US11019431B2 - Audio system - Google Patents

Audio system Download PDF

Info

Publication number
US11019431B2
US11019431B2 US16/383,616 US201916383616A US11019431B2 US 11019431 B2 US11019431 B2 US 11019431B2 US 201916383616 A US201916383616 A US 201916383616A US 11019431 B2 US11019431 B2 US 11019431B2
Authority
US
United States
Prior art keywords
user
sound
audio system
computer
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/383,616
Other versions
US20190320264A1 (en
Inventor
Anthony McGannon Morris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/383,616 priority Critical patent/US11019431B2/en
Publication of US20190320264A1 publication Critical patent/US20190320264A1/en
Application granted granted Critical
Publication of US11019431B2 publication Critical patent/US11019431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1025Accumulators or arrangements for charging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/326Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • One or more embodiments of the invention generally relate to audio systems. More particularly, certain embodiments of the invention relate to headphones.
  • headphones are available in the market that include, but are not limited to, headphones connected to a device with wires, headphones with “over the head parts” connected to a device either with wires and/or wirelessly, headphones with “behind the neck parts” connected to a device either with wires and/or wirelessly, and the like.
  • the wired headphones may face an omnipresent issue of the wires getting entangled or breaking, the headphones with “over the head” parts may interfere with your hair or hat, the headphones with “behind the neck” parts may interfere with your collar, necklace, neck tie, pillow, etc., and the user may at times waste time in finding the ear buds on the end of a wired headphone to re-insert them into the user's ears, and the like issues.
  • FIG. 1 illustrates an audio system, in accordance with an embodiment of the present invention
  • FIG. 2 illustrates an architecture for an audio system, in accordance with an embodiment of the present invention
  • FIG. 3 illustrates a photograph of an exemplary prototype of an audio system, in accordance with an embodiment of the present invention
  • FIG. 4 illustrates a side view photograph of an exemplary prototype of an audio system being used by a user, in accordance with an embodiment of the present invention
  • FIG. 5 illustrates a front view photograph of an exemplary prototype of an audio system being used by a user, in accordance with an embodiment of the present invention
  • FIG. 6 illustrates a block diagram depicting a conventional client/server communication system, which may be used by an exemplary web-enabled/networked embodiment of the present invention.
  • FIG. 7 is a block diagram depicting an exemplary client/server system which may be used by an exemplary web-enabled/networked embodiment of the present invention.
  • a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps and subservient means. All conjunctions used are to be understood in the most inclusive sense possible.
  • the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise.
  • Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
  • the ordinary and customary meaning of terms like “substantially” includes “reasonably close to: nearly, almost, about”, connoting a term of approximation. See In re Frye, 94 USPQ2d 1072, 1077, 2010 WL 889747 (B.P.A.I. 2010) Depending on its usage, the word “substantially” can denote either language of approximation or language of magnitude. Deering Precision Instruments, L.L.C. v. Vector Distribution Sys., Inc., 347 F.3d 1314, 1323 (Fed. Cir.
  • case law generally recognizes a dual ordinary meaning of such words of approximation, as contemplated in the foregoing, as connoting a term of approximation or a term of magnitude; e.g., see Deering Precision Instruments, L.L.C. v. Vector Distrib. Sys., Inc., 347 F.3d 1314, 68 USPQ2d 1716, 1721 (Fed. Cir. 2003), cert. denied, 124 S. Ct. 1426 (2004) where the court was asked to construe the meaning of the term “substantially” in a patent claim.
  • Epcon 279 F.3d at 1031 (“The phrase ‘substantially constant’ denotes language of approximation, while the phrase ‘substantially below’ signifies language of magnitude, i.e., not insubstantial.”). Also, see, e.g., Epcon Gas Sys., Inc. v. Bauer Compressors, Inc., 279 F.3d 1022 (Fed. Cir. 2002) (construing the terms “substantially constant” and “substantially below”); Zodiac Pool Care, Inc. v. Hoffinger Indus., Inc., 206 F.3d 1408 (Fed. Cir. 2000) (construing the term “substantially inward”); York Prods., Inc. v. Cent.
  • Words of approximation may also be used in phrases establishing approximate ranges or limits, where the end points are inclusive and approximate, not perfect; e.g., see AK Steel Corp. v. Sollac, 344 F.3d 1234, 68 USPQ2d 1280, 1285 (Fed. Cir. 2003) where it where the court said [W]e conclude that the ordinary meaning of the phrase “up to about 10%” includes the “about 10%” endpoint.
  • AK Steel when an object of the preposition “up to” is nonnumeric, the most natural meaning is to exclude the object (e.g., painting the wall up to the door).
  • a goal of employment of such words of approximation, as contemplated in the foregoing, is to avoid a strict numerical boundary to the modified specified parameter, as sanctioned by Pall Corp. v. Micron Separations, Inc., 66 F.3d 1211, 1217, 36 USPQ2d 1225, 1229 (Fed. Cir. 1995) where it states “It is well established that when the term “substantially” serves reasonably to describe the subject matter so that its scope would be understood by persons in the field of the invention, and to distinguish the claimed subject matter from the prior art, it is not indefinite.” Likewise see Verve LLC v.
  • references to a “device,” an “apparatus,” a “system,” etc., in the preamble of a claim should be construed broadly to mean “any structure meeting the claim terms” exempt for any specific structure(s)/type(s) that has/(have) been explicitly disavowed or excluded or admitted/implied as prior art in the present specification or incapable of enabling an object/aspect/goal of the invention.
  • the present specification discloses an object, aspect, function, goal, result, or advantage of the invention that a specific prior art structure and/or method step is similarly capable of performing yet in a very different way
  • the present invention disclosure is intended to and shall also implicitly include and cover additional corresponding alternative embodiments that are otherwise identical to that explicitly disclosed except that they exclude such prior art structure(s)/step(s), and shall accordingly be deemed as providing sufficient disclosure to support a corresponding negative limitation in a claim claiming such alternative embodiment(s), which exclude such very different prior art structure(s)/step(s) way(s).
  • references to “one embodiment,” “an embodiment,” “example embodiment,” “various embodiments,” “some embodiments,” “embodiments of the invention,” etc., may indicate that the embodiment(s) of the invention so described may include a particular feature, structure, or characteristic, but not every possible embodiment of the invention necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment,” or “in an exemplary embodiment,” “an embodiment,” do not necessarily refer to the same embodiment, although they may.
  • references to “user”, or any similar term, as used herein, may mean a human or non-human user thereof.
  • “user”, or any similar term, as used herein, unless expressly stipulated otherwise, is contemplated to mean users at any stage of the usage process, to include, without limitation, direct user(s), intermediate user(s), indirect user(s), and end user(s).
  • the meaning of “user”, or any similar term, as used herein, should not be otherwise inferred or induced by any pattern(s) of description, embodiments, examples, or referenced prior-art that may (or may not) be provided in the present patent.
  • references to “end user”, or any similar term, as used herein, is generally intended to mean late stage user(s) as opposed to early stage user(s). Hence, it is contemplated that there may be a multiplicity of different types of “end user” near the end stage of the usage process.
  • examples of an “end user” may include, without limitation, a “consumer”, “buyer”, “customer”, “purchaser”, “shopper”, “enjoyer”, “viewer”, or individual person or non-human thing benefiting in any way, directly or indirectly, from use of. or interaction, with some aspect of the present invention.
  • some embodiments of the present invention may provide beneficial usage to more than one stage or type of usage in the foregoing usage process.
  • references to “end user”, or any similar term, as used therein are generally intended to not include the user that is the furthest removed, in the foregoing usage process, from the final user therein of an embodiment of the present invention.
  • intermediate user(s) may include, without limitation, any individual person or non-human thing benefiting in any way, directly or indirectly, from use of, or interaction with, some aspect of the present invention with respect to selling, vending, Original Equipment Manufacturing, marketing, merchandising, distributing, service providing, and the like thereof.
  • the mechanisms/units/circuits/components used with the “configured to” or “operable for” language include hardware—for example, mechanisms, structures, electronics, circuits, memory storing program instructions executable to implement the operation, etc. Reciting that a mechanism/unit/circuit/component is “configured to” or “operable for” perform(ing) one or more tasks is expressly intended not to invoke 35 U.S.C. .sctn.112, sixth paragraph, for that mechanism/unit/circuit/component. “Configured to” may also include adapting a manufacturing process to fabricate devices or components that are adapted to implement or perform one or more tasks.
  • this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors.
  • a determination may be solely based on those factors or based, at least in part, on those factors.
  • phase “consisting of” excludes any element, step, or ingredient not specified in the claim.
  • the phrase “consists of” (or variations thereof) appears in a clause of the body of a claim, rather than immediately following the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole.
  • the phase “consisting essentially of” and “consisting of” limits the scope of a claim to the specified elements or method steps, plus those that do not materially affect the basis and novel characteristic(s) of the claimed subject matter (see Norian Corp. v Stryker Corp., 363 F.3d 1321, 1331-32, 70 USPQ2d 1508, Fed. Cir. 2004).
  • any instance of “comprising” may be replaced by “consisting of” or, alternatively, by “consisting essentially of”, and thus, for the purposes of claim support and construction for “consisting of” format claims, such replacements operate to create yet other alternative embodiments “consisting essentially of” only the elements recited in the original “comprising” embodiment to the exclusion of all other elements.
  • any claim limitation phrased in functional limitation terms covered by 35 USC ⁇ 112(6) (post AIA 112(f)) which has a preamble invoking the closed terms “consisting of,” or “consisting essentially of,” should be understood to mean that the corresponding structure(s) disclosed herein define the exact metes and bounds of what the so claimed invention embodiment(s) consists of, or consisting essentially of, to the exclusion of any other elements which do not materially affect the intended purpose of the so claimed embodiment(s).
  • Devices or system modules that are in at least general communication with each other need not be in continuous communication with each other, unless expressly specified otherwise.
  • devices or system modules that are in at least general communication with each other may communicate directly or indirectly through one or more intermediaries.
  • any system components described or named in any embodiment or claimed herein may be grouped or sub-grouped (and accordingly implicitly renamed) in any combination or sub-combination as those skilled in the art can imagine as suitable for the particular application, and still be within the scope and spirit of the claimed embodiments of the present invention.
  • a commercial implementation in accordance with the spirit and teachings of the present invention may configured according to the needs of the particular application, whereby any aspect(s), feature(s), function(s), result(s), component(s), approach(es), or step(s) of the teachings related to any described embodiment of the present invention may be suitably omitted, included, adapted, mixed and matched, or improved and/or optimized by those skilled in the art, using their average skills and known techniques, to achieve the desired implementation that addresses the needs of the particular application.
  • Coupled may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
  • a “computer” may refer to one or more apparatus and/or one or more systems that are capable of accepting a structured input, processing the structured input according to prescribed rules, and producing results of the processing as output.
  • Examples of a computer may include: a computer; a stationary and/or portable computer; a computer having a single processor, multiple processors, or multi-core processors, which may operate in parallel and/or not in parallel; a general purpose computer; a supercomputer; a mainframe; a super mini-computer; a mini-computer; a workstation; a micro-computer; a server; a client; an interactive television; a web appliance; a telecommunications device with internet access; a hybrid combination of a computer and an interactive television; a portable computer; a tablet personal computer (PC); a personal digital assistant (PDA); a portable telephone; application-specific hardware to emulate a computer and/or software, such as, for example, a digital signal processor (DSP), a field-programmable gate array (FPGA), an application specific integrated
  • embodiments of the disclosure may be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. Where appropriate, embodiments may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination thereof) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
  • Software may refer to prescribed rules to operate a computer. Examples of software may include: code segments in one or more computer-readable languages; graphical and or/textual instructions; applets; pre-compiled code; interpreted code; compiled code; and computer programs.
  • the example embodiments described herein can be implemented in an operating environment comprising computer-executable instructions (e.g., software) installed on a computer, in hardware, or in a combination of software and hardware.
  • the computer-executable instructions can be written in a computer programming language or can be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interfaces to a variety of operating systems.
  • HTML Hyper text Markup Language
  • XML Extensible Markup Language
  • XSL Extensible Stylesheet Language
  • DSSSL Document Style Semantics and Specification Language
  • SCS Cascading Style Sheets
  • SML Synchronized Multimedia Integration Language
  • WML JavaTM, JiniTM, C, C++, Smalltalk, Perl, UNIX Shell, Visual Basic or Visual Basic Script, Virtual Reality Markup Language (VRML), ColdFusionTM or other compilers, assemblers, interpreters or other computer languages or platforms.
  • Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider for example, AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • a network is a collection of links and nodes (e.g., multiple computers and/or other devices connected together) arranged so that information may be passed from one part of the network to another over multiple links and through various nodes.
  • networks include the Internet, the public switched telephone network, the global Telex network, computer networks (e.g., an intranet, an extranet, a local-area network, or a wide-area network), wired networks, and wireless networks.
  • the Internet is a worldwide network of computers and computer networks arranged to allow the easy and robust exchange of information between computer users.
  • ISPs Internet Service Providers
  • Content providers e.g., website owners or operators
  • multimedia information e.g., text, graphics, audio, video, animation, and other forms of data
  • webpages comprise a collection of connected, or otherwise related, webpages.
  • the combination of all the websites and their corresponding webpages on the Internet is generally known as the World Wide Web (WWW) or simply the Web.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • Non-volatile media include, for example, optical or magnetic disks and other persistent memory.
  • Volatile media include dynamic random access memory (DRAM), which typically constitutes the main memory.
  • Transmission media include coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to the processor. Transmission media may include or convey acoustic waves, light waves and electromagnetic emissions, such as those generated during radio frequency (RF) and infrared (IR) data communications.
  • RF radio frequency
  • IR infrared
  • Computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, removable media, flash memory, a “memory stick”, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
  • a floppy disk a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, removable media, flash memory, a “memory stick”, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
  • sequences of instruction may be delivered from RAM to a processor, (ii) may be carried over a wireless transmission medium, and/or (iii) may be formatted according to numerous formats, standards or protocols, such as Bluetooth®, TDMA, CDMA, 3G.
  • a “computer system” may refer to a system having one or more computers, where each computer may include a computer-readable medium embodying software to operate the computer or one or more of its components.
  • Examples of a computer system may include: a distributed computer system for processing information via computer systems linked by a network; two or more computer systems connected together via a network for transmitting and/or receiving information between the computer systems; a computer system including two or more processors within a single computer; and one or more apparatuses and/or one or more systems that may accept data, may process data in accordance with one or more stored software programs, may generate results, and typically may include input, output, storage, arithmetic, logic, and control units.
  • a “network” may refer to a number of computers and associated devices that may be connected by communication facilities.
  • a network may involve permanent connections such as cables or temporary connections such as those made through telephone or other communication links.
  • a network may further include hard-wired connections (e.g., coaxial cable, twisted pair, optical fiber, waveguides, etc.) and/or wireless connections (e.g., radio frequency waveforms, free-space optical waveforms, acoustic waveforms, etc.).
  • Examples of a network may include: an internet, such as the Internet; an intranet; a local area network (LAN); a wide area network (WAN); and a combination of networks, such as an internet and an intranet.
  • client-side application should be broadly construed to refer to an application, a page associated with that application, or some other resource or function invoked by a client-side request to the application.
  • a “browser” as used herein is not intended to refer to any specific browser (e.g., Internet Explorer, Safari, FireFox, or the like), but should be broadly construed to refer to any client-side rendering engine that can access and display Internet-accessible resources.
  • a “rich” client typically refers to a non-HTTP based client-side application, such as an SSH or CFIS client. Further, while typically the client-server interactions occur using HTTP, this is not a limitation either.
  • the client server interaction may be formatted to conform to the Simple Object Access Protocol (SOAP) and travel over HTTP (over the public Internet), FTP, or any other reliable transport mechanism (such as IBM® MQSeries® technologies and CORBA, for transport over an enterprise intranet) may be used.
  • SOAP Simple Object Access Protocol
  • HTTP over the public Internet
  • FTP Fast Transfer Protocol
  • Any application or functionality described herein may be implemented as native code, by providing hooks into another application, by facilitating use of the mechanism as a plug-in, by linking to the mechanism, and the like.
  • Exemplary networks may operate with any of a number of protocols, such as Internet protocol (IP), asynchronous transfer mode (ATM), and/or synchronous optical network (SONET), user datagram protocol (UDP), IEEE 802.x, etc.
  • IP Internet protocol
  • ATM asynchronous transfer mode
  • SONET synchronous optical network
  • UDP user datagram protocol
  • IEEE 802.x IEEE 802.x
  • Embodiments of the present invention may include apparatuses for performing the operations disclosed herein.
  • An apparatus may be specially constructed for the desired purposes, or it may comprise a general-purpose device selectively activated or reconfigured by a program stored in the device.
  • Embodiments of the invention may also be implemented in one or a combination of hardware, firmware, and software. They may be implemented as instructions stored on a machine-readable medium, which may be read and executed by a computing platform to perform the operations described herein.
  • aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
  • computer program medium and “computer readable medium” may be used to generally refer to media such as, but not limited to, removable storage drives, a hard disk installed in hard disk drive, and the like.
  • These computer program products may provide software to a computer system. Embodiments of the invention may be directed to such computer program products.
  • An algorithm is here, and generally, considered to be a self-consistent sequence of acts or operations leading to a desired result. These include physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like. It should be understood, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
  • the phrase “configured to” or “operable for” can include generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g., an FPGA or a general-purpose processor executing software) to operate in a manner that is capable of performing the task(s) at issue. “Configured to” may also include adapting a manufacturing process (e.g., a semiconductor fabrication facility) to fabricate devices (e.g., integrated circuits) that are adapted to implement or perform one or more tasks.
  • a manufacturing process e.g., a semiconductor fabrication facility
  • devices e.g., integrated circuits
  • processor may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
  • a “computing platform” may comprise one or more processors.
  • Embodiments within the scope of the present disclosure may also include tangible and/or non-transitory computer-readable storage media for carrying or having computer-executable instructions or data structures stored thereon.
  • Such non-transitory computer-readable storage media can be any available media that can be accessed by a general purpose or special purpose computer, including the functional design of any special purpose processor as discussed above.
  • non-transitory computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions, data structures, or processor chip design.
  • non-transitory computer readable medium includes, but is not limited to, a hard drive, compact disc, flash memory, volatile memory, random access memory, magnetic memory, optical memory, semiconductor based memory, phase change memory, optical memory, periodically refreshed memory, and the like; the non-transitory computer readable medium, however, does not include a pure transitory signal per se; i.e., where the medium itself is transitory.
  • Embodiments of the invention disclosed herein relate to audio systems. More particularly embodiments of the invention disclosed herein related to a Bluetooth® type headphone or headset i.e., a headphone with a wireless transceiver. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that the Bluetooth® chips transmit over a short range (about 30 feet) and consume very little power. Accordingly, in one embodiment is provided, a primary module.
  • the headphone may be in working communication with a computer device, wherein the primary module may include a Bluetooth® transceiver to receive audio signals to and from the computer device.
  • the primary module may also house a stereo amplifier and two speakers which may direct their sound output upward through flexible and rigid sound tubes to ergonomically designed ear buds.
  • the primary module may include buttons for switching the headphone “ON” or “OFF”. For example, if the primary module is connected a phone device, a user may choose to answer an incoming phone call either by pressing the “answer phone” button on the primary module or by pressing the “answer phone” display on the phone. The user may terminate the call in a similar manner, i.e., either by pressing the “terminate phone or hang-Up” button on the primary module or by pressing the “terminate phone” display on the phone.
  • FIG. 1 illustrates an audio system 100 , in accordance with an embodiment of the present invention.
  • the audio system 100 includes a pair of ergonomically designed ear buds 110 , a sound tube 112 , a hang up button 116 , an answer button 118 , a charging port 120 , a digital audio player port 122 , a wireless transceiver module 124 , a spring clip 126 , and a micro phone 128 .
  • the sound tube 112 may include a rigid sound tube portion 113 and a flexible sound tube 114 .
  • the answer button and the hang up button may include a single button that may operate to switch-ON and switch-OFF the microphone using methods known in the art.
  • the wireless transceiver module 124 may house a battery or a rechargeable battery, speakers, and transducers.
  • the spring clip may include a stethoscope style spring clip.
  • Hang up button 116 , answer button 118 , charging port 120 , digital audio player port 122 (for example, an mp3 port), wireless transceiver module 124 , and micro phone 128 may be housed in a primary module 132 .
  • the headphone may be in working communication with a user's computer system.
  • the computer system may include, but not be limited to, a smartphone, a tablet, a personal computer, and the like devices.
  • the headphone may transmit and receive audio signals to and from the Bluetooth® transceiver in the primary module.
  • the user may choose to answer the phone by pressing answer button 118 on primary module 132 of headphone 100 or by using the answer link on the phone itself.
  • the user may choose to hang-up the phone by pressing hang-up button 116 on primary module 132 of headphone 100 or by using the hang-up link on the phone itself.
  • the headphones may be charged in any convenient manner available to the user.
  • headphone 100 may be connected to a suitable power system with wires via charging port 120 for charging headphone 100 , for example, using a C type USB charging port on the primary module.
  • the headphones may be charged wirelessly 130 .
  • Flexible sound tube 114 may connect the speakers in primary module 130 to rigid sound tubes 112 which then carries the sound to a user's ears without the use of wires.
  • the user may gently pull the rigid sound tubes outward to the right and left side and then insert them in the ear canal. Once thus positioned, the user may allow the headphones to hang below the user's chin or raise it up so that the microphone may be directly in front of the user's mouth, which might be necessary in windy or noisy conditions so that user's voice will be louder at and in the proximity of the microphone over the surrounding sounds.
  • the user when the headphone is not in use the user may gently pull the rigid sound tubes away from the user's head and drop the headphone down so that it “hugs” the user's neck, for example, like a medical stethoscope.
  • the headphone may not interfere with the user's other activities but may always be handy for the user, for example, to quickly answer the phone, listen to music, etc.
  • FIG. 2 illustrates an architecture 200 for an audio system, in accordance with an embodiment of the present invention.
  • An audio system architecture 200 may comprise a computing system 212 .
  • the computing system 212 includes a voice capture module 216 , a sensor module 218 , a database module 221 , an information processing, formatting, and organizing module 220 , a wireless communication sending module 222 , a wireless communication receiving module 223 , a display module 224 , an interface module 226 , and a heuristic module 228 .
  • the voice capture module 216 may have a means of capturing the voice, such as, without limitation, a voice recorder or virtually any voice recorder, of the external input devices 210 .
  • the sensor module 218 may have a means of sensing various parameters involved in communication including sensing the touch when a user touches the answer button or hang-up button, or sensing the wireless communication from input devices, and the like.
  • Information processing, formatting, and organizing module 220 may have a means of processing a touch sense, a voice, and the gathered physical information and sensor information, such as, without limitation, a processing unit, a computer, or a server to execute computer code and/or algorithms from a non-transitory computer readable medium for voice, and sensor parameter recognition.
  • a wireless communication sending module 222 and a wireless communication receiving module 223 may have a means of sending and receiving information received from a computer device to a user or from a charging device to the headphones.
  • a display module 224 may have a means to display to the user to enable the user to provide input information to the headphones, enable the user to view the output information from the headphones, enable the user to stop input information to the head phones, etc.
  • An interface module 226 may have a processing means such as, without limitation, a processing unit, a computer, or a server to execute computer code and/or algorithms from a non-transitory computer readable medium for interfacing between the various modules.
  • a heuristic module 232 may have a processing means such as, without limitation, a processing unit, a computer, or a server to execute computer code and/or algorithms from a non-transitory computer readable medium for processing the data/information provided by the data analyzing module and providing pointers to the user based on a self-learning model, for example, direct user to recently used or frequently used phone call or message list, music list, etc.
  • a self-learning model for example, direct user to recently used or frequently used phone call or message list, music list, etc.
  • Self-learning algorithms and/or methods may include, without limitation, the use of artificial intelligence, however, the development of self-learning algorithms are really the new or current state-of-the-art if coupled with smart sensors and electromechanical systems the opportunities are infinite.
  • one or more modules may be embodied in a single device.
  • all modules except the display module may be embodied in the computing device of the audio system.
  • the information from a computing device may be related or communicated to the user form the user's personal computer, laptop device, smart phone device, etc. via the headphones.
  • Voice recognition algorithms and/or methods may include, without limitation, Bayesian networks, fuzzy logic, neural networks, template matching, Hidden Markov models, machine learning, data mining, feature extraction and data analysis/statistics, optical character recognition, etc.
  • a binary search tree may be implemented to extract data from a voice.
  • Surround sense recognition algorithms for example, for sensing touch may include, without limitation, Bayesian networks, fuzzy logic, neural networks, template matching, Hidden Markov models, machine learning, data mining, feature extraction and data analysis/statistics, optical character recognition, etc.
  • a binary search tree may be implemented to extract data from a sensory information.
  • Voice recognition algorithms and/or methods may include, without limitation, Bayesian networks, fuzzy logic, neural networks, template matching, Hidden Markov models, machine learning, data mining, feature extraction and data analysis/statistics, optical character recognition, etc.
  • a binary search tree may be implemented to extract data from a voice.
  • a plurality of modules such as, without limitation, a voice capture module 216 , a sensor module 218 , a database module 221 , an information processing, formatting, and organizing module 220 , a wireless communication sending module 222 , a wireless communication receiving module 223 , a display module 224 , an interface module 226 , and a heuristic module 228 may be present in an audio system disclosed herein.
  • the plurality of similar modules may work in parallel or independently to improve the throughput of an audio system architecture 200 .
  • a plurality of capture, processing, formatting, and organizing, generation, display, interface, communication, heuristic, and storage modules may be connected to an audio system via wireless connections to access resources from different wired and wireless networks.
  • a plurality of similar modules may form a secondary audio system capable of seamlessly substituting an errant module.
  • one or more modules may transmit capture information to a tech support server that is on an accessible network or over the internet.
  • additional captured information may be sent to a server to alleviate processing load on a system.
  • the architecture may support a local home network where the sensor devices can connect to a local CPU/GPU combination for edge-based computing along with a cloud network connection which may allow for improved performance and reliability along with scale and storage and for continuous fine tuning of the algorithms and analysis of performance.
  • any module in audio system architecture 200 may perform data manipulation.
  • Data manipulation such as, but not limited to, compression, encryption, formatting.
  • any module sending data may first compress the data prior to data transmission.
  • FIG. 3 illustrates a photograph of an exemplary prototype of an audio system, in accordance with an embodiment of the present invention.
  • the headphones described herein may be designed like a stethoscope.
  • the audio system 300 includes a pair of ergonomically designed ear buds 110 , a sound tube 112 , a flexible sound tube 114 , a hang up button 116 , an answer button 118 , a charging port (not shown in figure), an digital audio player port (not shown in figure), a Bluetooth® receiver module (not shown in figure), a stethoscope style spring clip 126 , and a micro phone 128 .
  • the Bluetooth® receiver module may house a rechargeable battery, and speakers/transducers.
  • Hang up button 116 , answer button 118 , charging port, digital audio player port, Bluetooth® receiver module, and micro phone 128 may be housed in a primary module 132 .
  • the headphone may be in working communication with a user's computer system.
  • the computer system may include, but not be limited to, a smartphone, a tablet, a personal computer, and the like devices.
  • the headphone may transmit and receive audio signals to and from the Bluetooth® transceiver in the primary module.
  • FIG. 4 illustrates a side view photograph 400 of an exemplary prototype of an audio system being used by a user, in accordance with an embodiment of the present invention.
  • a user 418 is wearing an audio system, i.e., a headphone disclosed herein.
  • Audio system 400 includes a soft tip ergonomic ear bud 410 , a transition tube 412 (i.e., a flexible tube), a main sound tube 414 (i.e., a rigid tube), and a speaker 416 .
  • a flexible tube may be disposed either between the primary module and the rigid hollow tubes, or between the ear buds and the rigid hollow tube, or in both these positions of the audio system.
  • FIG. 5 illustrates a front view photograph 500 of an exemplary prototype of an audio system being used by a user, in accordance with an embodiment of the present invention.
  • a user 518 is wearing an audio system, i.e., a headphone as described herein.
  • the placement of the various parts of the audio system 500 i.e., microphone 128 located relatively close to the mouth in fixed position, spring 126 to hold the sound tubes in place, answer button 118 (shown as a green button on primary module 132 ), with reference to user 518 is shown.
  • microphone 128 may be located on primary module 132 hanging under the chin, which may be capable of rotating forward in front of the mouth. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that the primary module 132 may be fabricated in any suitable shape as long it is able to accommodate the answer button, the hang-up button, the microphone, the wireless transceivers, the digital audio port, and other required features.
  • Suitable shapes of the primary module 132 include, but are not limited to, rectangular, oval, leaf shaped, shaped according to user's sun sign, and the like.
  • the audio system may include a microphone and a sound tube assembly as an integrated rigid component connected to each other by a sort of leaf type spring with the primary module, i.e., the electronics module suspended in between.
  • the various parts of the audio system described herein like the ear buds, the flexible tube, the rigid tube, the primary module, etc. may be made of materials and in shapes and sizes suitable for the purpose described herein.
  • the earbuds may be made of silicone including medical grade and hypoallergent material, rubber, and the like materials.
  • the rigid tubes may be made of polycarbonate.
  • the audio system disclosed herein includes a Bluetooth® stereo transceiver with two small audio speakers emitting sound through a short flexible hollow tube connected to a longer rigid hollow tube leading to ergonomically designed ear buds at the upper tips, and is fashioned in the form of a stethoscope.
  • the rigid hollow tubes carrying the sound from the speaker to the ear keep electronics away from the brain.
  • the audio system includes a leaf type spring pulling the longer rigid hollow tubes together so that the ear buds may either stay comfortably inserted into a user's ears when in use or, alternatively, they may “hug” the neck of the wearer when not in use, thereby providing a “hands free” method of either wearing the device in a position ready for quick and easy access, or easily popping the ear buds into a user's ears in order to answer a telephone call or to listen to music, radio or any other recorded or broadcast audio service.
  • the audio system may include wired or wireless charging system.
  • the audio system described herein may have various advantages including but not limited to, (i) the audio system may utilize rigid hollow tubes pulled together by a spring to carry the sound from the miniature stereo speakers to the ears. This may keep the components that are ultra-light snugly but comfortably supported by the ears while ensuring that the soft tip ergonomically designed ear buds remain inserted for optimal sound quality.
  • the audio system may place the microphone which is adjustable, just below or in front of a user's mouth the mouth ensuring that the user's voice will be received loudly and clearly minimizing interference from any unwanted background noise;
  • the absence of exposed wires may eliminate the issue of tangled or broken wires while making the device easier and faster to put on or take off and easier to store or charge when not in use; and
  • wireless charging capability (charger included) may virtually eliminate the need to constantly connect and disconnect charging cables/plugs.
  • any of the foregoing steps and/or system modules may be suitably replaced, reordered, removed and additional steps and/or system modules may be inserted depending upon the needs of the particular application, and that the systems of the foregoing embodiments may be implemented using any of a wide variety of suitable processes and system modules, and is not limited to any particular computer hardware, software, middleware, firmware, microcode and the like.
  • a typical computer system can, when appropriately configured or designed, serve as a computer system in which those aspects of the invention may be embodied.
  • Such computers referenced and/or described in this disclosure may be any kind of computer, either general purpose, or some specific purpose computer such as, but not limited to, a workstation, a mainframe, GPU, ASIC, etc.
  • the programs may be written in C, or Java, Brew or any other suitable programming language.
  • the programs may be resident on a storage medium, e.g., magnetic or optical, e.g., without limitation, the computer hard drive, a removable disk or media such as, without limitation, a memory stick or SD media, or other removable medium.
  • the programs may also be run over a network, for example, with a server or other machine sending signals to the local machine, which allows the local machine to carry out the operations described herein.
  • FIG. 6 illustrates a block diagram depicting a conventional client/server communication system, which may be used by an exemplary web-enabled/networked embodiment of the present invention.
  • a communication system 600 includes a multiplicity of networked regions with a sampling of regions denoted as a network region 602 and a network region 604 , a global network 606 and a multiplicity of servers with a sampling of servers denoted as a server device 608 and a server device 610 .
  • Network region 602 and network region 604 may operate to represent a network contained within a geographical area or region.
  • Non-limiting examples of representations for the geographical areas for the networked regions may include postal zip codes, telephone area codes, states, counties, cities and countries.
  • Elements within network region 602 and 604 may operate to communicate with external elements within other networked regions or within elements contained within the same network region.
  • global network 606 may operate as the Internet. It will be understood by those skilled in the art that communication system 600 may take many different forms. Non-limiting examples of forms for communication system 600 include local area networks (LANs), wide area networks (WANs), wired telephone networks, cellular telephone networks or any other network supporting data communication between respective entities via hardwired or wireless communication networks. Global network 606 may operate to transfer information between the various networked elements.
  • LANs local area networks
  • WANs wide area networks
  • wired telephone networks cellular telephone networks or any other network supporting data communication between respective entities via hardwired or wireless communication networks.
  • Global network 606 may operate to transfer information between the various networked elements.
  • Server device 608 and server device 610 may operate to execute software instructions, store information, support database operations and communicate with other networked elements.
  • software and scripting languages which may be executed on server device 608 and server device 610 include C, C++, C# and Java.
  • Network region 602 may operate to communicate bi-directionally with global network 606 via a communication channel 612 .
  • Network region 604 may operate to communicate bi-directionally with global network 606 via a communication channel 614 .
  • Server device 608 may operate to communicate bi-directionally with global network 606 via a communication channel 616 .
  • Server device 610 may operate to communicate bi-directionally with global network 606 via a communication channel 618 .
  • Network region 602 and 604 , global network 606 and server devices 608 and 610 may operate to communicate with each other and with every other networked device located within communication system 600 .
  • Server device 608 includes a networking device 620 and a server 622 .
  • Networking device 620 may operate to communicate bi-directionally with global network 606 via communication channel 616 and with server 622 via a communication channel 624 .
  • Server 622 may operate to execute software instructions and store information.
  • Network region 602 includes a multiplicity of clients with a sampling denoted as a client 626 and a client 628 .
  • Client 626 includes a networking device 634 , a processor 636 , a GUI 638 and an interface device 640 .
  • Non-limiting examples of devices for GUI 638 include monitors, televisions, cellular telephones, smartphones and PDAs (Personal Digital Assistants).
  • Non-limiting examples of interface device 640 include pointing device, mouse, trackball, scanner and printer.
  • Networking device 634 may communicate bi-directionally with global network 606 via communication channel 612 and with processor 636 via a communication channel 642 .
  • GUI 638 may receive information from processor 636 via a communication channel 644 for presentation to a user for viewing.
  • Interface device 640 may operate to send control information to processor 636 and to receive information from processor 636 via a communication channel 646 .
  • Network region 604 includes a multiplicity of clients with a sampling denoted as a client 630 and a client 632 .
  • Client 630 includes a networking device 648 , a processor 650 , a GUI 652 and an interface device 654 .
  • Non-limiting examples of devices for GUI 638 include monitors, televisions, cellular telephones, smartphones and PDAs (Personal Digital Assistants).
  • Non-limiting examples of interface device 640 include pointing devices, mousse, trackballs, scanners and printers.
  • Networking device 648 may communicate bi-directionally with global network 606 via communication channel 614 and with processor 650 via a communication channel 656 .
  • GUI 652 may receive information from processor 650 via a communication channel 658 for presentation to a user for viewing.
  • Interface device 654 may operate to send control information to processor 650 and to receive information from processor 650 via
  • a user may enter the IP (Internet Protocol) address for the networked application using interface device 640 .
  • the IP address information may be communicated to processor 636 via communication channel 646 .
  • Processor 636 may then communicate the IP address information to networking device 634 via communication channel 642 .
  • Networking device 634 may then communicate the IP address information to global network 606 via communication channel 612 .
  • Global network 606 may then communicate the IP address information to networking device 620 of server device 608 via communication channel 616 .
  • Networking device 620 may then communicate the IP address information to server 622 via communication channel 624 .
  • Server 622 may receive the IP address information and after processing the IP address information may communicate return information to networking device 620 via communication channel 624 .
  • Networking device 620 may communicate the return information to global network 606 via communication channel 616 .
  • Global network 606 may communicate the return information to networking device 634 via communication channel 612 .
  • Networking device 634 may communicate the return information to processor 636 via communication channel 642 .
  • Processor 666 may communicate the return information to GUI 668 via communication channel 644 . User may then view the return information on GUI 638 .
  • FIG. 7 is a block diagram depicting an exemplary client/server system which may be used by an exemplary web-enabled/networked embodiment of the present invention.
  • a communication system 700 includes a multiplicity of clients with a sampling of clients denoted as a client 702 and a client 704 , a multiplicity of local networks with a sampling of networks denoted as a local network 706 and a local network 708 , a global network 710 and a multiplicity of servers with a sampling of servers denoted as a server 712 and a server 714 .
  • Client 702 may communicate bi-directionally with local network 706 via a communication channel 716 .
  • Client 704 may communicate bi-directionally with local network 708 via a communication channel 718 .
  • Local network 706 may communicate bi-directionally with global network 710 via a communication channel 720 .
  • Local network 708 may communicate bi-directionally with global network 710 via a communication channel 722 .
  • Global network 710 may communicate bi-directionally with server 712 and server 714 via a communication channel 724 .
  • Server 712 and server 714 may communicate bi-directionally with each other via communication channel 724 .
  • clients 702 , 704 , local networks 706 , 708 , global network 710 and servers 712 , 714 may each communicate bi-directionally with each other.
  • global network 710 may operate as the Internet. It will be understood by those skilled in the art that communication system 700 may take many different forms. Non-limiting examples of forms for communication system 700 include local area networks (LANs), wide area networks (WANs), wired telephone networks, wireless networks, or any other network supporting data communication between respective entities.
  • LANs local area networks
  • WANs wide area networks
  • wired telephone networks wireless networks, or any other network supporting data communication between respective entities.
  • Clients 702 and 704 may take many different forms.
  • Non-limiting examples of clients 702 and 704 include personal computers, personal digital assistants (PDAs), cellular phones and smartphones.
  • PDAs personal digital assistants
  • smartphones may take many different forms.
  • Client 702 includes a CPU 726 , a pointing device 728 , a keyboard 730 , a microphone 732 , a printer 734 , a memory 736 , a mass memory storage 738 , a GUI 740 , a video camera 742 , an input/output interface 744 and a network interface 746 .
  • CPU 726 , pointing device 728 , keyboard 730 , microphone 732 , printer 734 , memory 736 , mass memory storage 738 , GUI 740 , video camera 742 , input/output interface 744 and network interface 746 may communicate in a unidirectional manner or a bi-directional manner with each other via a communication channel 748 .
  • Communication channel 748 may be configured as a single communication channel or a multiplicity of communication channels.
  • CPU 726 may be comprised of a single processor or multiple processors.
  • CPU 726 may be of various types including micro-controllers (e.g., with embedded RAM/ROM) and microprocessors such as programmable devices (e.g., RISC or SISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general-purpose microprocessors.
  • micro-controllers e.g., with embedded RAM/ROM
  • microprocessors such as programmable devices (e.g., RISC or SISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general-purpose microprocessors.
  • memory 736 is used typically to transfer data and instructions to CPU 726 in a bi-directional manner.
  • Memory 736 may include any suitable computer-readable media, intended for data storage, such as those described above excluding any wired or wireless transmissions unless specifically noted.
  • Mass memory storage 738 may also be coupled bi-directionally to CPU 726 and provides additional data storage capacity and may include any of the computer-readable media described above.
  • Mass memory storage 738 may be used to store programs, data and the like and is typically a secondary storage medium such as a hard disk. It will be appreciated that the information retained within mass memory storage 738 , may, in appropriate cases, be incorporated in standard fashion as part of memory 736 as virtual memory.
  • CPU 726 may be coupled to GUI 740 .
  • GUI 740 enables a user to view the operation of computer operating system and software.
  • CPU 726 may be coupled to pointing device 728 .
  • Non-limiting examples of pointing device 728 include computer mouse, trackball and touchpad.
  • Pointing device 728 enables a user with the capability to maneuver a computer cursor about the viewing area of GUI 740 and select areas or features in the viewing area of GUI 740 .
  • CPU 726 may be coupled to keyboard 730 .
  • Keyboard 730 enables a user with the capability to input alphanumeric textual information to CPU 726 .
  • CPU 726 may be coupled to microphone 732 .
  • Microphone 732 enables audio produced by a user to be recorded, processed and communicated by CPU 726 .
  • CPU 726 may be connected to printer 734 .
  • Printer 734 enables a user with the capability to print information to a sheet of paper.
  • CPU 726 may be connected to video camera 742 .
  • Video camera 742 enables video produced or captured by user to be recorded, processed and communicated by CPU 726 .
  • CPU 726 may also be coupled to input/output interface 744 that connects to one or more input/output devices such as CD-ROM, video monitors, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, or other well-known input devices such as, of course, other computers.
  • input/output devices such as CD-ROM, video monitors, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, or other well-known input devices such as, of course, other computers.
  • CPU 726 optionally may be coupled to network interface 746 which enables communication with an external device such as a database or a computer or telecommunications or internet network using an external connection shown generally as communication channel 716 , which may be implemented as a hardwired or wireless communications link using suitable conventional technologies. With such a connection, CPU 726 might receive information from the network, or might output information to a network in the course of performing the method steps described in the teachings of the present invention.
  • any of the foregoing described method steps and/or system components which may be performed remotely over a network may be performed and/or located outside of the jurisdiction of the USA while the remaining method steps and/or system components (e.g., without limitation, a locally located client) of the forgoing embodiments are typically required to be located/performed in the USA for practical considerations.
  • a remotely located server typically generates and transmits required information to a US based client, for use according to the teachings of the present invention.
  • each such recited function under 35 USC ⁇ 112 (6)/(f) is to be interpreted as the function of the local system receiving the remotely generated information required by a locally implemented claim limitation, wherein the structures and or steps which enable, and breathe life into the expression of such functions claimed under 35 USC ⁇ 112 (6)/(f) are the corresponding steps and/or means located within the jurisdiction of the USA that receive and deliver that information to the client (e.g., without limitation, client-side processing and transmission networks in the USA).
  • Applicant(s) request(s) that fact finders during any claims construction proceedings and/or examination of patent allowability properly identify and incorporate only the portions of each of these documents discovered during the broadest interpretation search of 35 USC ⁇ 112(6) (post AIA 112(f)) limitation, which exist in at least one of the patent and/or non-patent documents found during the course of normal USPTO searching and or supplied to the USPTO during prosecution.
  • Applicant(s) also incorporate by reference the bibliographic citation information to identify all such documents comprising functionally corresponding structures and related enabling material as listed in any PTO Form-892 or likewise any information disclosure statements (IDS) entered into the present patent application by the USPTO or Applicant(s) or any 3 rd parties.
  • Applicant(s) also reserve its right to later amend the present application to explicitly include citations to such documents and/or explicitly include the functionally corresponding structures which were incorporate by reference above.

Abstract

An audio system is provided. The audio system includes a sound tube, wherein at least a portion of the sound tube includes a rigid hollow tube portion, at least one answer button, at least one hang-up button, a digital audio player port, a wireless transceiver module, a spring clip, a microphone, and a pair of ear buds.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present Utility patent application claims priority benefit of the U.S. provisional application for patent Ser. No. 62/657,723 entitled “Bluetooth Stereo Telephone Or Music Stethoscope Type Headset”, filed on Apr. 14, 2018, under 35 U.S.C. 119(e). The contents of this related provisional application are incorporated herein by reference for all purposes to the extent that such subject matter is not inconsistent herewith or limiting hereof.
COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material that is subject to copyright protection by the author thereof. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure for the purposes of referencing as patent prior art, as it appears in the Patent and Trademark Office, patent file or records, but otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE RELEVANT PRIOR ART
One or more embodiments of the invention generally relate to audio systems. More particularly, certain embodiments of the invention relate to headphones.
The following background information may present examples of specific aspects of the prior art (e.g., without limitation, approaches, facts, or common wisdom) that, while expected to be helpful to further educate the reader as to additional aspects of the prior art, is not to be construed as limiting the present invention, or any embodiments thereof, to anything stated or implied therein or inferred thereupon. A variety of headphones are available in the market that include, but are not limited to, headphones connected to a device with wires, headphones with “over the head parts” connected to a device either with wires and/or wirelessly, headphones with “behind the neck parts” connected to a device either with wires and/or wirelessly, and the like.
The following is an example of a specific aspect in the prior art that, while expected to be helpful to further educate the reader as to additional aspects of the prior art, is not to be construed as limiting the present invention, or any embodiments thereof, to anything stated or implied therein or inferred thereupon. By way of educational background, another aspect of the prior art generally useful to be aware of is that the wired headphones may face an omnipresent issue of the wires getting entangled or breaking, the headphones with “over the head” parts may interfere with your hair or hat, the headphones with “behind the neck” parts may interfere with your collar, necklace, neck tie, pillow, etc., and the user may at times waste time in finding the ear buds on the end of a wired headphone to re-insert them into the user's ears, and the like issues.
In view of the foregoing, it is clear that these traditional techniques are not perfect and leave room for more optimal approaches.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
FIG. 1 illustrates an audio system, in accordance with an embodiment of the present invention;
FIG. 2 illustrates an architecture for an audio system, in accordance with an embodiment of the present invention;
FIG. 3 illustrates a photograph of an exemplary prototype of an audio system, in accordance with an embodiment of the present invention;
FIG. 4 illustrates a side view photograph of an exemplary prototype of an audio system being used by a user, in accordance with an embodiment of the present invention;
FIG. 5 illustrates a front view photograph of an exemplary prototype of an audio system being used by a user, in accordance with an embodiment of the present invention;
FIG. 6 illustrates a block diagram depicting a conventional client/server communication system, which may be used by an exemplary web-enabled/networked embodiment of the present invention; and
FIG. 7 is a block diagram depicting an exemplary client/server system which may be used by an exemplary web-enabled/networked embodiment of the present invention.
Unless otherwise indicated illustrations in the figures are not necessarily drawn to scale.
DETAILED DESCRIPTION OF SOME EMBODIMENTS
The present invention is best understood by reference to the detailed figures and description set forth herein.
Embodiments of the invention are discussed below with reference to the Figures. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments. For example, it should be appreciated that those skilled in the art will, in light of the teachings of the present invention, recognize a multiplicity of alternate and suitable approaches, depending upon the needs of the particular application, to implement the functionality of any given detail described herein, beyond the particular implementation choices in the following embodiments described and shown. That is, there are modifications and variations of the invention that are too numerous to be listed but that all fit within the scope of the invention. Also, singular words should be read as plural and vice versa and masculine as feminine and vice versa, where appropriate, and alternative embodiments do not necessarily imply that the two are mutually exclusive.
It is to be further understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications, described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps and subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
All words of approximation as used in the present disclosure and claims should be construed to mean “approximate,” rather than “perfect,” and may accordingly be employed as a meaningful modifier to any other word, specified parameter, quantity, quality, or concept. Words of approximation, include, yet are not limited to terms such as “substantial”, “nearly”, “almost”, “about”, “generally”, “largely”, “essentially”, “closely approximate”, etc.
As will be established in some detail below, it is well settled law, as early as 1939, that words of approximation are not indefinite in the claims even when such limits are not defined or specified in the specification.
For example, see Ex parte Mallory, 52 USPQ 297, 297 (Pat. Off. Bd. App. 1941) where the court said “The examiner has held that most of the claims are inaccurate because apparently the laminar film will not be entirely eliminated. The claims specify that the film is “substantially” eliminated and for the intended purpose, it is believed that the slight portion of the film which may remain is negligible. We are of the view, therefore, that the claims may be regarded as sufficiently accurate.”
Note that claims need only “reasonably apprise those skilled in the art” as to their scope to satisfy the definiteness requirement. See Energy Absorption Sys., Inc. v. Roadway Safety Servs., Inc., Civ. App. 96-1264, slip op. at 10 (Fed. Cir. Jul. 3, 1997) (unpublished) Hybridtech v. Monoclonal Antibodies, Inc., 802 F.2d 1367, 1385, 231 USPQ 81, 94 (Fed. Cir. 1986), cert. denied, 480 U.S. 947 (1987). In addition, the use of modifiers in the claim, like “generally” and “substantial,” does not by itself render the claims indefinite. See Seattle Box Co. v. Industrial Crating & Packing, Inc., 731 F.2d 818, 828-29, 221 USPQ 568, 575-76 (Fed. Cir. 1984).
Moreover, the ordinary and customary meaning of terms like “substantially” includes “reasonably close to: nearly, almost, about”, connoting a term of approximation. See In re Frye, Appeal No. 2009-006013, 94 USPQ2d 1072, 1077, 2010 WL 889747 (B.P.A.I. 2010) Depending on its usage, the word “substantially” can denote either language of approximation or language of magnitude. Deering Precision Instruments, L.L.C. v. Vector Distribution Sys., Inc., 347 F.3d 1314, 1323 (Fed. Cir. 2003) (recognizing the “dual ordinary meaning of th[e] term [“substantially”] as connoting a term of approximation or a term of magnitude”). Here, when referring to the “substantially halfway” limitation, the Specification uses the word “approximately” as a substitute for the word “substantially” (Fact 4). (Fact 4). The ordinary meaning of “substantially halfway” is thus reasonably close to or nearly at the midpoint between the forwardmost point of the upper or outsole and the rearwardmost point of the upper or outsole.
Similarly, the term ‘substantially’ is well recognize in case law to have the dual ordinary meaning of connoting a term of approximation or a term of magnitude. See Dana Corp. v. American Axle & Manufacturing, Inc., Civ. App. 04-1116, 2004 U.S. App. LEXIS 18265, *13-14 (Fed. Cir. Aug. 27, 2004) (unpublished). The term “substantially” is commonly used by claim drafters to indicate approximation. See Cordis Corp. v. Medtronic AVE Inc., 339 F.3d 1352, 1360 (Fed. Cir. 2003) (“The patents do not set out any numerical standard by which to determine whether the thickness of the wall surface is ‘substantially uniform.’ The term ‘substantially,’ as used in this context, denotes approximation. Thus, the walls must be of largely or approximately uniform thickness.”); see also Deering Precision Instruments, LLC v. Vector Distribution Sys., Inc., 347 F.3d 1314, 1322 (Fed. Cir. 2003); Epcon Gas Sys., Inc. v. Bauer Compressors, Inc., 279 F.3d 1022, 1031 (Fed. Cir. 2002). We find that the term “substantially” was used in just such a manner in the claims of the patents-in-suit: “substantially uniform wall thickness” denotes a wall thickness with approximate uniformity.
It should also be noted that such words of approximation as contemplated in the foregoing clearly limits the scope of claims such as saying ‘generally parallel’ such that the adverb ‘generally’ does not broaden the meaning of parallel. Accordingly, it is well settled that such words of approximation as contemplated in the foregoing (e.g., like the phrase ‘generally parallel’) envisions some amount of deviation from perfection (e.g., not exactly parallel), and that such words of approximation as contemplated in the foregoing are descriptive terms commonly used in patent claims to avoid a strict numerical boundary to the specified parameter. To the extent that the plain language of the claims relying on such words of approximation as contemplated in the foregoing are clear and uncontradicted by anything in the written description herein or the figures thereof, it is improper to rely upon the present written description, the figures, or the prosecution history to add limitations to any of the claim of the present invention with respect to such words of approximation as contemplated in the foregoing. That is, under such circumstances, relying on the written description and prosecution history to reject the ordinary and customary meanings of the words themselves is impermissible. See, for example, Liquid Dynamics Corp. v. Vaughan Co., 355 F.3d 1361, 69 USPQ2d 1595, 1600-01 (Fed. Cir. 2004). The plain language of phrase 2 requires a “substantial helical flow.” The term “substantial” is a meaningful modifier implying “approximate,” rather than “perfect.” In Cordis Corp. v. Medtronic AVE, Inc., 339 F.3d 1352, 1361 (Fed. Cir. 2003), the district court imposed a precise numeric constraint on the term “substantially uniform thickness.” We noted that the proper interpretation of this term was “of largely or approximately uniform thickness” unless something in the prosecution history imposed the “clear and unmistakable disclaimer” needed for narrowing beyond this simple-language interpretation. Id. In Anchor Wall Systems v. Rockwood Retaining Walls, Inc., 340 F.3d 1298, 1311 (Fed. Cir. 2003)” Id. at 1311. Similarly, the plain language of Claim 1 requires neither a perfectly helical flow nor a flow that returns precisely to the center after one rotation (a limitation that arises only as a logical consequence of requiring a perfectly helical flow).
The reader should appreciate that case law generally recognizes a dual ordinary meaning of such words of approximation, as contemplated in the foregoing, as connoting a term of approximation or a term of magnitude; e.g., see Deering Precision Instruments, L.L.C. v. Vector Distrib. Sys., Inc., 347 F.3d 1314, 68 USPQ2d 1716, 1721 (Fed. Cir. 2003), cert. denied, 124 S. Ct. 1426 (2004) where the court was asked to construe the meaning of the term “substantially” in a patent claim. Also see Epcon, 279 F.3d at 1031 (“The phrase ‘substantially constant’ denotes language of approximation, while the phrase ‘substantially below’ signifies language of magnitude, i.e., not insubstantial.”). Also, see, e.g., Epcon Gas Sys., Inc. v. Bauer Compressors, Inc., 279 F.3d 1022 (Fed. Cir. 2002) (construing the terms “substantially constant” and “substantially below”); Zodiac Pool Care, Inc. v. Hoffinger Indus., Inc., 206 F.3d 1408 (Fed. Cir. 2000) (construing the term “substantially inward”); York Prods., Inc. v. Cent. Tractor Farm & Family Ctr., 99 F.3d 1568 (Fed. Cir. 1996) (construing the term “substantially the entire height thereof”); Tex. Instruments Inc. v. Cypress Semiconductor Corp., 90 F.3d 1558 (Fed. Cir. 1996) (construing the term “substantially in the common plane”). In conducting their analysis, the court instructed to begin with the ordinary meaning of the claim terms to one of ordinary skill in the art. Prima Tek, 318 F.3d at 1148. Reference to dictionaries and our cases indicates that the term “substantially” has numerous ordinary meanings. As the district court stated, “substantially” can mean “significantly” or “considerably.” The term “substantially” can also mean “largely” or “essentially.” Webster's New 20th Century Dictionary 1817 (1983).
Words of approximation, as contemplated in the foregoing, may also be used in phrases establishing approximate ranges or limits, where the end points are inclusive and approximate, not perfect; e.g., see AK Steel Corp. v. Sollac, 344 F.3d 1234, 68 USPQ2d 1280, 1285 (Fed. Cir. 2003) where it where the court said [W]e conclude that the ordinary meaning of the phrase “up to about 10%” includes the “about 10%” endpoint. As pointed out by AK Steel, when an object of the preposition “up to” is nonnumeric, the most natural meaning is to exclude the object (e.g., painting the wall up to the door). On the other hand, as pointed out by Sollac, when the object is a numerical limit, the normal meaning is to include that upper numerical limit (e.g., counting up to ten, seating capacity for up to seven passengers). Because we have here a numerical limit—“about 10%”—the ordinary meaning is that that endpoint is included.
In the present specification and claims, a goal of employment of such words of approximation, as contemplated in the foregoing, is to avoid a strict numerical boundary to the modified specified parameter, as sanctioned by Pall Corp. v. Micron Separations, Inc., 66 F.3d 1211, 1217, 36 USPQ2d 1225, 1229 (Fed. Cir. 1995) where it states “It is well established that when the term “substantially” serves reasonably to describe the subject matter so that its scope would be understood by persons in the field of the invention, and to distinguish the claimed subject matter from the prior art, it is not indefinite.” Likewise see Verve LLC v. Crane Cams Inc., 311 F.3d 1116, 65 USPQ2d 1051, 1054 (Fed. Cir. 2002). Expressions such as “substantially” are used in patent documents when warranted by the nature of the invention, in order to accommodate the minor variations that may be appropriate to secure the invention. Such usage may well satisfy the charge to “particularly point out and distinctly claim” the invention, 35 U.S.C. § 112, and indeed may be necessary in order to provide the inventor with the benefit of his invention. In Andrew Corp. v. Gabriel Elecs. Inc., 847 F.2d 819, 821-22, 6 USPQ2d 2010, 2013 (Fed. Cir. 1988) the court explained that usages such as “substantially equal” and “closely approximate” may serve to describe the invention with precision appropriate to the technology and without intruding on the prior art. The court again explained in Ecolab Inc. v. Envirochem, Inc., 264 F.3d 1358, 1367, 60 USPQ2d 1173, 1179 (Fed. Cir. 2001) that “like the term ‘about,’ the term ‘substantially’ is a descriptive term commonly used in patent claims to ‘avoid a strict numerical boundary to the specified parameter, see Ecolab Inc. v. Envirochem Inc., 264 F.3d 1358, 60 USPQ2d 1173, 1179 (Fed. Cir. 2001) where the court found that the use of the term “substantially” to modify the term “uniform” does not render this phrase so unclear such that there is no means by which to ascertain the claim scope.
Similarly, other courts have noted that like the term “about,” the term “substantially” is a descriptive term commonly used in patent claims to “avoid a strict numerical boundary to the specified parameter.”; e.g., see Pall Corp. v. Micron Seps., 66 F.3d 1211, 1217, 36 USPQ2d 1225, 1229 (Fed. Cir. 1995); see, e.g., Andrew Corp. v. Gabriel Elecs. Inc., 847 F.2d 819, 821-22, 6 USPQ2d 2010, 2013 (Fed. Cir. 1988) (noting that terms such as “approach each other,” “close to,” “substantially equal,” and “closely approximate” are ubiquitously used in patent claims and that such usages, when serving reasonably to describe the claimed subject matter to those of skill in the field of the invention, and to distinguish the claimed subject matter from the prior art, have been accepted in patent examination and upheld by the courts). In this case, “substantially” avoids the strict 100% nonuniformity boundary.
Indeed, the foregoing sanctioning of such words of approximation, as contemplated in the foregoing, has been established as early as 1939, see Ex parte Mallory, 52 USPQ 297, 297 (Pat. Off. Bd. App. 1941) where, for example, the court said “the claims specify that the film is “substantially” eliminated and for the intended purpose, it is believed that the slight portion of the film which may remain is negligible. We are of the view, therefore, that the claims may be regarded as sufficiently accurate.” Similarly, In re Hutchison, 104 F.2d 829, 42 USPQ 90, 93 (C.C.P.A. 1939) the court said “It is realized that “substantial distance” is a relative and somewhat indefinite term, or phrase, but terms and phrases of this character are not uncommon in patents in cases where, according to the art involved, the meaning can be determined with reasonable clearness.”
Hence, for at least the forgoing reason, Applicants submit that it is improper for any examiner to hold as indefinite any claims of the present patent that employ any words of approximation.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices, and materials are described, although any methods, techniques, devices, or materials similar or equivalent to those described herein may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures. The present invention will be described in detail below with reference to embodiments thereof as illustrated in the accompanying drawings.
References to a “device,” an “apparatus,” a “system,” etc., in the preamble of a claim should be construed broadly to mean “any structure meeting the claim terms” exempt for any specific structure(s)/type(s) that has/(have) been explicitly disavowed or excluded or admitted/implied as prior art in the present specification or incapable of enabling an object/aspect/goal of the invention. Furthermore, where the present specification discloses an object, aspect, function, goal, result, or advantage of the invention that a specific prior art structure and/or method step is similarly capable of performing yet in a very different way, the present invention disclosure is intended to and shall also implicitly include and cover additional corresponding alternative embodiments that are otherwise identical to that explicitly disclosed except that they exclude such prior art structure(s)/step(s), and shall accordingly be deemed as providing sufficient disclosure to support a corresponding negative limitation in a claim claiming such alternative embodiment(s), which exclude such very different prior art structure(s)/step(s) way(s).
From reading the present disclosure, other variations and modifications will be apparent to persons skilled in the art. Such variations and modifications may involve equivalent and other features which are already known in the art, and which may be used instead of or in addition to features already described herein.
Although Claims have been formulated in this Application to particular combinations of features, it should be understood that the scope of the disclosure of the present invention also includes any novel feature or any novel combination of features disclosed herein either explicitly or implicitly or any generalization thereof, whether or not it relates to the same invention as presently claimed in any Claim and whether or not it mitigates any or all of the same technical problems as does the present invention.
Features which are described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. The Applicants hereby give notice that new Claims may be formulated to such features and/or combinations of such features during the prosecution of the present Application or of any further Application derived therefrom.
References to “one embodiment,” “an embodiment,” “example embodiment,” “various embodiments,” “some embodiments,” “embodiments of the invention,” etc., may indicate that the embodiment(s) of the invention so described may include a particular feature, structure, or characteristic, but not every possible embodiment of the invention necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment,” or “in an exemplary embodiment,” “an embodiment,” do not necessarily refer to the same embodiment, although they may. Moreover, any use of phrases like “embodiments” in connection with “the invention” are never meant to characterize that all embodiments of the invention must include the particular feature, structure, or characteristic, and should instead be understood to mean “at least some embodiments of the invention” include the stated particular feature, structure, or characteristic.
References to “user”, or any similar term, as used herein, may mean a human or non-human user thereof. Moreover, “user”, or any similar term, as used herein, unless expressly stipulated otherwise, is contemplated to mean users at any stage of the usage process, to include, without limitation, direct user(s), intermediate user(s), indirect user(s), and end user(s). The meaning of “user”, or any similar term, as used herein, should not be otherwise inferred or induced by any pattern(s) of description, embodiments, examples, or referenced prior-art that may (or may not) be provided in the present patent.
References to “end user”, or any similar term, as used herein, is generally intended to mean late stage user(s) as opposed to early stage user(s). Hence, it is contemplated that there may be a multiplicity of different types of “end user” near the end stage of the usage process. Where applicable, especially with respect to distribution channels of embodiments of the invention comprising consumed retail products/services thereof (as opposed to sellers/vendors or Original Equipment Manufacturers), examples of an “end user” may include, without limitation, a “consumer”, “buyer”, “customer”, “purchaser”, “shopper”, “enjoyer”, “viewer”, or individual person or non-human thing benefiting in any way, directly or indirectly, from use of. or interaction, with some aspect of the present invention.
In some situations, some embodiments of the present invention may provide beneficial usage to more than one stage or type of usage in the foregoing usage process. In such cases where multiple embodiments targeting various stages of the usage process are described, references to “end user”, or any similar term, as used therein, are generally intended to not include the user that is the furthest removed, in the foregoing usage process, from the final user therein of an embodiment of the present invention.
Where applicable, especially with respect to retail distribution channels of embodiments of the invention, intermediate user(s) may include, without limitation, any individual person or non-human thing benefiting in any way, directly or indirectly, from use of, or interaction with, some aspect of the present invention with respect to selling, vending, Original Equipment Manufacturing, marketing, merchandising, distributing, service providing, and the like thereof.
References to “person”, “individual”, “human”, “a party”, “animal”, “creature”, or any similar term, as used herein, even if the context or particular embodiment implies living user, maker, or participant, it should be understood that such characterizations are sole by way of example, and not limitation, in that it is contemplated that any such usage, making, or participation by a living entity in connection with making, using, and/or participating, in any way, with embodiments of the present invention may be substituted by such similar performed by a suitably configured non-living entity, to include, without limitation, automated machines, robots, humanoids, computational systems, information processing systems, artificially intelligent systems, and the like. It is further contemplated that those skilled in the art will readily recognize the practical situations where such living makers, users, and/or participants with embodiments of the present invention may be in whole, or in part, replaced with such non-living makers, users, and/or participants with embodiments of the present invention. Likewise, when those skilled in the art identify such practical situations where such living makers, users, and/or participants with embodiments of the present invention may be in whole, or in part, replaced with such non-living makers, it will be readily apparent in light of the teachings of the present invention how to adapt the described embodiments to be suitable for such non-living makers, users, and/or participants with embodiments of the present invention. Thus, the invention is thus to also cover all such modifications, equivalents, and alternatives falling within the spirit and scope of such adaptations and modifications, at least in part, for such non-living entities.
Headings provided herein are for convenience and are not to be taken as limiting the disclosure in any way.
The enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise.
It is understood that the use of specific component, device and/or parameter names are for example only and not meant to imply any limitations on the invention. The invention may thus be implemented with different nomenclature/terminology utilized to describe the mechanisms/units/structures/components/devices/parameters herein, without limitation. Each term utilized herein is to be given its broadest interpretation given the context in which that term is utilized.
Terminology. The following paragraphs provide definitions and/or context for terms found in this disclosure (including the appended claims):
“Comprising” And “contain” and variations of them—Such terms are open-ended and mean “including but not limited to”. When employed in the appended claims, this term does not foreclose additional structure or steps. Consider a claim that recites: “A memory controller comprising a system cache . . . .” Such a claim does not foreclose the memory controller from including additional components (e.g., a memory channel unit, a switch).
“Configured To.” Various units, circuits, or other components may be described or claimed as “configured to” perform a task or tasks. In such contexts, “configured to” or “operable for” is used to connote structure by indicating that the mechanisms/units/circuits/components include structure (e.g., circuitry and/or mechanisms) that performs the task or tasks during operation. As such, the mechanisms/unit/circuit/component can be said to be configured to (or be operable) for perform(ing) the task even when the specified mechanisms/unit/circuit/component is not currently operational (e.g., is not on). The mechanisms/units/circuits/components used with the “configured to” or “operable for” language include hardware—for example, mechanisms, structures, electronics, circuits, memory storing program instructions executable to implement the operation, etc. Reciting that a mechanism/unit/circuit/component is “configured to” or “operable for” perform(ing) one or more tasks is expressly intended not to invoke 35 U.S.C. .sctn.112, sixth paragraph, for that mechanism/unit/circuit/component. “Configured to” may also include adapting a manufacturing process to fabricate devices or components that are adapted to implement or perform one or more tasks.
“Based On.” As used herein, this term is used to describe one or more factors that affect a determination. This term does not foreclose additional factors that may affect a determination. That is, a determination may be solely based on those factors or based, at least in part, on those factors. Consider the phrase “determine A based on B.” While B may be a factor that affects the determination of A, such a phrase does not foreclose the determination of A from also being based on C. In other instances, A may be determined based solely on B.
The terms “a”, “an” and “the” mean “one or more”, unless expressly specified otherwise.
All terms of exemplary language (e.g., including, without limitation, “such as”, “like”, “for example”, “for instance”, “similar to”, etc.) are not exclusive of any other, potentially, unrelated, types of examples; thus, implicitly mean “by way of example, and not limitation . . . ”, unless expressly specified otherwise.
Unless otherwise indicated, all numbers expressing conditions, concentrations, dimensions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending at least upon a specific analytical technique.
The term “comprising,” which is synonymous with “including,” “containing,” or “characterized by” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. “Comprising” is a term of art used in claim language which means that the named claim elements are essential, but other claim elements may be added and still form a construct within the scope of the claim.
As used herein, the phase “consisting of” excludes any element, step, or ingredient not specified in the claim. When the phrase “consists of” (or variations thereof) appears in a clause of the body of a claim, rather than immediately following the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole. As used herein, the phase “consisting essentially of” and “consisting of” limits the scope of a claim to the specified elements or method steps, plus those that do not materially affect the basis and novel characteristic(s) of the claimed subject matter (see Norian Corp. v Stryker Corp., 363 F.3d 1321, 1331-32, 70 USPQ2d 1508, Fed. Cir. 2004). Moreover, for any claim of the present invention which claims an embodiment “consisting essentially of” or “consisting of” a certain set of elements of any herein described embodiment it shall be understood as obvious by those skilled in the art that the present invention also covers all possible varying scope variants of any described embodiment(s) that are each exclusively (i.e., “consisting essentially of”) functional subsets or functional combination thereof such that each of these plurality of exclusive varying scope variants each consists essentially of any functional subset(s) and/or functional combination(s) of any set of elements of any described embodiment(s) to the exclusion of any others not set forth therein. That is, it is contemplated that it will be obvious to those skilled how to create a multiplicity of alternate embodiments of the present invention that simply consisting essentially of a certain functional combination of elements of any described embodiment(s) to the exclusion of any others not set forth therein, and the invention thus covers all such exclusive embodiments as if they were each described herein.
With respect to the terms “comprising,” “consisting of,” and “consisting essentially of,” where one of these three terms is used herein, the disclosed and claimed subject matter may include the use of either of the other two terms. Thus in some embodiments not otherwise explicitly recited, any instance of “comprising” may be replaced by “consisting of” or, alternatively, by “consisting essentially of”, and thus, for the purposes of claim support and construction for “consisting of” format claims, such replacements operate to create yet other alternative embodiments “consisting essentially of” only the elements recited in the original “comprising” embodiment to the exclusion of all other elements.
Moreover, any claim limitation phrased in functional limitation terms covered by 35 USC § 112(6) (post AIA 112(f)) which has a preamble invoking the closed terms “consisting of,” or “consisting essentially of,” should be understood to mean that the corresponding structure(s) disclosed herein define the exact metes and bounds of what the so claimed invention embodiment(s) consists of, or consisting essentially of, to the exclusion of any other elements which do not materially affect the intended purpose of the so claimed embodiment(s).
Devices or system modules that are in at least general communication with each other need not be in continuous communication with each other, unless expressly specified otherwise. In addition, devices or system modules that are in at least general communication with each other may communicate directly or indirectly through one or more intermediaries. Moreover, it is understood that any system components described or named in any embodiment or claimed herein may be grouped or sub-grouped (and accordingly implicitly renamed) in any combination or sub-combination as those skilled in the art can imagine as suitable for the particular application, and still be within the scope and spirit of the claimed embodiments of the present invention. For an example of what this means, if the invention was a controller of a motor and a valve and the embodiments and claims articulated those components as being separately grouped and connected, applying the foregoing would mean that such an invention and claims would also implicitly cover the valve being grouped inside the motor and the controller being a remote controller with no direct physical connection to the motor or internalized valve, as such the claimed invention is contemplated to cover all ways of grouping and/or adding of intermediate components or systems that still substantially achieve the intended result of the invention.
A description of an embodiment with several components in communication with each other does not imply that all such components are required. On the contrary a variety of optional components are described to illustrate the wide variety of possible embodiments of the present invention.
As is well known to those skilled in the art many careful considerations and compromises typically must be made when designing for the optimal manufacture of a commercial implementation any system, and in particular, the embodiments of the present invention. A commercial implementation in accordance with the spirit and teachings of the present invention may configured according to the needs of the particular application, whereby any aspect(s), feature(s), function(s), result(s), component(s), approach(es), or step(s) of the teachings related to any described embodiment of the present invention may be suitably omitted, included, adapted, mixed and matched, or improved and/or optimized by those skilled in the art, using their average skills and known techniques, to achieve the desired implementation that addresses the needs of the particular application.
In the following description and claims, the terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
A “computer” may refer to one or more apparatus and/or one or more systems that are capable of accepting a structured input, processing the structured input according to prescribed rules, and producing results of the processing as output. Examples of a computer may include: a computer; a stationary and/or portable computer; a computer having a single processor, multiple processors, or multi-core processors, which may operate in parallel and/or not in parallel; a general purpose computer; a supercomputer; a mainframe; a super mini-computer; a mini-computer; a workstation; a micro-computer; a server; a client; an interactive television; a web appliance; a telecommunications device with internet access; a hybrid combination of a computer and an interactive television; a portable computer; a tablet personal computer (PC); a personal digital assistant (PDA); a portable telephone; application-specific hardware to emulate a computer and/or software, such as, for example, a digital signal processor (DSP), a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), an application specific instruction-set processor (ASIP), a chip, chips, a system on a chip, or a chip set; a data acquisition device; an optical computer; a quantum computer; a biological computer; and generally, an apparatus that may accept data, process data according to one or more stored software programs, generate results, and typically include input, output, storage, arithmetic, logic, and control units.
Those of skill in the art will appreciate that where appropriate, some embodiments of the disclosure may be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. Where appropriate, embodiments may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination thereof) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
“Software” may refer to prescribed rules to operate a computer. Examples of software may include: code segments in one or more computer-readable languages; graphical and or/textual instructions; applets; pre-compiled code; interpreted code; compiled code; and computer programs.
The example embodiments described herein can be implemented in an operating environment comprising computer-executable instructions (e.g., software) installed on a computer, in hardware, or in a combination of software and hardware. The computer-executable instructions can be written in a computer programming language or can be embodied in firmware logic. If written in a programming language conforming to a recognized standard, such instructions can be executed on a variety of hardware platforms and for interfaces to a variety of operating systems. Although not limited thereto, computer software program code for carrying out operations for aspects of the present invention can be written in any combination of one or more suitable programming languages, including an object oriented programming languages and/or conventional procedural programming languages, and/or programming languages such as, for example, Hyper text Markup Language (HTML), Dynamic HTML, Extensible Markup Language (XML), Extensible Stylesheet Language (XSL), Document Style Semantics and Specification Language (DSSSL), Cascading Style Sheets (CSS), Synchronized Multimedia Integration Language (SMIL), Wireless Markup Language (WML), Java™, Jini™, C, C++, Smalltalk, Perl, UNIX Shell, Visual Basic or Visual Basic Script, Virtual Reality Markup Language (VRML), ColdFusion™ or other compilers, assemblers, interpreters or other computer languages or platforms.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
A network is a collection of links and nodes (e.g., multiple computers and/or other devices connected together) arranged so that information may be passed from one part of the network to another over multiple links and through various nodes. Examples of networks include the Internet, the public switched telephone network, the global Telex network, computer networks (e.g., an intranet, an extranet, a local-area network, or a wide-area network), wired networks, and wireless networks.
The Internet is a worldwide network of computers and computer networks arranged to allow the easy and robust exchange of information between computer users. Hundreds of millions of people around the world have access to computers connected to the Internet via Internet Service Providers (ISPs). Content providers (e.g., website owners or operators) place multimedia information (e.g., text, graphics, audio, video, animation, and other forms of data) at specific locations on the Internet referred to as webpages. Websites comprise a collection of connected, or otherwise related, webpages. The combination of all the websites and their corresponding webpages on the Internet is generally known as the World Wide Web (WWW) or simply the Web.
Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
Further, although process steps, method steps, algorithms or the like may be described in a sequential order, such processes, methods and algorithms may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps be performed in that order. The steps of processes described herein may be performed in any order practical. Further, some steps may be performed simultaneously.
It will be readily apparent that the various methods and algorithms described herein may be implemented by, e.g., appropriately programmed general purpose computers and computing devices. Typically a processor (e.g., a microprocessor) will receive instructions from a memory or like device, and execute those instructions, thereby performing a process defined by those instructions. Further, programs that implement such methods and algorithms may be stored and transmitted using a variety of known media.
When a single device or article is described herein, it will be readily apparent that more than one device/article (whether or not they cooperate) may be used in place of a single device/article. Similarly, where more than one device or article is described herein (whether or not they cooperate), it will be readily apparent that a single device/article may be used in place of the more than one device or article.
The functionality and/or the features of a device may be alternatively embodied by one or more other devices which are not explicitly described as having such functionality/features. Thus, other embodiments of the present invention need not include the device itself.
The term “computer-readable medium” as used herein refers to any medium that participates in providing data (e.g., instructions) which may be read by a computer, a processor or a like device. Such a medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks and other persistent memory. Volatile media include dynamic random access memory (DRAM), which typically constitutes the main memory. Transmission media include coaxial cables, copper wire and fiber optics, including the wires that comprise a system bus coupled to the processor. Transmission media may include or convey acoustic waves, light waves and electromagnetic emissions, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EEPROM, removable media, flash memory, a “memory stick”, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.
Various forms of computer readable media may be involved in carrying sequences of instructions to a processor. For example, sequences of instruction (i) may be delivered from RAM to a processor, (ii) may be carried over a wireless transmission medium, and/or (iii) may be formatted according to numerous formats, standards or protocols, such as Bluetooth®, TDMA, CDMA, 3G.
Where databases are described, it will be understood by one of ordinary skill in the art that (i) alternative database structures to those described may be readily employed, (ii) other memory structures besides databases may be readily employed. Any schematic illustrations and accompanying descriptions of any sample databases presented herein are exemplary arrangements for stored representations of information. Any number of other arrangements may be employed besides those suggested by the tables shown. Similarly, any illustrated entries of the databases represent exemplary information only; those skilled in the art will understand that the number and content of the entries can be different from those illustrated herein. Further, despite any depiction of the databases as tables, an object-based model could be used to store and manipulate the data types of the present invention and likewise, object methods or behaviors can be used to implement the processes of the present invention.
A “computer system” may refer to a system having one or more computers, where each computer may include a computer-readable medium embodying software to operate the computer or one or more of its components. Examples of a computer system may include: a distributed computer system for processing information via computer systems linked by a network; two or more computer systems connected together via a network for transmitting and/or receiving information between the computer systems; a computer system including two or more processors within a single computer; and one or more apparatuses and/or one or more systems that may accept data, may process data in accordance with one or more stored software programs, may generate results, and typically may include input, output, storage, arithmetic, logic, and control units.
A “network” may refer to a number of computers and associated devices that may be connected by communication facilities. A network may involve permanent connections such as cables or temporary connections such as those made through telephone or other communication links. A network may further include hard-wired connections (e.g., coaxial cable, twisted pair, optical fiber, waveguides, etc.) and/or wireless connections (e.g., radio frequency waveforms, free-space optical waveforms, acoustic waveforms, etc.). Examples of a network may include: an internet, such as the Internet; an intranet; a local area network (LAN); a wide area network (WAN); and a combination of networks, such as an internet and an intranet.
As used herein, the “client-side” application should be broadly construed to refer to an application, a page associated with that application, or some other resource or function invoked by a client-side request to the application. A “browser” as used herein is not intended to refer to any specific browser (e.g., Internet Explorer, Safari, FireFox, or the like), but should be broadly construed to refer to any client-side rendering engine that can access and display Internet-accessible resources. A “rich” client typically refers to a non-HTTP based client-side application, such as an SSH or CFIS client. Further, while typically the client-server interactions occur using HTTP, this is not a limitation either. The client server interaction may be formatted to conform to the Simple Object Access Protocol (SOAP) and travel over HTTP (over the public Internet), FTP, or any other reliable transport mechanism (such as IBM® MQSeries® technologies and CORBA, for transport over an enterprise intranet) may be used. Any application or functionality described herein may be implemented as native code, by providing hooks into another application, by facilitating use of the mechanism as a plug-in, by linking to the mechanism, and the like.
Exemplary networks may operate with any of a number of protocols, such as Internet protocol (IP), asynchronous transfer mode (ATM), and/or synchronous optical network (SONET), user datagram protocol (UDP), IEEE 802.x, etc.
Embodiments of the present invention may include apparatuses for performing the operations disclosed herein. An apparatus may be specially constructed for the desired purposes, or it may comprise a general-purpose device selectively activated or reconfigured by a program stored in the device.
Embodiments of the invention may also be implemented in one or a combination of hardware, firmware, and software. They may be implemented as instructions stored on a machine-readable medium, which may be read and executed by a computing platform to perform the operations described herein.
More specifically, as will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
In the following description and claims, the terms “computer program medium” and “computer readable medium” may be used to generally refer to media such as, but not limited to, removable storage drives, a hard disk installed in hard disk drive, and the like. These computer program products may provide software to a computer system. Embodiments of the invention may be directed to such computer program products.
An algorithm is here, and generally, considered to be a self-consistent sequence of acts or operations leading to a desired result. These include physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like. It should be understood, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise, and as may be apparent from the following description and claims, it should be appreciated that throughout the specification descriptions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
Additionally, the phrase “configured to” or “operable for” can include generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g., an FPGA or a general-purpose processor executing software) to operate in a manner that is capable of performing the task(s) at issue. “Configured to” may also include adapting a manufacturing process (e.g., a semiconductor fabrication facility) to fabricate devices (e.g., integrated circuits) that are adapted to implement or perform one or more tasks.
In a similar manner, the term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory. A “computing platform” may comprise one or more processors.
Embodiments within the scope of the present disclosure may also include tangible and/or non-transitory computer-readable storage media for carrying or having computer-executable instructions or data structures stored thereon. Such non-transitory computer-readable storage media can be any available media that can be accessed by a general purpose or special purpose computer, including the functional design of any special purpose processor as discussed above. By way of example, and not limitation, such non-transitory computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions, data structures, or processor chip design. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or combination thereof) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of the computer-readable media.
While a non-transitory computer readable medium includes, but is not limited to, a hard drive, compact disc, flash memory, volatile memory, random access memory, magnetic memory, optical memory, semiconductor based memory, phase change memory, optical memory, periodically refreshed memory, and the like; the non-transitory computer readable medium, however, does not include a pure transitory signal per se; i.e., where the medium itself is transitory.
It is to be understood that any exact measurements/dimensions or particular construction materials indicated herein are solely provided as examples of suitable configurations and are not intended to be limiting in any way. Depending on the needs of the particular application, those skilled in the art will readily recognize, in light of the following teachings, a multiplicity of suitable alternative implementation details.
Embodiments of the invention disclosed herein relate to audio systems. More particularly embodiments of the invention disclosed herein related to a Bluetooth® type headphone or headset i.e., a headphone with a wireless transceiver. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that the Bluetooth® chips transmit over a short range (about 30 feet) and consume very little power. Accordingly, in one embodiment is provided, a primary module. The headphone may be in working communication with a computer device, wherein the primary module may include a Bluetooth® transceiver to receive audio signals to and from the computer device. In one embodiment, the primary module may also house a stereo amplifier and two speakers which may direct their sound output upward through flexible and rigid sound tubes to ergonomically designed ear buds. The primary module may include buttons for switching the headphone “ON” or “OFF”. For example, if the primary module is connected a phone device, a user may choose to answer an incoming phone call either by pressing the “answer phone” button on the primary module or by pressing the “answer phone” display on the phone. The user may terminate the call in a similar manner, i.e., either by pressing the “terminate phone or hang-Up” button on the primary module or by pressing the “terminate phone” display on the phone.
FIG. 1 illustrates an audio system 100, in accordance with an embodiment of the present invention. As shown in FIG. 1, the audio system 100 includes a pair of ergonomically designed ear buds 110, a sound tube 112, a hang up button 116, an answer button 118, a charging port 120, a digital audio player port 122, a wireless transceiver module 124, a spring clip 126, and a micro phone 128. In one embodiment, the sound tube 112 may include a rigid sound tube portion 113 and a flexible sound tube 114. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that in one embodiment the answer button and the hang up button may include a single button that may operate to switch-ON and switch-OFF the microphone using methods known in the art. The wireless transceiver module 124 may house a battery or a rechargeable battery, speakers, and transducers. In one exemplary embodiment, the spring clip may include a stethoscope style spring clip. Hang up button 116, answer button 118, charging port 120, digital audio player port 122 (for example, an mp3 port), wireless transceiver module 124, and micro phone 128 may be housed in a primary module 132. The headphone may be in working communication with a user's computer system. The computer system may include, but not be limited to, a smartphone, a tablet, a personal computer, and the like devices. The headphone may transmit and receive audio signals to and from the Bluetooth® transceiver in the primary module. As mentioned hereinbefore, in an exemplary embodiment, when the user is using headphone 100 with a mobile phone, the user may choose to answer the phone by pressing answer button 118 on primary module 132 of headphone 100 or by using the answer link on the phone itself. Similarly, the user may choose to hang-up the phone by pressing hang-up button 116 on primary module 132 of headphone 100 or by using the hang-up link on the phone itself.
It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that the headphones may be charged in any convenient manner available to the user. In one embodiment, headphone 100 may be connected to a suitable power system with wires via charging port 120 for charging headphone 100, for example, using a C type USB charging port on the primary module. In another embodiment, the headphones may be charged wirelessly 130. Flexible sound tube 114 may connect the speakers in primary module 130 to rigid sound tubes 112 which then carries the sound to a user's ears without the use of wires. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that maintaining a substantial distance between the primary module and the ear buds may limit the electromagnetic field (EMF) near a user's head. Spring 126 which connects the rigid sound tubes 112 may tend to pull the rigid sound tubes together, enabling the user to quickly and easily switch between two different ways to wear the device and also to easily remove it or put it back on, in a way similar to wearing a stethoscope.
In one embodiment, to place the ear buds in the ears the user may gently pull the rigid sound tubes outward to the right and left side and then insert them in the ear canal. Once thus positioned, the user may allow the headphones to hang below the user's chin or raise it up so that the microphone may be directly in front of the user's mouth, which might be necessary in windy or noisy conditions so that user's voice will be louder at and in the proximity of the microphone over the surrounding sounds.
In one embodiment, when the headphone is not in use the user may gently pull the rigid sound tubes away from the user's head and drop the headphone down so that it “hugs” the user's neck, for example, like a medical stethoscope. The headphone may not interfere with the user's other activities but may always be handy for the user, for example, to quickly answer the phone, listen to music, etc.
FIG. 2 illustrates an architecture 200 for an audio system, in accordance with an embodiment of the present invention. An audio system architecture 200 may comprise a computing system 212. The computing system 212 includes a voice capture module 216, a sensor module 218, a database module 221, an information processing, formatting, and organizing module 220, a wireless communication sending module 222, a wireless communication receiving module 223, a display module 224, an interface module 226, and a heuristic module 228. The voice capture module 216, may have a means of capturing the voice, such as, without limitation, a voice recorder or virtually any voice recorder, of the external input devices 210. The sensor module 218, may have a means of sensing various parameters involved in communication including sensing the touch when a user touches the answer button or hang-up button, or sensing the wireless communication from input devices, and the like. Information processing, formatting, and organizing module 220 may have a means of processing a touch sense, a voice, and the gathered physical information and sensor information, such as, without limitation, a processing unit, a computer, or a server to execute computer code and/or algorithms from a non-transitory computer readable medium for voice, and sensor parameter recognition. A wireless communication sending module 222 and a wireless communication receiving module 223 may have a means of sending and receiving information received from a computer device to a user or from a charging device to the headphones. A display module 224 may have a means to display to the user to enable the user to provide input information to the headphones, enable the user to view the output information from the headphones, enable the user to stop input information to the head phones, etc. An interface module 226 may have a processing means such as, without limitation, a processing unit, a computer, or a server to execute computer code and/or algorithms from a non-transitory computer readable medium for interfacing between the various modules. A heuristic module 232 may have a processing means such as, without limitation, a processing unit, a computer, or a server to execute computer code and/or algorithms from a non-transitory computer readable medium for processing the data/information provided by the data analyzing module and providing pointers to the user based on a self-learning model, for example, direct user to recently used or frequently used phone call or message list, music list, etc. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that virtually any algorithm and/or computer code may be used to self-learn using the heuristic module 228. Self-learning algorithms and/or methods may include, without limitation, the use of artificial intelligence, however, the development of self-learning algorithms are really the new or current state-of-the-art if coupled with smart sensors and electromechanical systems the opportunities are infinite.
It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that one or more modules may be embodied in a single device. In an alternative embodiment of the present invention, all modules except the display module may be embodied in the computing device of the audio system. The information from a computing device may be related or communicated to the user form the user's personal computer, laptop device, smart phone device, etc. via the headphones.
It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that virtually any algorithm and/or computer code may be used to recognize and capture a sound/voice on the voice capture module 216 and the information processing, formatting, and organizing module 220. Voice recognition algorithms and/or methods may include, without limitation, Bayesian networks, fuzzy logic, neural networks, template matching, Hidden Markov models, machine learning, data mining, feature extraction and data analysis/statistics, optical character recognition, etc. In an alternative embodiment of the present invention, a binary search tree may be implemented to extract data from a voice.
It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that virtually any algorithm and/or computer code may be used to recognize and capture a touch sense on a sensor module 218 and the information processing, formatting, and organizing module 220. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that virtually any algorithm and/or computer code may be used to recognize and capture a touch sense on the sensor module 218 and the information processing, formatting, and organizing module 220. Surround sense recognition algorithms, for example, for sensing touch may include, without limitation, Bayesian networks, fuzzy logic, neural networks, template matching, Hidden Markov models, machine learning, data mining, feature extraction and data analysis/statistics, optical character recognition, etc. In an alternative embodiment of the present invention, a binary search tree may be implemented to extract data from a sensory information.
Voice recognition algorithms and/or methods may include, without limitation, Bayesian networks, fuzzy logic, neural networks, template matching, Hidden Markov models, machine learning, data mining, feature extraction and data analysis/statistics, optical character recognition, etc. In an alternative embodiment of the present invention, a binary search tree may be implemented to extract data from a voice.
It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that there may be a plurality of the same modules in the audio system architecture 200. A plurality of modules such as, without limitation, a voice capture module 216, a sensor module 218, a database module 221, an information processing, formatting, and organizing module 220, a wireless communication sending module 222, a wireless communication receiving module 223, a display module 224, an interface module 226, and a heuristic module 228 may be present in an audio system disclosed herein. The plurality of similar modules may work in parallel or independently to improve the throughput of an audio system architecture 200. In an alternative embodiment of the present invention, a plurality of capture, processing, formatting, and organizing, generation, display, interface, communication, heuristic, and storage modules may be connected to an audio system via wireless connections to access resources from different wired and wireless networks. In still another alternative embodiment of the present invention, a plurality of similar modules may form a secondary audio system capable of seamlessly substituting an errant module.
It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that one or more modules may transmit capture information to a tech support server that is on an accessible network or over the internet. In an alternative embodiment of the present invention, additional captured information may be sent to a server to alleviate processing load on a system. Accordingly, the architecture may support a local home network where the sensor devices can connect to a local CPU/GPU combination for edge-based computing along with a cloud network connection which may allow for improved performance and reliability along with scale and storage and for continuous fine tuning of the algorithms and analysis of performance.
It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that any module in audio system architecture 200 may perform data manipulation. Data manipulation such as, but not limited to, compression, encryption, formatting. In an alternative embodiment of the present invention, any module sending data may first compress the data prior to data transmission.
FIG. 3 illustrates a photograph of an exemplary prototype of an audio system, in accordance with an embodiment of the present invention. As shown in FIG. 3, the headphones described herein may be designed like a stethoscope. As shown in FIG. 3, the audio system 300 includes a pair of ergonomically designed ear buds 110, a sound tube 112, a flexible sound tube 114, a hang up button 116, an answer button 118, a charging port (not shown in figure), an digital audio player port (not shown in figure), a Bluetooth® receiver module (not shown in figure), a stethoscope style spring clip 126, and a micro phone 128. The Bluetooth® receiver module may house a rechargeable battery, and speakers/transducers. Hang up button 116, answer button 118, charging port, digital audio player port, Bluetooth® receiver module, and micro phone 128 may be housed in a primary module 132. The headphone may be in working communication with a user's computer system. The computer system may include, but not be limited to, a smartphone, a tablet, a personal computer, and the like devices. The headphone may transmit and receive audio signals to and from the Bluetooth® transceiver in the primary module.
FIG. 4 illustrates a side view photograph 400 of an exemplary prototype of an audio system being used by a user, in accordance with an embodiment of the present invention. As shown in FIG. 4, a user 418 is wearing an audio system, i.e., a headphone disclosed herein. Audio system 400 includes a soft tip ergonomic ear bud 410, a transition tube 412 (i.e., a flexible tube), a main sound tube 414 (i.e., a rigid tube), and a speaker 416. In various embodiments, a flexible tube may be disposed either between the primary module and the rigid hollow tubes, or between the ear buds and the rigid hollow tube, or in both these positions of the audio system.
FIG. 5 illustrates a front view photograph 500 of an exemplary prototype of an audio system being used by a user, in accordance with an embodiment of the present invention. As shown in FIG. 5, a user 518 is wearing an audio system, i.e., a headphone as described herein. The placement of the various parts of the audio system 500, i.e., microphone 128 located relatively close to the mouth in fixed position, spring 126 to hold the sound tubes in place, answer button 118 (shown as a green button on primary module 132), with reference to user 518 is shown. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that wind or other external sources of noise may not be a concern because the microphone will be situated directly in front of a user's mouth ensuring optimum signal to noise ratio. In one exemplary embodiment, microphone 128 may be located on primary module 132 hanging under the chin, which may be capable of rotating forward in front of the mouth. It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that the primary module 132 may be fabricated in any suitable shape as long it is able to accommodate the answer button, the hang-up button, the microphone, the wireless transceivers, the digital audio port, and other required features. Suitable shapes of the primary module 132 include, but are not limited to, rectangular, oval, leaf shaped, shaped according to user's sun sign, and the like. In an exemplary embodiment, the audio system may include a microphone and a sound tube assembly as an integrated rigid component connected to each other by a sort of leaf type spring with the primary module, i.e., the electronics module suspended in between.
It will be appreciated by a person with ordinary skill in the art, in light of and in accordance with the teachings of the present invention, that the various parts of the audio system described herein like the ear buds, the flexible tube, the rigid tube, the primary module, etc. may be made of materials and in shapes and sizes suitable for the purpose described herein. For example, the earbuds may be made of silicone including medical grade and hypoallergent material, rubber, and the like materials. For example, the rigid tubes may be made of polycarbonate.
In an exemplary embodiment, the audio system disclosed herein includes a Bluetooth® stereo transceiver with two small audio speakers emitting sound through a short flexible hollow tube connected to a longer rigid hollow tube leading to ergonomically designed ear buds at the upper tips, and is fashioned in the form of a stethoscope. The rigid hollow tubes carrying the sound from the speaker to the ear keep electronics away from the brain. In one embodiment, the audio system includes a leaf type spring pulling the longer rigid hollow tubes together so that the ear buds may either stay comfortably inserted into a user's ears when in use or, alternatively, they may “hug” the neck of the wearer when not in use, thereby providing a “hands free” method of either wearing the device in a position ready for quick and easy access, or easily popping the ear buds into a user's ears in order to answer a telephone call or to listen to music, radio or any other recorded or broadcast audio service. As mentioned herein before the audio system may include wired or wireless charging system.
Accordingly, the audio system described herein may have various advantages including but not limited to, (i) the audio system may utilize rigid hollow tubes pulled together by a spring to carry the sound from the miniature stereo speakers to the ears. This may keep the components that are ultra-light snugly but comfortably supported by the ears while ensuring that the soft tip ergonomically designed ear buds remain inserted for optimal sound quality. This may also reduce risk to the health of the wearer by keeping electronic components further away from the brain; (ii) The audio system may place the microphone which is adjustable, just below or in front of a user's mouth the mouth ensuring that the user's voice will be received loudly and clearly minimizing interference from any unwanted background noise; (iii) The absence of exposed wires may eliminate the issue of tangled or broken wires while making the device easier and faster to put on or take off and easier to store or charge when not in use; and (iv) wireless charging capability (charger included) may virtually eliminate the need to constantly connect and disconnect charging cables/plugs.
Those skilled in the art will readily recognize, in light of and in accordance with the teachings of the present invention, that any of the foregoing steps and/or system modules may be suitably replaced, reordered, removed and additional steps and/or system modules may be inserted depending upon the needs of the particular application, and that the systems of the foregoing embodiments may be implemented using any of a wide variety of suitable processes and system modules, and is not limited to any particular computer hardware, software, middleware, firmware, microcode and the like. For any method steps described in the present application that can be carried out on a computing machine, a typical computer system can, when appropriately configured or designed, serve as a computer system in which those aspects of the invention may be embodied. Such computers referenced and/or described in this disclosure may be any kind of computer, either general purpose, or some specific purpose computer such as, but not limited to, a workstation, a mainframe, GPU, ASIC, etc. The programs may be written in C, or Java, Brew or any other suitable programming language. The programs may be resident on a storage medium, e.g., magnetic or optical, e.g., without limitation, the computer hard drive, a removable disk or media such as, without limitation, a memory stick or SD media, or other removable medium. The programs may also be run over a network, for example, with a server or other machine sending signals to the local machine, which allows the local machine to carry out the operations described herein.
FIG. 6 illustrates a block diagram depicting a conventional client/server communication system, which may be used by an exemplary web-enabled/networked embodiment of the present invention.
A communication system 600 includes a multiplicity of networked regions with a sampling of regions denoted as a network region 602 and a network region 604, a global network 606 and a multiplicity of servers with a sampling of servers denoted as a server device 608 and a server device 610.
Network region 602 and network region 604 may operate to represent a network contained within a geographical area or region. Non-limiting examples of representations for the geographical areas for the networked regions may include postal zip codes, telephone area codes, states, counties, cities and countries. Elements within network region 602 and 604 may operate to communicate with external elements within other networked regions or within elements contained within the same network region.
In some implementations, global network 606 may operate as the Internet. It will be understood by those skilled in the art that communication system 600 may take many different forms. Non-limiting examples of forms for communication system 600 include local area networks (LANs), wide area networks (WANs), wired telephone networks, cellular telephone networks or any other network supporting data communication between respective entities via hardwired or wireless communication networks. Global network 606 may operate to transfer information between the various networked elements.
Server device 608 and server device 610 may operate to execute software instructions, store information, support database operations and communicate with other networked elements. Non-limiting examples of software and scripting languages which may be executed on server device 608 and server device 610 include C, C++, C# and Java.
Network region 602 may operate to communicate bi-directionally with global network 606 via a communication channel 612. Network region 604 may operate to communicate bi-directionally with global network 606 via a communication channel 614. Server device 608 may operate to communicate bi-directionally with global network 606 via a communication channel 616. Server device 610 may operate to communicate bi-directionally with global network 606 via a communication channel 618. Network region 602 and 604, global network 606 and server devices 608 and 610 may operate to communicate with each other and with every other networked device located within communication system 600.
Server device 608 includes a networking device 620 and a server 622. Networking device 620 may operate to communicate bi-directionally with global network 606 via communication channel 616 and with server 622 via a communication channel 624. Server 622 may operate to execute software instructions and store information.
Network region 602 includes a multiplicity of clients with a sampling denoted as a client 626 and a client 628. Client 626 includes a networking device 634, a processor 636, a GUI 638 and an interface device 640. Non-limiting examples of devices for GUI 638 include monitors, televisions, cellular telephones, smartphones and PDAs (Personal Digital Assistants). Non-limiting examples of interface device 640 include pointing device, mouse, trackball, scanner and printer. Networking device 634 may communicate bi-directionally with global network 606 via communication channel 612 and with processor 636 via a communication channel 642. GUI 638 may receive information from processor 636 via a communication channel 644 for presentation to a user for viewing. Interface device 640 may operate to send control information to processor 636 and to receive information from processor 636 via a communication channel 646. Network region 604 includes a multiplicity of clients with a sampling denoted as a client 630 and a client 632. Client 630 includes a networking device 648, a processor 650, a GUI 652 and an interface device 654. Non-limiting examples of devices for GUI 638 include monitors, televisions, cellular telephones, smartphones and PDAs (Personal Digital Assistants). Non-limiting examples of interface device 640 include pointing devices, mousse, trackballs, scanners and printers. Networking device 648 may communicate bi-directionally with global network 606 via communication channel 614 and with processor 650 via a communication channel 656. GUI 652 may receive information from processor 650 via a communication channel 658 for presentation to a user for viewing. Interface device 654 may operate to send control information to processor 650 and to receive information from processor 650 via a communication channel 660.
For example, consider the case where a user interfacing with client 626 may want to execute a networked application. A user may enter the IP (Internet Protocol) address for the networked application using interface device 640. The IP address information may be communicated to processor 636 via communication channel 646. Processor 636 may then communicate the IP address information to networking device 634 via communication channel 642. Networking device 634 may then communicate the IP address information to global network 606 via communication channel 612. Global network 606 may then communicate the IP address information to networking device 620 of server device 608 via communication channel 616. Networking device 620 may then communicate the IP address information to server 622 via communication channel 624. Server 622 may receive the IP address information and after processing the IP address information may communicate return information to networking device 620 via communication channel 624. Networking device 620 may communicate the return information to global network 606 via communication channel 616. Global network 606 may communicate the return information to networking device 634 via communication channel 612. Networking device 634 may communicate the return information to processor 636 via communication channel 642. Processor 666 may communicate the return information to GUI 668 via communication channel 644. User may then view the return information on GUI 638.
FIG. 7 is a block diagram depicting an exemplary client/server system which may be used by an exemplary web-enabled/networked embodiment of the present invention.
A communication system 700 includes a multiplicity of clients with a sampling of clients denoted as a client 702 and a client 704, a multiplicity of local networks with a sampling of networks denoted as a local network 706 and a local network 708, a global network 710 and a multiplicity of servers with a sampling of servers denoted as a server 712 and a server 714.
Client 702 may communicate bi-directionally with local network 706 via a communication channel 716. Client 704 may communicate bi-directionally with local network 708 via a communication channel 718. Local network 706 may communicate bi-directionally with global network 710 via a communication channel 720. Local network 708 may communicate bi-directionally with global network 710 via a communication channel 722. Global network 710 may communicate bi-directionally with server 712 and server 714 via a communication channel 724. Server 712 and server 714 may communicate bi-directionally with each other via communication channel 724. Furthermore, clients 702, 704, local networks 706, 708, global network 710 and servers 712, 714 may each communicate bi-directionally with each other.
In one embodiment, global network 710 may operate as the Internet. It will be understood by those skilled in the art that communication system 700 may take many different forms. Non-limiting examples of forms for communication system 700 include local area networks (LANs), wide area networks (WANs), wired telephone networks, wireless networks, or any other network supporting data communication between respective entities.
Clients 702 and 704 may take many different forms. Non-limiting examples of clients 702 and 704 include personal computers, personal digital assistants (PDAs), cellular phones and smartphones.
Client 702 includes a CPU 726, a pointing device 728, a keyboard 730, a microphone 732, a printer 734, a memory 736, a mass memory storage 738, a GUI 740, a video camera 742, an input/output interface 744 and a network interface 746.
CPU 726, pointing device 728, keyboard 730, microphone 732, printer 734, memory 736, mass memory storage 738, GUI 740, video camera 742, input/output interface 744 and network interface 746 may communicate in a unidirectional manner or a bi-directional manner with each other via a communication channel 748. Communication channel 748 may be configured as a single communication channel or a multiplicity of communication channels.
CPU 726 may be comprised of a single processor or multiple processors. CPU 726 may be of various types including micro-controllers (e.g., with embedded RAM/ROM) and microprocessors such as programmable devices (e.g., RISC or SISC based, or CPLDs and FPGAs) and devices not capable of being programmed such as gate array ASICs (Application Specific Integrated Circuits) or general-purpose microprocessors.
As is well known in the art, memory 736 is used typically to transfer data and instructions to CPU 726 in a bi-directional manner. Memory 736, as discussed previously, may include any suitable computer-readable media, intended for data storage, such as those described above excluding any wired or wireless transmissions unless specifically noted. Mass memory storage 738 may also be coupled bi-directionally to CPU 726 and provides additional data storage capacity and may include any of the computer-readable media described above. Mass memory storage 738 may be used to store programs, data and the like and is typically a secondary storage medium such as a hard disk. It will be appreciated that the information retained within mass memory storage 738, may, in appropriate cases, be incorporated in standard fashion as part of memory 736 as virtual memory.
CPU 726 may be coupled to GUI 740. GUI 740 enables a user to view the operation of computer operating system and software. CPU 726 may be coupled to pointing device 728. Non-limiting examples of pointing device 728 include computer mouse, trackball and touchpad. Pointing device 728 enables a user with the capability to maneuver a computer cursor about the viewing area of GUI 740 and select areas or features in the viewing area of GUI 740. CPU 726 may be coupled to keyboard 730. Keyboard 730 enables a user with the capability to input alphanumeric textual information to CPU 726. CPU 726 may be coupled to microphone 732. Microphone 732 enables audio produced by a user to be recorded, processed and communicated by CPU 726. CPU 726 may be connected to printer 734. Printer 734 enables a user with the capability to print information to a sheet of paper. CPU 726 may be connected to video camera 742. Video camera 742 enables video produced or captured by user to be recorded, processed and communicated by CPU 726.
CPU 726 may also be coupled to input/output interface 744 that connects to one or more input/output devices such as such as CD-ROM, video monitors, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, or other well-known input devices such as, of course, other computers.
Finally, CPU 726 optionally may be coupled to network interface 746 which enables communication with an external device such as a database or a computer or telecommunications or internet network using an external connection shown generally as communication channel 716, which may be implemented as a hardwired or wireless communications link using suitable conventional technologies. With such a connection, CPU 726 might receive information from the network, or might output information to a network in the course of performing the method steps described in the teachings of the present invention.
It will be further apparent to those skilled in the art that at least a portion of the novel method steps and/or system components of the present invention may be practiced and/or located in location(s) possibly outside the jurisdiction of the United States of America (USA), whereby it will be accordingly readily recognized that at least a subset of the novel method steps and/or system components in the foregoing embodiments must be practiced within the jurisdiction of the USA for the benefit of an entity therein or to achieve an object of the present invention. Thus, some alternate embodiments of the present invention may be configured to comprise a smaller subset of the foregoing means for and/or steps described that the applications designer will selectively decide, depending upon the practical considerations of the particular implementation, to carry out and/or locate within the jurisdiction of the USA. For example, any of the foregoing described method steps and/or system components which may be performed remotely over a network (e.g., without limitation, a remotely located server) may be performed and/or located outside of the jurisdiction of the USA while the remaining method steps and/or system components (e.g., without limitation, a locally located client) of the forgoing embodiments are typically required to be located/performed in the USA for practical considerations. In client-server architectures, a remotely located server typically generates and transmits required information to a US based client, for use according to the teachings of the present invention. Depending upon the needs of the particular application, it will be readily apparent to those skilled in the art, in light of the teachings of the present invention, which aspects of the present invention can or should be located locally and which can or should be located remotely. Thus, for any claims construction of the following claim limitations that are construed under 35 USC § 112 (6)/(f) it is intended that the corresponding means for and/or steps for carrying out the claimed function are the ones that are locally implemented within the jurisdiction of the USA, while the remaining aspect(s) performed or located remotely outside the USA are not intended to be construed under 35 USC § 112 (6) pre-AIA or 35 USC § 112 (f) post AIA. In some embodiments, the methods and/or system components which may be located and/or performed remotely include, without limitation:
It is noted that according to USA law, all claims must be set forth as a coherent, cooperating set of limitations that work in functional combination to achieve a useful result as a whole. Accordingly, for any claim having functional limitations interpreted under 35 USC § 112 (6)/(f) where the embodiment in question is implemented as a client-server system with a remote server located outside of the USA, each such recited function is intended to mean the function of combining, in a logical manner, the information of that claim limitation with at least one other limitation of the claim. For example, in client-server systems where certain information claimed under 35 USC § 112 (6)/(f) is/(are) dependent on one or more remote servers located outside the USA, it is intended that each such recited function under 35 USC § 112 (6)/(f) is to be interpreted as the function of the local system receiving the remotely generated information required by a locally implemented claim limitation, wherein the structures and or steps which enable, and breathe life into the expression of such functions claimed under 35 USC § 112 (6)/(f) are the corresponding steps and/or means located within the jurisdiction of the USA that receive and deliver that information to the client (e.g., without limitation, client-side processing and transmission networks in the USA). When this application is prosecuted or patented under a jurisdiction other than the USA, then “USA” in the foregoing should be replaced with the pertinent country or countries or legal organization(s) having enforceable patent infringement jurisdiction over the present patent application, and “35 USC § 112 (6)/(f)” should be replaced with the closest corresponding statute in the patent laws of such pertinent country or countries or legal organization(s).
All the features disclosed in this specification, including any accompanying abstract and drawings, may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
It is noted that according to USA law 35 USC § 112 (1), all claims must be supported by sufficient disclosure in the present patent specification, and any material known to those skilled in the art need not be explicitly disclosed. However, 35 USC § 112 (6) requires that structures corresponding to functional limitations interpreted under 35 USC § 112 (6) must be explicitly disclosed in the patent specification. Moreover, the USPTO's Examination policy of initially treating and searching prior art under the broadest interpretation of a “mean for” or “steps for” claim limitation implies that the broadest initial search on 35 USC § 112(6) (post AIA 112(f)) functional limitation would have to be conducted to support a legally valid Examination on that USPTO policy for broadest interpretation of “mean for” claims. Accordingly, the USPTO will have discovered a multiplicity of prior art documents including disclosure of specific structures and elements which are suitable to act as corresponding structures to satisfy all functional limitations in the below claims that are interpreted under 35 USC § 112(6) (post AIA 112(f)) when such corresponding structures are not explicitly disclosed in the foregoing patent specification. Therefore, for any invention element(s)/structure(s) corresponding to functional claim limitation(s), in the below claims interpreted under 35 USC § 112(6) (post AIA 112(f)), which is/are not explicitly disclosed in the foregoing patent specification, yet do exist in the patent and/or non-patent documents found during the course of USPTO searching, Applicant(s) incorporate all such functionally corresponding structures and related enabling material herein by reference for the purpose of providing explicit structures that implement the functional means claimed. Applicant(s) request(s) that fact finders during any claims construction proceedings and/or examination of patent allowability properly identify and incorporate only the portions of each of these documents discovered during the broadest interpretation search of 35 USC § 112(6) (post AIA 112(f)) limitation, which exist in at least one of the patent and/or non-patent documents found during the course of normal USPTO searching and or supplied to the USPTO during prosecution. Applicant(s) also incorporate by reference the bibliographic citation information to identify all such documents comprising functionally corresponding structures and related enabling material as listed in any PTO Form-892 or likewise any information disclosure statements (IDS) entered into the present patent application by the USPTO or Applicant(s) or any 3rd parties. Applicant(s) also reserve its right to later amend the present application to explicitly include citations to such documents and/or explicitly include the functionally corresponding structures which were incorporate by reference above.
Thus, for any invention element(s)/structure(s) corresponding to functional claim limitation(s), in the below claims, that are interpreted under 35 USC § 112(6) (post AIA 112(f)), which is/are not explicitly disclosed in the foregoing patent specification, Applicant(s) have explicitly prescribed which documents and material to include the otherwise missing disclosure, and have prescribed exactly which portions of such patent and/or non-patent documents should be incorporated by such reference for the purpose of satisfying the disclosure requirements of 35 USC § 112 (6). Applicant(s) note that all the identified documents above which are incorporated by reference to satisfy 35 USC § 112 (6) necessarily have a filing and/or publication date prior to that of the instant application, and thus are valid prior documents to incorporated by reference in the instant application.
Having fully described at least one embodiment of the present invention, other equivalent or alternative methods of implementing an audio system according to the present invention will be apparent to those skilled in the art. Various aspects of the invention have been described above by way of illustration, and the specific embodiments disclosed are not intended to limit the invention to the particular forms disclosed. The particular implementation of the audio system may vary depending upon the particular context or application. By way of example, and not limitation, the audio system described in the foregoing were principally directed to wireless enabled headphones implementations; however, similar techniques may instead be applied to other listening devices, which implementations of the present invention are contemplated as within the scope of the present invention. The invention is thus to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the following claims. It is to be further understood that not all of the disclosed embodiments in the foregoing specification will necessarily satisfy or achieve each of the objects, advantages, or improvements described in the foregoing specification.
Claim elements and steps herein may have been numbered and/or lettered solely as an aid in readability and understanding. Any such numbering and lettering in itself is not intended to and should not be taken to indicate the ordering of elements and/or steps in the claims.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. That is, the Abstract is provided merely to introduce certain concepts and not to identify any key or essential features of the claimed subject matter. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims.
The following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate embodiment.
Only those claims which employ the words “means for” or “steps for” are to be interpreted under 35 USC 112, sixth paragraph (pre-AIA) or 35 USC 112(f) post-AIA. Otherwise, no limitations from the specification are to be read into any claims, unless those limitations are expressly included in the claims.

Claims (10)

What is claimed is:
1. An audio system comprising:
first and second sound tubes, wherein each sound tube of said first and second sound tubes includes a rigid hollow tube portion and a flexible hollow portion connected with the rigid hollow tube portion, each sound tube of said first and second sound tubes having a proximal end operable to be disposed adjacent a user's ears and a distal end, opposite the proximal end;
a primary module physically and directly connected with the distal end of each sound tube of said first and second sound tubes, the primary module including a housing supporting:
at least one answer button;
at least one hang-up button;
a wireless transceiver module including first speaker and second speaker;
a charging port;
a digital audio player port; and
a microphone capable of receiving voice;
a spring clip, directly attached to said first and second sound tubes, providing resilient expansion of a distance between the rigid hollow tube portions of said first and second sound tubes;
and a pair of ear buds disposed at and directly coupled with the proximal end of each
of said first and second sound tubes, wherein the pair of ear buds directly coupled to an user's ears;
wherein acoustic sound emitted from the first speaker reaching first ear of the user's ears through the rigid hollow tube portion and the flexible hollow portion of said first sound tube, and acoustic sound emitted from the second speaker reaching second ear of the user's ear through the rigid hollow tube portion and the flexible hollow portion of said second sound tube;
wherein the user using the audio system with a mobile phone, by electrically connected the audio system with the mobile phone, is capable of answering or hanging-up the mobile phone by pressing the answer button or the hang-up button on the primary module respectively or by using an answer link or a hang-up link on the mobile phone respectively, the wireless transceiver module providing audio signals from the mobile phone to the first speaker and the second speaker and the wireless transceiver providing voice detected by the microphone to the mobile phone;
wherein the spring clip is a stethoscope style spring clip pulling the rigid hollow tubes together such that the ear buds are inserted into the user's ear when in user or hug the neck of the user when not in user.
2. The audio system of claim 1, wherein a single button is used both as the answer button and as the hang-up button.
3. The audio system of claim 1, wherein the flexible hollow portion of the first sound tube is disposed between one of the ear buds and the rigid hollow tube portion of the first sound tube, the flexible hollow portion of the second sound tube is disposed between the other one of the ear buds and the rigid hollow tube portion of the second sound tube.
4. The audio system of claim 1, wherein the flexible hollow portion of the first sound tube is disposed between the primary module and the rigid hollow tube portion of the first sound tube, the flexible hollow portion of the second sound tube is disposed between the primary module and the rigid hollow tube portion of the second sound tube.
5. The audio system of claim 1, wherein the wireless transceiver module is a Bluetooth® transceiver module.
6. The audio system of claim 1, wherein the primary module further houses a battery and a transducer.
7. The audio system of claim 6, wherein the battery is a rechargeable battery.
8. The audio system of claim 1, wherein the system is capable of being charged wirelessly.
9. The audio system of claim 1, wherein the microphone is adjustable and is capable of being positioned below or in front of the user's mouth.
10. The audio system of claim 1, wherein the audio system is connected to a power system with wires via the charging port for charging the audio system.
US16/383,616 2018-04-14 2019-04-14 Audio system Active US11019431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/383,616 US11019431B2 (en) 2018-04-14 2019-04-14 Audio system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862657723P 2018-04-14 2018-04-14
US16/383,616 US11019431B2 (en) 2018-04-14 2019-04-14 Audio system

Publications (2)

Publication Number Publication Date
US20190320264A1 US20190320264A1 (en) 2019-10-17
US11019431B2 true US11019431B2 (en) 2021-05-25

Family

ID=68161001

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/383,616 Active US11019431B2 (en) 2018-04-14 2019-04-14 Audio system

Country Status (1)

Country Link
US (1) US11019431B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220866B1 (en) * 1998-01-15 2001-04-24 Eagle Simulation, Inc. Electronic auscultation system for patient simulator
US20040173401A1 (en) * 2003-03-04 2004-09-09 Lisle Corporation Stethoscope for mechanics to diagnose vehicle sounds
US20070116264A1 (en) * 2005-10-07 2007-05-24 Gn Netcom A/S Retrofit switch activated headset lifter
US20110170730A1 (en) * 2008-10-15 2011-07-14 Aidao Zhu Safe In-Ear Earphones
US8170262B1 (en) * 2009-04-15 2012-05-01 Frank Kung Fu Liu Wireless air tube headset
US20130116584A1 (en) * 2011-10-17 2013-05-09 Rijuven Corporation Biometric front-end recorder system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6220866B1 (en) * 1998-01-15 2001-04-24 Eagle Simulation, Inc. Electronic auscultation system for patient simulator
US20040173401A1 (en) * 2003-03-04 2004-09-09 Lisle Corporation Stethoscope for mechanics to diagnose vehicle sounds
US20070116264A1 (en) * 2005-10-07 2007-05-24 Gn Netcom A/S Retrofit switch activated headset lifter
US20110170730A1 (en) * 2008-10-15 2011-07-14 Aidao Zhu Safe In-Ear Earphones
US8170262B1 (en) * 2009-04-15 2012-05-01 Frank Kung Fu Liu Wireless air tube headset
US20130116584A1 (en) * 2011-10-17 2013-05-09 Rijuven Corporation Biometric front-end recorder system

Also Published As

Publication number Publication date
US20190320264A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
US9418657B2 (en) Communication system and method for an ear worn communication device
US9930248B2 (en) Digital image capturing device system and method
WO2021018154A1 (en) Information representation method and apparatus
CN109918669B (en) Entity determining method, device and storage medium
CN110286976A (en) Interface display method, device, terminal and storage medium
KR102229039B1 (en) Audio activity tracking and summaries
CN110199276A (en) With aspect tag query
KR20160015727A (en) Method and apparatus for visualizing music information
CN107533360A (en) A kind of method for showing, handling and relevant apparatus
CN110852100A (en) Keyword extraction method, keyword extraction device, electronic equipment and medium
US20160188809A1 (en) Method and Program Product for Healthcare Provider Reporting
CN109302338A (en) Intelligent indicating risk method, mobile terminal and computer readable storage medium
US20220226737A1 (en) Method for mobile gaming systems
WO2023125335A1 (en) Question and answer pair generation method and electronic device
CN105426103A (en) Message editing method and device on mobile terminal
WO2016058425A1 (en) Voice search method, apparatus and device, and computer storage medium
CN108781262A (en) Method for composograph and the electronic device using this method
CN107209784A (en) System and method for providing location-based information
EP4139810A1 (en) Messaging system with trend analysis of content
CN107291772A (en) One kind search access method, device and electronic equipment
CN109242555A (en) Voice-based advertisement broadcast method and Related product
CN109917988A (en) Choose content display method, device, terminal and computer readable storage medium
CN110490389A (en) Clicking rate prediction technique, device, equipment and medium
US11019431B2 (en) Audio system
US9819782B1 (en) Neurological communication device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: MICROENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: MICROENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE