , and the lip ring 102 can be shaped accordingly to correspond to one another to provide arrangement such that the dispenser 100 is retained between the lid 800 and the container 900 .
- FIGS. 8A and 8B are exploded assembly perspective views of an exemplary embodiment of a container assembly.
- FIG. 8A is illustrated from approximately 90 degrees offset from FIG. 8B .
- the container assembly 1000 can include the dispenser 100 , a lid 800 , and a container 900 .
- FIGS. 8A and 8B illustrate a container 900 have a neck 902 and a body 904 .
- the body 904 can be one of a variety of shapes for storage or aesthetic reasons.
- the body 904 can have a generally rectangular shape.
- the lid 800 can have a lid ring body 802 , a flip cover 804 , and a hinge 806 coupling the lid ring body 802 with the flip cover 804 .
- the lid ring body 802 of the lid 800 and the neck 902 of the container 900 can be sized and shaped for fitment with one another.
- FIG. 9 is a side view of the container assembly of FIGS. 8A and 8B .
- the lid ring body 802 of the lid 800 and the neck 902 of the container 900 being sized and shaped for fitment with one another, the lid ring body 802 can have threading 850 corresponding to threading 950 of the neck 902 .
- the dispenser 100 can have a hinge 170 to the lid 800 such that it is rotatably hinged to the lid 800 through an opening 816 of the lid 800 .
- the dispenser 100 can be hinged to the lid ring body 802 , such that it can rotate radially outward relative to a central axis of the lid 800 .
- the dispenser can have a measurement space 180 generally defined by a circular side wall 104 and a bottom wall 110 . In other embodiments, different geometric shapes can define the measurement space 180 .
- the lid 800 has a singular flip cover 804 .
- the singular flip cover can be connected to the lid ring body 802 by a hinge 806 .
- the hinge 806 can include a living hinge, a separate hinge component, a linking pin, or other suitable hinging.
- the dispenser In an assembled state of the container assembly 1000 , the dispenser can be smaller than the cross sectional area of the neck 902 such that there is a through space from the measurement space 180 to the body of the container.
- the container In operation, it can be envisioned that when the flip cover 804 is in a closed state, such that the container assembly 1000 is in a sealed state, the container can be inverted.
- An upright state can be understood as the lid 800 being upward relative to the container 900 .
- An inverted state can be understood as the container 900 being upward relative to the lid 800 .
- an ingredient in the container can settle due to gravity to fill the measurement space 180 and the neck 902 of the container.
- the ingredient can settle due to gravity again, with some of the ingredient being retained by the measurement space 180 of the dispenser. Afterwards, the flip cover 804 of the lid 800 can then be opened for dispensing, or the dispenser can be rotated about its hinge out of the lid 800 for dispensing. When the container assembly 1000 is tilted, the ingredient retained by the measurement space 180 can be dispensed, or poured out, to provide the measured quantity.
- the measurement space 180 can be arranged to be on an opposite side of the lid ring 102 from the hinge 806 . In other embodiments, the measurement space can be set at an angle relative to the hinge 806 . The relative rotation can be determined by the interfacing of the retaining projection 190 and the lid 800 .
- the lid ring body 802 can be sized such that the dispenser 100 is on top of the neck 902 of the container 900 .
- the neck 902 can have a cut out or taper sufficient for rotation of the hinged dispenser 100 out of the neck 902 .
- the lid 800 and the container 900 can be fitted by other means, such as snap fitting.
- the neck portion does not have to be circular in cross section to provide the rotational ability.
- other geometric shapes such as triangular or rectangular cross sections can be provided.
- the neck 902 , the lid ring body 802 , and the dispenser 100 can be shaped accordingly to correspond to one another to provide arrangement such that the dispenser 100 is retained between the lid 800 and the container 900 .
- embodiments can be understood for usage of containers of a variety of substances, not just for kitchen ingredients.
- dispenser and container assemblies their components, and related methods have been specifically described and illustrated herein, many modifications and variations will be apparent to those skilled in the art.
- the various contoured surfaces may be modified so long as a measurement space is provided for the ingredient to fill.
- features specifically discussed for one dispenser embodiment may be adopted for inclusion with another dispenser embodiment, provided the functions are compatible. Accordingly, it is to be understood that the dispenser and the container assemblies, and related methods constructed according to principles of the disclosed devices, systems, and methods may be embodied other than as specifically described herein.
- the disclosure is also defined in the following claims.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Closures For Containers (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/530,655 US11035711B2 (en) | 2018-08-03 | 2019-08-02 | Dispensers and related methods |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862714410P | 2018-08-03 | 2018-08-03 | |
| US16/530,655 US11035711B2 (en) | 2018-08-03 | 2019-08-02 | Dispensers and related methods |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20200041322A1 US20200041322A1 (en) | 2020-02-06 |
| US11035711B2 true US11035711B2 (en) | 2021-06-15 |
Family
ID=69227331
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/530,655 Active US11035711B2 (en) | 2018-08-03 | 2019-08-02 | Dispensers and related methods |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US11035711B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11035711B2 (en) * | 2018-08-03 | 2021-06-15 | Dac V. Vu | Dispensers and related methods |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3044667A (en) * | 1959-10-06 | 1962-07-17 | Procter & Gamble | Detergent dispenser for automatic clothes washing machines |
| FR2268252A3 (en) * | 1974-04-17 | 1975-11-14 | Nestle Sa | Outlet metering device for a jar - has three connected chambers passing dose of material |
| US4949880A (en) * | 1987-06-08 | 1990-08-21 | Bradley Lawrence T | Homogenizer/proportioner dispenser for bottles |
| US5480071A (en) * | 1992-02-14 | 1996-01-02 | Taplast Srl | Measuring device for powder products |
| US5495964A (en) * | 1992-11-02 | 1996-03-05 | Taplast Srl | Measuring/dispensing device for granular or powder products |
| US20180094959A1 (en) * | 2016-09-30 | 2018-04-05 | Mccormick & Company, Incorporated | Dosing closure and container utilizing the same |
| US20200041322A1 (en) * | 2018-08-03 | 2020-02-06 | Dac V. Vu | Dispensers and related methods |
-
2019
- 2019-08-02 US US16/530,655 patent/US11035711B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3044667A (en) * | 1959-10-06 | 1962-07-17 | Procter & Gamble | Detergent dispenser for automatic clothes washing machines |
| FR2268252A3 (en) * | 1974-04-17 | 1975-11-14 | Nestle Sa | Outlet metering device for a jar - has three connected chambers passing dose of material |
| US4949880A (en) * | 1987-06-08 | 1990-08-21 | Bradley Lawrence T | Homogenizer/proportioner dispenser for bottles |
| US5480071A (en) * | 1992-02-14 | 1996-01-02 | Taplast Srl | Measuring device for powder products |
| US5495964A (en) * | 1992-11-02 | 1996-03-05 | Taplast Srl | Measuring/dispensing device for granular or powder products |
| US20180094959A1 (en) * | 2016-09-30 | 2018-04-05 | Mccormick & Company, Incorporated | Dosing closure and container utilizing the same |
| US20200041322A1 (en) * | 2018-08-03 | 2020-02-06 | Dac V. Vu | Dispensers and related methods |
Also Published As
| Publication number | Publication date |
|---|---|
| US20200041322A1 (en) | 2020-02-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7959031B2 (en) | Method for metering and dispensing device | |
| US8210401B2 (en) | Condiment dispensing container and carousel | |
| US5509582A (en) | Dispensing cap with internal measuring chamber | |
| US5975368A (en) | Bi-modal dispensing system for particulate material | |
| US6601734B1 (en) | Device for measuring and dispensing free flowing materials | |
| US5346105A (en) | Dispenser for granular material | |
| RU2277507C2 (en) | Uniaxial sealing device with double distribution means | |
| KR20210064071A (en) | Beverage container open indicator | |
| GB2192386A (en) | Dispensing closure | |
| KR20000058010A (en) | Container with dispensing assembly | |
| US6378735B1 (en) | Device for obtaining contents in a container at desired quantity | |
| US6286731B1 (en) | Sealed dispensing container | |
| US5772086A (en) | Particulate dispenser | |
| US11326923B2 (en) | Tamper-resistant lid assembly for dispensing a premeasured amount of liquid | |
| US10852172B2 (en) | Dosing closure and container utilizing the same | |
| US11700968B2 (en) | Infuser container | |
| US11035711B2 (en) | Dispensers and related methods | |
| KR100314367B1 (en) | Condiment Dispenser | |
| JP2021517879A (en) | Portable beverage container | |
| US20140361011A1 (en) | Container and Lid Assembly | |
| SK13352000A3 (en) | Hybrid beverage container | |
| US4850501A (en) | Dispensing container | |
| CN209915600U (en) | Beverage jug with improved fluid flow | |
| KR101490768B1 (en) | Cruet having measuring function | |
| EP1494939B1 (en) | Dispensing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |