US11000837B2 - Catalyst for preparing chlorine gas by hydrogen chloride oxidation, and preparation method and application thereof - Google Patents
Catalyst for preparing chlorine gas by hydrogen chloride oxidation, and preparation method and application thereof Download PDFInfo
- Publication number
- US11000837B2 US11000837B2 US16/306,363 US201616306363A US11000837B2 US 11000837 B2 US11000837 B2 US 11000837B2 US 201616306363 A US201616306363 A US 201616306363A US 11000837 B2 US11000837 B2 US 11000837B2
- Authority
- US
- United States
- Prior art keywords
- powder
- particle size
- catalyst
- hydrogen chloride
- containing compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 title claims abstract description 112
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 title claims abstract description 103
- 229910000041 hydrogen chloride Inorganic materials 0.000 title claims abstract description 103
- 239000003054 catalyst Substances 0.000 title claims abstract description 100
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 23
- 230000003647 oxidation Effects 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title description 20
- 239000010949 copper Substances 0.000 claims abstract description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052802 copper Inorganic materials 0.000 claims abstract description 27
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000011572 manganese Substances 0.000 claims abstract description 22
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 20
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 18
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 17
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 16
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052796 boron Inorganic materials 0.000 claims abstract description 16
- 239000011591 potassium Substances 0.000 claims abstract description 16
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 16
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 16
- 239000011651 chromium Substances 0.000 claims abstract description 15
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 9
- 239000011574 phosphorus Substances 0.000 claims abstract description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 239000010936 titanium Substances 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims description 113
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 104
- 238000001354 calcination Methods 0.000 claims description 72
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 claims description 68
- 239000002245 particle Substances 0.000 claims description 65
- 150000001875 compounds Chemical class 0.000 claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 50
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 47
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 36
- 229910017604 nitric acid Inorganic materials 0.000 claims description 36
- 229910001868 water Inorganic materials 0.000 claims description 26
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 22
- 239000002808 molecular sieve Substances 0.000 claims description 21
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical group [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 19
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 239000004408 titanium dioxide Substances 0.000 claims description 16
- 229910000398 iron phosphate Inorganic materials 0.000 claims description 15
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 13
- 239000008279 sol Substances 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 11
- 239000005995 Aluminium silicate Substances 0.000 claims description 9
- 235000012211 aluminium silicate Nutrition 0.000 claims description 9
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- -1 silicate ester Chemical class 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 239000002041 carbon nanotube Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000004111 Potassium silicate Substances 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 235000019353 potassium silicate Nutrition 0.000 claims description 3
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 3
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 61
- 239000007789 gas Substances 0.000 abstract description 21
- 125000001997 phenyl group Chemical class [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 abstract 2
- 239000000463 material Substances 0.000 description 103
- 239000002002 slurry Substances 0.000 description 54
- 238000001694 spray drying Methods 0.000 description 45
- 239000000243 solution Substances 0.000 description 32
- 239000000126 substance Substances 0.000 description 32
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 31
- 230000008569 process Effects 0.000 description 28
- 239000007787 solid Substances 0.000 description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 239000008367 deionised water Substances 0.000 description 23
- 229910021641 deionized water Inorganic materials 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 23
- 239000001301 oxygen Substances 0.000 description 23
- 229910052760 oxygen Inorganic materials 0.000 description 23
- 239000000428 dust Substances 0.000 description 22
- CKAPSXZOOQJIBF-UHFFFAOYSA-N hexachlorobenzene Chemical compound ClC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl CKAPSXZOOQJIBF-UHFFFAOYSA-N 0.000 description 17
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 15
- 239000001103 potassium chloride Substances 0.000 description 15
- 235000011164 potassium chloride Nutrition 0.000 description 15
- 238000003756 stirring Methods 0.000 description 15
- CEOCDNVZRAIOQZ-UHFFFAOYSA-N pentachlorobenzene Chemical compound ClC1=CC(Cl)=C(Cl)C(Cl)=C1Cl CEOCDNVZRAIOQZ-UHFFFAOYSA-N 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 238000004090 dissolution Methods 0.000 description 11
- 239000011268 mixed slurry Substances 0.000 description 11
- 238000011056 performance test Methods 0.000 description 11
- 229910002651 NO3 Inorganic materials 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 238000004448 titration Methods 0.000 description 9
- 229910004631 Ce(NO3)3.6H2O Inorganic materials 0.000 description 8
- 239000004327 boric acid Substances 0.000 description 8
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910020851 La(NO3)3.6H2O Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 150000001555 benzenes Chemical class 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 7
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 150000001805 chlorine compounds Chemical class 0.000 description 5
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 5
- 150000002823 nitrates Chemical class 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 150000001242 acetic acid derivatives Chemical class 0.000 description 4
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 239000012086 standard solution Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 235000019837 monoammonium phosphate Nutrition 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000012855 volatile organic compound Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000008422 chlorobenzenes Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000002696 manganese Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- GBDZXPJXOMHESU-UHFFFAOYSA-N 1,2,3,4-tetrachlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1Cl GBDZXPJXOMHESU-UHFFFAOYSA-N 0.000 description 1
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910000608 Fe(NO3)3.9H2O Inorganic materials 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- IXWNIYCPCRHGAE-DFZOHVKFSA-N alpha-D-GalNAc-(1->3)-D-Gal Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@H]1[C@@H](O)[C@@H](CO)OC(O)[C@@H]1O IXWNIYCPCRHGAE-DFZOHVKFSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- HPDFFVBPXCTEDN-UHFFFAOYSA-N copper manganese Chemical compound [Mn].[Cu] HPDFFVBPXCTEDN-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 231100001239 persistent pollutant Toxicity 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- PODWXQQNRWNDGD-UHFFFAOYSA-L sodium thiosulfate pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].[O-]S([S-])(=O)=O PODWXQQNRWNDGD-UHFFFAOYSA-L 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical compound [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/16—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/166—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/185—Phosphorus; Compounds thereof with iron group metals or platinum group metals
- B01J27/1853—Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/14—Iron group metals or copper
- B01J29/146—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/48—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B01J35/023—
-
- B01J35/1019—
-
- B01J35/1023—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0036—Grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/009—Preparation by separation, e.g. by filtration, decantation, screening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0213—Preparation of the impregnating solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/28—Phosphorising
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/03—Preparation from chlorides
- C01B7/04—Preparation of chlorine from hydrogen chloride
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/06—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
- F23G7/07—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/20—After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
Definitions
- the present invention belongs to the field of catalysts, and in particular relates to a catalyst for preparing chlorine gas by hydrogen chloride oxidation, especially to a catalyst for preparing chlorine gas by oxidation of hydrogen chloride containing chlorinated benzene, and a preparation method and an application of the catalyst.
- chlorine gas-phosgene-hydrogen chloride open route and are entirely discharged as hydrogen chloride.
- chlorine gas mainly comes from the chlor-alkali industry with high electricity consumption.
- the by-product hydrochloric acid is less valuable as it contains more impurities such as organic substances, and it generates large amounts of waste water during use. Therefore, chlorine gas is prepared through the catalytic oxidation of hydrogen chloride, thereby forming a closed-loop utilization of “chlorine” resources, which has received increasing attention.
- chlorobenzene or o-dichlorobenzene is generally used as a solvent for photochemical reaction.
- the by-product hydrogen chloride often contains tens to one thousand mg/kg of chlorobenzene or o-dichlorobenzene.
- most of these chlorinated benzene impurities are converted into polychlorinated benzenes with high-melting point and high-boiling point, especially hexachlorobenzene and pentachlorobenzene.
- Hexachlorobenzene accounts for more than 80%, hexachlorobenzene and pentachlorobenzene account for more than 95%. These polychlorinated benzenes will gradually accumulate in the heat exchanger behind the reactor, which seriously disturbs the stability of the hydrogen chloride catalytic oxidation process. Moreover, the United Nations has listed hexachlorobenzene as one of the first 12 persistent pollutants (POPs) in the 2001 Sweden Convention, and China's Ministry of Environmental Protection issued an announcement, No. 23 of 2009, that from May 17, 2009, production, circulation, use, import and export of hexachlorobenzene are prohibited in China.
- POPs persistent pollutants
- the common method adopted in the process is to reduce the content of chlorobenzene or o-dichlorobenzene in the raw material hydrogen chloride, by cryogenic separation and adsorption with an adsorbent.
- CN101559374B discloses a bi-functional catalyst and its preparation method and application.
- the disclosed catalyst system is provided with two functions: hydrogen chloride oxidation and deep oxidation of “one or more of cyclohexane, benzene and toluene” volatile pollutants (VOCs).
- VOCs volatile pollutants
- the patent does not explicitly analyze and introduce the products of deep oxidation of VOCs, and whether it is suitable for the oxidation of hydrogen chloride rich in chlorobenzene or o-dichlorobenzene is not described.
- the catalyst is similar to our previous patent CN102000583B in terms of the ability of catalyzing the oxidation of hydrogen chloride rich in chlorobenzene or o-dichlorobenzene, it mainly transforms the impurities, chlorobenzene or o-dichlorobenzene to polychlorinated benzene.
- the present invention provides a novel bi-functional catalyst, which has excellent ability of catalyzing the oxidation reaction of hydrogen chloride while has the ability to catalyze the incineration of chlorobenzene or o-dichlorobenzene.
- One of the objects of the present invention is to provide a catalyst for preparing chlorine gas by hydrogen chloride oxidation.
- Another object of the present invention is to provide a catalyst suitable for preparing chlorine gas by oxidation of hydrogen chloride containing chlorobenzene; the catalyst has a good catalytic activity for oxidation of hydrogen chloride and also has the good catalytic activity for incineration of chlorobenzene.
- the catalyst is especially suitable for the hydrogen chloride raw materials which are rich in chlorobenzene and/or o-dichlorobenzene, and can efficiently carry out catalytic incineration of chlorobenzene and/or o-dichlorobenzene while efficiently converting hydrogen chloride into chlorine gas.
- Another object of the present invention is to provide a preparation method for a catalyst of preparing chlorine gas by hydrogen chloride oxidation.
- the technical solutions of the present invention are as follows:
- a catalyst for preparing chlorine gas by hydrogen chloride oxidation comprising a copper element, a manganese element, a boron element, a chromium element, a rare-earth element, a potassium element, a titanium element, a phosphorus element, an iron element and a carrier.
- the catalyst is obtained after forming in the presence of the aforementioned components and under the action of a binder.
- a copper element, a manganese element, a boron element, a chromium element, a rare-earth element, a potassium element and a titanium element are present in the catalyst in the form of compounds, especially in the form of oxides or metal salts (preferably chlorides); a phosphorous element and an iron element are present in the catalyst in the form of iron phosphate.
- oxide or metal salt mentioned herein does not in particularly refer to a pure compound, but refers to a form of various metals bonded in a certain chemical state to an oxygen element, an anion element of a metal salt (for example, chlorine) and the like by a chemical bond.
- the form can be one oxygen atom or chlorine atom bonded to only one metal atom, or one oxygen atom or chlorine atom bonded to more than one metal atom. And vice versa, one metal atom can be bonded to one, two or more oxygen or chlorine atoms.
- the binder is selected from the group consisting of aluminum sol, activated aluminum oxide, silica sol, kaolin, clay, pseudoboehmite, silicate ester, titanate ester, potassium water glass (potassium silicate) and diatomite, and combinations thereof.
- the binder does not exist in the final catalyst by its original form. Instead, after the calcination treatment of a certain time under a certain temperature, the binder may be present in the catalyst as residues in the forms of possible but not limited to silicon oxide, aluminum oxide, titanium oxide, silicates, aluminates, titanates and other corresponding oxides and salts.
- the mass content of each element in the catalyst is: copper, 0.5-20 wt %, preferably 2-10%; manganese, 2-10 wt %, preferably 2-5 wt %; boron, 0.05-2 wt %, preferably 0.06-1.0 wt %; chromium, 0.01-3.0 wt %, preferably 0.02-2.0 wt %; rare-earth metal, 0.1-10 wt %, preferably 0.5-3.0 wt %; potassium, 0.1-10 wt %, preferably 0.2-2.5 wt %; titanium, 3-15 wt %, preferably 4-14 wt %; and phosphorus, 0.02-1.1 wt %, preferably 0.03-0.50 wt %; iron, 0.03-1.9 wt %, preferably 0.04-1.0 wt %; the content of carrier is 55-90 wt %, preferably 70-
- the carrier is selected from the group consisting of molecular sieves, kaolin, diatomite, silica, alumina, titania, zirconia, activated carbon, silicon carbide, carbon black, carbon fibers and carbon nanotubes, and combinations thereof.
- Various elements can be applied to the carrier in various ways, including but not limited to impregnation, hot melt dispersion and chemical deposition, preferably impregnation.
- the present invention provides a catalyst preparation method for preparing chlorine gas by hydrogen chloride oxidation, which comprises the following steps:
- a copper-containing compound and a manganese-containing compound are dissolved in a solvent.
- the copper-containing compound and the manganese-containing compound described in step (1) generally refer to a copper salt and a manganese salt that are soluble in a solvent such as water or dilute nitric acid and can be, but are not limited to, nitrates, chlorides, acetates.
- a carrier is added to the dissolved copper- and manganese-containing solution.
- the carrier herein may be a molecular sieve, and the specific surface area of the molecular sieve is 300-600 m 2 /g; the average particle size of the molecular sieve is 0.1-10 ⁇ m and the maximum particle size is up to 50 ⁇ m, preferably the average particle size is 0.5-2 ⁇ m and the maximum particle size is up to 10 ⁇ m.
- commonly used molecular sieves such as aluminosilicate molecular sieves, titanium silicalite molecular sieves and pure-silica molecular sieves are all suitable, and these molecular sieves can also be subjected to certain physical and chemical treatments to endue them with some special physical and chemical properties.
- the upper limit of the amount of the solvent is not particularly limited, and the requirement for the lower limit is to allow the copper-containing compound and the manganese-containing compound to be completely dissolved and to allow the added carrier to be completely submerged.
- the solvents such as nitric acid and water should be as little as possible under the premise of fulfilling the above two requirements.
- the NO x produced by nitric acid during a high-temperature treatment pollutes the atmosphere, and water evaporation absorbs a lot of heat.
- the weights of the carrier, the copper-containing compound (calculated according to the content of copper), and the manganese-containing compound (calculated according to the content of manganese) are: 15-100 parts of the carrier, 4-8 parts of the copper-containing compound (calculated according the content of copper), and 1-10 parts of manganese-containing compound (calculated according to the content of manganese), respectively.
- the carrier is thoroughly mixed and infiltrated with the solution, a solid with moisture content up to 10% by weight will be obtained after drying.
- the solid is then calcined.
- the calcination temperature is in the range of 300-650° C., preferably 450-650° C., and the calcination time is 30-120 minutes.
- the calcined solid is cooled and the solid is preferably placed in an environment where the relative humidity is up to 40%, preferably up to 30% when it is cooled.
- the solid is then pulverized in an environment where the relative humidity is up to 40%, preferably up to 30%.
- the finer the powder obtained by pulverization the better. Specifically, the powder with an average particle size of 10-100 ⁇ m and a maximum particle size up to 500 ⁇ m is required. In order to ensure this particle size requirement, the sieving process can be added after pulverization.
- the powder obtained is named Powder A and it is placed in an environment where the relative humidity is up to 40%, preferably up to 30%, and set aside.
- a boron-containing compound, a potassium-containing compound and a rare-earth metal-containing compound are dissolved in a solvent such as water or dilute nitric acid.
- the requirements for the amount of solvent are the same as those in step (1).
- the boron-containing compound described in step (2) is selected from the group consisting of boric acid, sodium borate and potassium borate, and combinations thereof.
- the potassium-containing compound and the rare-earth metal-containing compound generally refer to potassium salts and rare-earth metal salts that are soluble in solvents such as water or dilute nitric acid, and may be, but are not limited to, nitrates, chlorides and acetates.
- the rare-earth metal element is preferably one or both of cerium and lanthanum.
- step (2) the weight contents of the Powder A, the boron-containing compound (calculated according to the content of boron), the potassium-containing compound (calculated according to the content of potassium) and the rare-earth metal-containing compound (calculated according to the content of rare-earth metal) are 50-200 parts of Powder A, 1-2 parts of boron-containing compound (calculated according to the content of boron), 2-10 parts of potassium-containing compound (calculated according to the content of potassium) and 1-10 parts of rare-earth metal-containing compound (calculated according to the content of rare-earth metal), respectively.
- Powder A is sufficiently mixed and infiltrated with the solution, a solid with moisture content up to 10 wt % will be obtained after drying.
- the solid is then calcined.
- the calcination temperature is 300-650° C., preferably 450-650° C.
- the calcination time is 30-120 minutes.
- the calcined solid is cooled and the solid is preferably placed in an environment where the relative humidity is up to 40%, preferably up to 30% when it is cooled.
- the solid is then pulverized under the environment where the relative humidity is up to 40%, preferably up to 30%. The finer the pulverized powder is, the better property the powder gets.
- the average particles size of powder should be 10-100 ⁇ m and the maximum particle size should be up to 500 ⁇ m.
- the sieving process may be added after pulverization.
- the powder obtained is named Powder B and it is placed it in an environment where the relative humidity is up to 40%, preferably up to 30%, and set aside.
- a copper-containing compound, a chromium-containing compound and a manganese-containing compound are dissolved in a solvent such as water or dilute nitric acid.
- the copper-containing compound, the chromium-containing compound and the manganese-containing compounds described in step (3) generally refer to copper salts, chromium salts and manganese salts that are soluble in a solvent (such as water or dilute nitric acid), but they may be, but are not limited to nitrates, chlorides and acetates thereof.
- Titanium dioxide and iron phosphate are added to the solution containing copper, chromium and manganese, and the titanium dioxide is preferably titanium dioxide having an anatase crystal structure.
- the titanium dioxide has an average particle size of 0.1-10 ⁇ m and a maximum particle size up to 50 ⁇ m, preferably an average particle size of 0.2-3 ⁇ m and a maximum particle size up to 15 ⁇ m.
- the upper limit of the amount of solvent is not particularly limited, and the requirement for lower limit requirement is to allow the copper-containing compound, the chromium-containing compound and the manganese-containing compound to be completely dissolved and to allow the added titanium dioxide and iron phosphate to be completely submerged.
- the amount of solvents such as nitric acid and water should be as small as possible on the premise of fulfilling the above two requirements. Because NO x formed from nitric acid during a high-temperature treatment will pollute the atmosphere, and water evaporation will absorbs a large amount of heat.
- the iron phosphate can be synthesized, or purchased from the market.
- the method of synthesis can be, but is not limited to the following: the desired iron (trivalent)-containing compound and phosphorus-containing compound are separately dissolved in water.
- the iron (trivalent)-containing compound mentioned herein generally refers to the iron (trivalent) salts that are soluble in water but it may be, but is not limited to nitrates, chlorides and acetates, preferably nitrates.
- the phosphorus-containing compound mentioned herein generally refers to one, two or three of ammonium phosphate, ammonium hydrogen phosphate and ammonium dihydrogen phosphate; the solution of the phosphorus-containing compound is added to the iron (trivalent)-containing compound during stirring; the ratio of iron element to phosphorus element is not limited. However, in order to reduce waste, preferably the atomic ratios of them are relatively close or even equal.
- the precipitate is taken out and dried to obtain a solid with moisture content up to 5 wt %. The solid is then calcined. In the calcinations process, the calcination temperature is 450-850° C., preferably 550-750° C., and the calcination time is at least 60 minutes.
- the solids in powder forms of a certain degree before calcination In order to ensure the homogeneity of the calcination and reduce the energy loss, it is advantageous to allow the solids in powder forms of a certain degree before calcination.
- the calcined solid is cooled and the solid is preferably placed in an environment where the relative humidity is up to 40%, preferably up to 30% when it is cooled.
- the solid is then pulverized under an environment where the relative humidity is up to 40%, preferably up to 30%.
- the powder is required to have an average particle size of 10-100 ⁇ m and a maximum particle size up to 500 ⁇ m.
- the sieving process may be added after pulverization. Therefore, the powder obtained is an iron phosphate powder, which can be placed in an environment where the relative humidity is up to 40%, preferably up to 30%, and set aside when the powder is not needed temporarily.
- the weights of titanium dioxide, iron phosphate, copper-containing compound (calculated according to the content of copper), chromium-containing compound (calculated according to the content of chromium) and manganese-containing compound (calculated according to the content of manganese) described in step (3) are 50-300 parts of titanium dioxide, 0.1-10 parts of iron phosphate, 0.1-2 parts of copper-containing compound (calculated according to the content of copper), 0.1-2 parts of chromium-containing compound (calculated according to the content of chromium) and 4-30 parts of manganese-containing compound (calculated according to the content of manganese), respectively.
- the calcination temperature is 450-850° C., preferably 550-750° C.
- the calcination time is 60-120 minutes.
- the calcined solid is cooled and the solid is preferably placed in an environment where the relative humidity is up to 40%, preferably up to 30% when it is cooled.
- the solid is then pulverized under an environment where the relative humidity is up to 40%, preferably up to than 30%.
- the finer the powder obtained by pulverization the better. Specifically, the powder with an average particle size of 10-100 ⁇ m and a maximum particle size up to than 500 ⁇ m is required.
- the sieving process may be added after pulverization.
- the powder obtained is named Powder C and it is placed in an environment where the relative humidity is up to 40%, preferably up to 30%, and set aside.
- step (4) Powder B, Powder C, carrier, binder, and a suitable amount of solvent (such as water) are mixed evenly.
- the content by weight of each component in step (4) is 5-30 parts of Powder B, 10-30 parts of Powder C, 10-40 parts of carrier and 10-55 parts of binder (calculated according o the content of the residue after calcination), respectively.
- the suitable amount of solvent such as water
- the solid content of the evenly mixed materials is 20-50 wt %, preferably 25-40 wt %.
- the materials are then dried, calcined, sieved and cooled to obtain the final catalyst product.
- the carrier is selected from the group consisting of molecular sieve, kaolin, diatomite, silica, alumina, titania, zirconia, activated carbon, silicon carbide, carbon black, carbon fiber and carbon nanotubes, and combinations thereof.
- Carriers have an average particle size of 0.1-10 ⁇ m and a maximum particle size up to 50 ⁇ m, preferably an average particle size of 0.2-3 ⁇ m and a maximum particle size up to 15 ⁇ m.
- the binder is selected from the group consisting of aluminum sol, activated aluminum oxide, silica sol, kaolin, clay, pseudoboehmite, silicate ester, titanate, potassium water glass (potassium silicate), diatomite, nitric acid and phosphoric acid, and combinations thereof.
- the viscosity of the evenly mixed material is 1000-30000 mPa ⁇ s, preferably 1100-5000 mPa ⁇ s and particularly preferably 1200-3000 mPa ⁇ s.
- step (4) the materials are dried preferably by spray drying method to obtain a powder with moisture content up to 10 wt %.
- the powder is then quickly sent to a calcinator for calcination.
- the calcination temperature is 300-650° C., preferably 450-550° C.
- the calcination time is 60-180 minutes.
- the calcined powder is cooled, and the powder is preferably placed under an environment where the relative humidity is up to 40%, preferably up to 30% during the cooling process. According to the requirements of the reactor, the cooled powder is sieved to obtain the final catalyst product.
- the catalyst is placed in an environment where the relative humidity is up to 40%, preferably up to 30%, and set aside.
- the present invention also relates to use of the aforementioned catalyst and the catalyst prepared by the aforementioned preparation methods in a method for preparing chlorine gas by oxidizing hydrogen chloride.
- the catalyst of the present invention can be used to oxidize hydrogen chloride to prepare chlorine gas, and it is particularly suitable for oxidizing hydrogen chloride containing chlorobenzene to prepare chlorine gas, more particularly suitable for oxidizing hydrogen chloride containing 0-1000 mg/kg, preferably 100-800 mg/kg of chlorobenzene to prepare chlorine gas, and especially suitable for oxidizing hydrogen chloride containing either or both of 100-800 mg/kg of chlorobenzene or o-dichlorobenzene to prepare chlorine gas.
- the process conditions are as follows: the highest temperature (hot-spot temperature) in the reactor is 320-500° C., preferably 350-450° C., and the space velocity of hydrogen chloride is 0.05-1.0 h ⁇ 1 .
- the molar ratio of hydrogen chloride to oxygen is from 1:1 to 4:1, the reaction pressure is from atmospheric pressure to 5 atmospheric pressure (absolute pressure), and the reaction is conducted in a fluidized bed.
- the conversion rate of hydrogen chloride reaches 80-85%
- the conversion rate of chlorobenzene and/or o-dichlorobenzene is more than 95%
- the concentration of any one or more of trichlorobenzene, tetrachlorobenzene, pentachlorobenzene and hexachlorobenzene in the tail gas of the reaction is less than 5 mg/kg.
- the catalyst of the present invention can achieve a one-way hydrogen chloride conversion rate of 80-85% in the preparation of chlorine gas by hydrogen chloride oxidation.
- a one-way hydrogen chloride conversion rate 80-85% in the preparation of chlorine gas by hydrogen chloride oxidation.
- For the 0-1000 mg/kg of chlorobenzene contained in hydrogen chloride gas almost all of the chlorobenzene can be converted to CO 2 and H 2 O without generating polychlorinated benzene.
- the problem that the process stability is influenced by the accumulation of polychlorinated benzene with a high-boiling temperature in the heat exchanger can be effectively solved.
- a 250 mL sampling bottle is displaced with the sample gas to be tested for 3 minutes (the gas enters from the bottom and is discharged from the top) to ensure that there are no impurities in the sample bottle.
- the sample gas in the sample bottle sufficiently reacts with KI.
- Cl 2 in the sample gas reacts with KI to form I 2 (dissolves in the form of I 3- in the absorption liquid; if I 2 precipitation occurs, the accuracy of the result is likely to be poor and resampling is required), after HCl is absorbed, aqueous hydrochloric acid is formed. Then titration is carried out.
- a represents the concentration of Na 2 S 2 O 3 solution, mol/L
- b represents the volume of Na 2 S 2 O 3 solution consumed by titration, mL;
- c represents the concentration of NaOH standard solution, mol/L
- d represents the volume of NaOH standard solution consumed by titration, mL.
- Test method for the content and conversion rate of chlorobenzene/o-dichlorobenzene in hydrogen chloride is as follows:
- Hydrochloric acid containing chlorobenzene/o-dichlorobenzene is adsorbed on an activated carbon packed column, and then the activated carbon is placed in warm ethanol to desorb chlorobenzene/o-dichlorobenzene.
- concentration of chlorobenzene/o-dichlorobenzene in ethanol is determined by gas chromatography; the total amount of chlorobenzene/o-dichlorobenzene can then be calculated.
- the ratio between the total amount of chlorobenzene/o-dichlorobenzene and the total amount of hydrogen chloride entering into the activated carbon packed column is the content of chlorobenzene/o-dichlorobenzene in hydrogen chloride.
- a 100 ml empty glass column is taken and filled with at least 60 ml of activated carbon particles.
- the hydrogen chloride gas containing chlorobenzene/o-dichlorobenzene at a flow rate F is passed through an activated carbon packed column, duration time is t.
- F is generally controlled at 10-100 ml/min, and t is generally controlled at 20-40 minutes.
- C 1 represents the content of chlorobenzene/o-dichlorobenzene in hydrogen chloride after the reaction
- C 0 represents the content of chlorobenzene/o-dichlorobenzene in hydrogen chloride before the reaction
- the powder particle size is measured using a HELOS/BF laser particle sizer, Sympatec, Germany.
- the mixture was continuously stirred, and a small spoon was used to sample several times to observe the slurry. If the slurry was not evenly distributed, stir was continued. If the slurry was uniform, the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled, ground to obtain 104.6 kg of Powder A. The obtained Powder A was placed in an environment with 28% of relative humidity for later use. The powder was marked as Powder A-1. The average particle size of Powder A-1 was 28 ⁇ m (HELOS/BF laser particle sizer, Sympatec, Germany).
- the mixture was continuously stirred, and a small spoon was used to sample several times to observe the slurry. If the slurry was not evenly distributed, stir was continued. If the slurry was uniform, the slurry was then fed into a centrifugal spray drying tower by using a twin-screw pump, at a rate of 15 L/h. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled, ground to obtain 95.4 kg of Powder A. The obtained Powder A was placed under an environment with 28% of relative humidity, and set aside. The powder was marked as Powder A-2. The average particle size of Powder A-2 was 35 ⁇ m.
- the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled, suitably ground to obtain 101.3 kg of Powder A. The obtained Powder A was placed under an environment with 28% of relative humidity, and set aside. The powder was marked as Powder A-3. The average particle size of Powder A-3 was 30 ⁇ m.
- the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump.
- the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled to obtain 24.2 kg of Powder B.
- the obtained Powder B was placed in an environment with 28% of relative humidity for later use.
- the powder was marked as Powder B-11.
- the average particle size of Powder B-11 was 45 ⁇ m.
- the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled to obtain 29.6 kg of Powder B. The obtained Powder B was placed in an environment with 28% of relative humidity, and set aside. The powder was marked as Powder B-12. The average particle size of Powder B-12 was 48 ⁇ m.
- the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled to obtain 23.5 kg of Powder B. The obtained Powder B was placed in an environment with 28% of relative humidity for later use. The powder was marked as Powder B-21. The average particle size of Powder B-21 was 42 ⁇ m.
- the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled to obtain 29.6 kg of Powder B. The obtained Powder B was placed in an environment with 28% of relative humidity, and set aside. The powder was marked as Powder B-22. The average particle size of Powder B-22 was 40 ⁇ m.
- the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled to obtain 24.2 kg of Powder B. The obtained Powder B was placed in an environment with 28% of relative humidity, and set aside. The powder was marked as Powder B-31. The average particle size of Powder B-31 was 52 ⁇ m.
- the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 500° C., and the calcination time was about 1 hour, then the calcined materials were cooled to obtain 29.6 kg of Powder B. The obtained Powder B was placed in an environment with 28% of relative humidity, and set aside. The powder was marked as Powder B-32. The average particle size of Powder B-32 was 47 ⁇ m.
- the heating rate of the muffle furnace was 2° C./min and the calcination temperature was 600° C.
- the calcination time was about 1 hour, then the calcined materials were cooled to obtain 2.0 kg of iron phosphate powder, the power was placed in an environment with 28% of relative humidity for later use.
- the mixture was stirred continuously, and a small spoon was used to sample several times to observe the slurry. If the slurry was not evenly distributed, stir was continued. If the slurry was uniform, the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 600° C., and the calcination time was about 1 hour, then the calcined materials were cooled to obtain 10.5 kg of Powder C. The Powder C was placed in an environment with 28% of relative humidity for later use. The powder was marked as Powder C-1. The average particle size of Powder C-1 was 25 ⁇ m.
- the mixture was stirred continuously, and a small spoon was used to sample several times to observe the slurry. If the slurry was not evenly distributed, stir was continued. If the slurry was uniform, the slurry was then fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a muffle furnace. The heating rate of the muffle furnace was 2° C./min, the calcination temperature was 600° C., and the calcination time was about 1 hour, then the calcined materials were cooled to obtain 14.2 kg of Powder C. The Powder C was placed in an environment with 28% of relative humidity for later use. The powder was marked as Powder C-2. The average particle size of Powder C-2 was 18 ⁇ m.
- the viscosity of the slurry was determined to be 2362 mPa ⁇ s.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump.
- the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 8.3 kg of catalyst product was obtained.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 9.1 kg of catalyst product was obtained.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 12.2 kg of catalyst product was obtained.
- the average conversion rate of HCl was measured to be 84.7%, the average conversion rate of o-dichlorobenzene was 98.3%, 119 mg of hexachlorobenzene and 8 mg of pentachlorobenzene were collected.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 7.3 kg of catalyst product was obtained.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 10.2 kg of catalyst product was obtained.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 10.1 kg of catalyst product was obtained.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 12.5 kg of catalyst product was obtained.
- the average conversion rate of HCl was measured to be 82.6%, the average conversion rate of o-dichlorobenzene was 98.1%, 360 mg of hexachlorobenzene and 48 mg of pentachlorobenzene were collected.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 11.6 kg of catalyst product was obtained.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 8.6 kg of catalyst product was obtained.
- the temperature of the materials during the entire mixing process was controlled at 35-40° C. 30 minutes later, the viscosity of the slurry was determined to be 1362 mPa ⁇ s.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 7.3 kg of catalyst product was obtained.
- the average conversion rate of HCl was measured to be 79.2%, the average conversion rate of chlorobenzene was 96.4%, 5.72 g of hexachlorobenzene, 809 mg of pentachlorobenzene and 140 mg of other chlorobenzenes were collected.
- the mixed slurry was fed into a centrifugal spray drying tower at a rate of 15 L/h using a twin-screw pump. Following the spray drying tower, the materials were collected using a cyclone separator and a bag-type dust collector. All the collected materials were calcined in a small-scale rotary kiln. The heating rate of the materials was 3° C./min, the maximum calcination temperature was 500° C., and the residence time of the materials in the high temperature section was approximately 3 hours. Finally, 4.5 kg of catalyst product was obtained.
- the average conversion rate of HCl was measured to be 78.8%, the average conversion rate of chlorobenzene was 93.2%, 3.25 g of hexachlorobenzene, 461 mg of pentachlorobenzene and 54 mg of other chlorobenzenes were collected.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
Abstract
Description
Cl2+2KI=2KCl+I2
I2+2Na2S2O3=2NaI+Na2S4O6
HCl+NaOH=NaCl+H2O
Compositions of the catalysts/wt % |
Rare | ||||||||||
Examples | Cu | Mn | B | Cr | earth | K | Ti | P | Fe | Carrier |
Example 1 | 3.09 | 3.64 | 0.15 | 0.29 | 0.59 | 0.59 | 10.26 | 0.15 | 0.26 | 80.99 |
Example 2 | 3.04 | 3.17 | 0.16 | 0.05 | 0.63 | 0.63 | 13.15 | 0.14 | 0.25 | 78.78 |
Example 3 | 1.19 | 2.87 | 0.23 | 0.29 | 1.17 | 0.93 | 10.27 | 0.15 | 0.26 | 82.64 |
Example 4 | 2.05 | 2.30 | 0.52 | 0.03 | 2.61 | 2.07 | 9.96 | 0.11 | 0.19 | 80.14 |
Example 5 | 1.31 | 3.88 | 0.08 | 0.38 | 0.33 | 0.33 | 13.74 | 0.20 | 0.35 | 79.39 |
Example 6 | 0.83 | 2.19 | 0.34 | 0.04 | 1.71 | 1.36 | 11.76 | 0.13 | 0.23 | 81.42 |
Example 7 | 3.58 | 3.23 | 0.10 | 0.04 | 0.41 | 0.40 | 12.84 | 0.14 | 0.25 | 79.00 |
Example 8 | 5.68 | 3.93 | 0.16 | 0.04 | 0.65 | 0.64 | 12.27 | 0.13 | 0.24 | 76.27 |
Example 9 | 2.95 | 4.45 | 0.36 | 0.40 | 1.79 | 1.41 | 14.34 | 0.20 | 0.37 | 73.72 |
Claims (20)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610625612.9 | 2016-08-03 | ||
CN201610625612.9A CN107684927B (en) | 2016-08-03 | 2016-08-03 | Catalyst for preparing chlorine by hydrogen chloride oxidation and preparation method and application thereof |
PCT/CN2016/093559 WO2018023717A1 (en) | 2016-08-03 | 2016-08-05 | Catalyst for preparing chlorine by hydrogen chloride oxidation, and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190291087A1 US20190291087A1 (en) | 2019-09-26 |
US11000837B2 true US11000837B2 (en) | 2021-05-11 |
Family
ID=61073308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/306,363 Active 2036-11-18 US11000837B2 (en) | 2016-08-03 | 2016-08-05 | Catalyst for preparing chlorine gas by hydrogen chloride oxidation, and preparation method and application thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US11000837B2 (en) |
EP (1) | EP3450014B1 (en) |
CN (1) | CN107684927B (en) |
HU (1) | HUE064451T2 (en) |
WO (1) | WO2018023717A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109821571B (en) * | 2019-03-15 | 2021-09-17 | 西安近代化学研究所 | Preparation method of high-activity hydrogen chloride oxidation catalyst |
CN110449147B (en) * | 2019-08-09 | 2023-03-31 | 万华化学(福建)有限公司 | Catalyst for phosgene synthesis and preparation method and application thereof |
CN111252737A (en) * | 2020-01-19 | 2020-06-09 | 无锡玖汇科技有限公司 | Solid reactant for preparing chlorine in situ by hydrochloric acid |
CN113135552B (en) * | 2020-01-19 | 2023-02-07 | 中南大学 | Method for preparing chlorine by catalytic oxidation of hydrogen chloride |
US20230294988A1 (en) * | 2020-05-29 | 2023-09-21 | Basf Se | Catalyst for hydrogen chloride oxidation and production thereof |
CN113368848B (en) * | 2021-06-30 | 2023-03-24 | 山西大学 | Catalyst for catalytic oxidation and low-temperature degradation of chlorobenzene and preparation and use methods thereof |
CN115350707B (en) * | 2022-08-08 | 2024-03-26 | 中国科学院青岛生物能源与过程研究所 | Application of copper-lanthanum alloy catalyst in preparing chlorine by hydrogen chloride oxidation |
CN115999607B (en) * | 2022-12-19 | 2024-08-20 | 浙江工业大学 | Preparation method and application of hydrogen chloride catalytic oxidation catalyst |
CN116212932B (en) * | 2023-05-10 | 2023-07-28 | 四川大学 | Catalyst for catalytic combustion degradation of CVOCs, and preparation method and application thereof |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5094990A (en) * | 1989-06-23 | 1992-03-10 | Nitto Chemical Industry Co., Ltd. | Iron-antimony-phosphorus-containing metal oxide catalyst for oxidation |
US5132269A (en) * | 1990-09-10 | 1992-07-21 | Nitto Chemical Industry Co., Ltd. | Iron-antimony-molybdenum-containing oxide catalyst composition and process for preparing the same |
US5182249A (en) * | 1990-10-22 | 1993-01-26 | East China University Of Chemical Technology | Non-precious metal three way catalyst |
US5380692A (en) * | 1991-09-12 | 1995-01-10 | Sakai Chemical Industry Co., Ltd. | Catalyst for catalytic reduction of nitrogen oxide |
US6033632A (en) * | 1993-12-08 | 2000-03-07 | Eltron Research, Inc. | Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them |
US6569803B2 (en) * | 2000-01-19 | 2003-05-27 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying exhaust gas |
US6653496B1 (en) * | 1999-10-18 | 2003-11-25 | Mitsubishi Rayon Co., Ltd. | Method for producing acrylonitrile, catalyst for use therein and method for preparing the same |
US20040031730A1 (en) * | 2002-08-13 | 2004-02-19 | Gislason Jason J. | Desulfurization and novel composistions for same |
US20040248734A1 (en) * | 2001-10-11 | 2004-12-09 | Kenichi Miyaki | Method for producing ammoxidation catalyst |
US20060199730A1 (en) * | 2005-03-02 | 2006-09-07 | Seely Michael J | Composition and method for improving density and hardness of fluid bed catalysts |
US7229945B2 (en) * | 2003-12-19 | 2007-06-12 | Saudi Basic Industrics Corporation | Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins |
US20070249496A1 (en) * | 2002-03-28 | 2007-10-25 | Wagner Jon P | Catalyst for Production of Hydrogen |
US7288669B2 (en) * | 2001-04-12 | 2007-10-30 | Rohm And Haas Company | NOx treated mixed metal oxide catalyst |
CN101125297A (en) | 2007-09-03 | 2008-02-20 | 清华大学 | Oxychlorination catalyst and application thereof |
CN101559374A (en) | 2009-05-27 | 2009-10-21 | 南京工业大学 | Bifunctional catalyst and preparation method and application thereof |
US20090292153A1 (en) * | 2008-05-20 | 2009-11-26 | Nova Chemicals (International) S.A | Oxydative dehydrogenation of paraffins |
WO2010076262A1 (en) | 2008-12-30 | 2010-07-08 | Basf Se | Catalyst for hydrogen chloride oxidation containing ruthenium and nickel |
US20100202959A1 (en) * | 2007-07-13 | 2010-08-12 | Bayer Technology Services Gmbh | Catalyst and process for preparing chlorine by gas phase oxidation of hydrogen chloride |
US7807600B2 (en) * | 2003-04-18 | 2010-10-05 | Dia-Nitrix Co., Ltd. | Catalyst for acrylonitrile synthesis |
US20100266481A1 (en) * | 2006-05-23 | 2010-10-21 | Bayer Material Science Ag | Processes for the oxidation of a gas containing hydrogen chloride |
US7902112B2 (en) * | 2006-10-26 | 2011-03-08 | Dia-Nitrix Co., Ltd. | Fluidized bed catalyst for producing acrylonitrile and process for producing acrylonitrile |
CN102000583A (en) | 2010-11-18 | 2011-04-06 | 烟台万华聚氨酯股份有限公司 | Catalyst for preparing chlorine by oxidizing hydrogen chloride and preparation method thereof |
US20110105630A1 (en) * | 2009-11-04 | 2011-05-05 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Catalytic Support for use in Carbon Dioxide Hydrogenation Reactions |
US8721997B2 (en) * | 2006-06-27 | 2014-05-13 | Basf Se | Reactor for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated |
US8721996B2 (en) * | 2005-12-21 | 2014-05-13 | Basf Se | Reactor for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated |
US20150111729A1 (en) * | 2011-12-16 | 2015-04-23 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Exhaust gas treatment catalyst |
CN104549360A (en) | 2014-04-01 | 2015-04-29 | 上海方纶新材料科技有限公司 | Catalyst for producing chlorine by catalytic oxidation of hydrogen chloride |
CN104785271A (en) | 2014-01-21 | 2015-07-22 | 万华化学集团股份有限公司 | Preparation method of catalyst used for chlorine preparation, catalyst, and method used for preparing chlorine |
CN105126930A (en) | 2015-08-28 | 2015-12-09 | 烟台大学 | Preparing method of catalyst carrier and application of preparing method in hydrogen chloride catalytic oxidation |
US20160175818A1 (en) * | 2014-07-09 | 2016-06-23 | Lg Chem, Ltd. | High performance polyoxometal catalyst and method for producing the same |
US20190009252A1 (en) * | 2016-01-09 | 2019-01-10 | Ascend Performance Materials Operations Llc | Catalyst compositions and process for direct production of hydrogen cyanide in an acrylonitrile reactor feed stream |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101199885A (en) * | 2007-12-18 | 2008-06-18 | 华东理工大学 | Method for easy volatility Cl generation aromatic low temperature catalyst burning eliminable |
CN102580762B (en) * | 2012-02-17 | 2014-04-30 | 武汉工程大学 | Cerium-titanium-manganese-iron catalyst and preparation method and application thereof |
CN103894200B (en) * | 2014-04-22 | 2016-06-08 | 华东理工大学 | The method of many chlorination aromatic hydrocarbons low-temperature catalytic burning elimination and catalyst |
CN104530709A (en) * | 2014-12-16 | 2015-04-22 | 惠州力王佐信科技有限公司 | Metal reinforced organic silicon heat conducting material and preparation method thereof |
-
2016
- 2016-08-03 CN CN201610625612.9A patent/CN107684927B/en active Active
- 2016-08-05 HU HUE16911312A patent/HUE064451T2/en unknown
- 2016-08-05 US US16/306,363 patent/US11000837B2/en active Active
- 2016-08-05 WO PCT/CN2016/093559 patent/WO2018023717A1/en unknown
- 2016-08-05 EP EP16911312.3A patent/EP3450014B1/en active Active
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5094990A (en) * | 1989-06-23 | 1992-03-10 | Nitto Chemical Industry Co., Ltd. | Iron-antimony-phosphorus-containing metal oxide catalyst for oxidation |
US5132269A (en) * | 1990-09-10 | 1992-07-21 | Nitto Chemical Industry Co., Ltd. | Iron-antimony-molybdenum-containing oxide catalyst composition and process for preparing the same |
US5182249A (en) * | 1990-10-22 | 1993-01-26 | East China University Of Chemical Technology | Non-precious metal three way catalyst |
US5380692A (en) * | 1991-09-12 | 1995-01-10 | Sakai Chemical Industry Co., Ltd. | Catalyst for catalytic reduction of nitrogen oxide |
US6033632A (en) * | 1993-12-08 | 2000-03-07 | Eltron Research, Inc. | Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them |
US6653496B1 (en) * | 1999-10-18 | 2003-11-25 | Mitsubishi Rayon Co., Ltd. | Method for producing acrylonitrile, catalyst for use therein and method for preparing the same |
US6569803B2 (en) * | 2000-01-19 | 2003-05-27 | Toyota Jidosha Kabushiki Kaisha | Catalyst for purifying exhaust gas |
US7288669B2 (en) * | 2001-04-12 | 2007-10-30 | Rohm And Haas Company | NOx treated mixed metal oxide catalyst |
US20040248734A1 (en) * | 2001-10-11 | 2004-12-09 | Kenichi Miyaki | Method for producing ammoxidation catalyst |
US7365041B2 (en) | 2001-10-11 | 2008-04-29 | Dia-Nitrix Co., Ltd. | Method for producing ammoxidation catalyst |
US20070249496A1 (en) * | 2002-03-28 | 2007-10-25 | Wagner Jon P | Catalyst for Production of Hydrogen |
US20040031730A1 (en) * | 2002-08-13 | 2004-02-19 | Gislason Jason J. | Desulfurization and novel composistions for same |
US7807600B2 (en) * | 2003-04-18 | 2010-10-05 | Dia-Nitrix Co., Ltd. | Catalyst for acrylonitrile synthesis |
US7229945B2 (en) * | 2003-12-19 | 2007-06-12 | Saudi Basic Industrics Corporation | Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins |
US20060199730A1 (en) * | 2005-03-02 | 2006-09-07 | Seely Michael J | Composition and method for improving density and hardness of fluid bed catalysts |
US8721996B2 (en) * | 2005-12-21 | 2014-05-13 | Basf Se | Reactor for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated |
US20100266481A1 (en) * | 2006-05-23 | 2010-10-21 | Bayer Material Science Ag | Processes for the oxidation of a gas containing hydrogen chloride |
US8721997B2 (en) * | 2006-06-27 | 2014-05-13 | Basf Se | Reactor for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated |
US7902112B2 (en) * | 2006-10-26 | 2011-03-08 | Dia-Nitrix Co., Ltd. | Fluidized bed catalyst for producing acrylonitrile and process for producing acrylonitrile |
US20100202959A1 (en) * | 2007-07-13 | 2010-08-12 | Bayer Technology Services Gmbh | Catalyst and process for preparing chlorine by gas phase oxidation of hydrogen chloride |
CN101125297A (en) | 2007-09-03 | 2008-02-20 | 清华大学 | Oxychlorination catalyst and application thereof |
US20090292153A1 (en) * | 2008-05-20 | 2009-11-26 | Nova Chemicals (International) S.A | Oxydative dehydrogenation of paraffins |
WO2010076262A1 (en) | 2008-12-30 | 2010-07-08 | Basf Se | Catalyst for hydrogen chloride oxidation containing ruthenium and nickel |
US20110268649A1 (en) | 2008-12-30 | 2011-11-03 | Basf Se | Catalyst comprising ruthenium and nickel for the oxidation of hydrogen chloride |
CN101559374A (en) | 2009-05-27 | 2009-10-21 | 南京工业大学 | Bifunctional catalyst and preparation method and application thereof |
US20110105630A1 (en) * | 2009-11-04 | 2011-05-05 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Catalytic Support for use in Carbon Dioxide Hydrogenation Reactions |
US20130288884A1 (en) | 2010-11-18 | 2013-10-31 | Ningbo Wanhua Polyurethanes Co., Ltd. | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof |
EP2481478A1 (en) | 2010-11-18 | 2012-08-01 | Yantai Wanhua Polyurethanes Co., Ltd. | Catalyst for preparing chlorine by oxidation of hydrogen chloride and preparation thereof |
CN102000583A (en) | 2010-11-18 | 2011-04-06 | 烟台万华聚氨酯股份有限公司 | Catalyst for preparing chlorine by oxidizing hydrogen chloride and preparation method thereof |
US20150111729A1 (en) * | 2011-12-16 | 2015-04-23 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Exhaust gas treatment catalyst |
CN104785271A (en) | 2014-01-21 | 2015-07-22 | 万华化学集团股份有限公司 | Preparation method of catalyst used for chlorine preparation, catalyst, and method used for preparing chlorine |
US20170001178A1 (en) | 2014-01-21 | 2017-01-05 | Wanhua Chemical Group Co., Ltd. | Method for preparing catalyst used for preparing chlorine, catalyst and method for preparing chlorine |
CN104549360A (en) | 2014-04-01 | 2015-04-29 | 上海方纶新材料科技有限公司 | Catalyst for producing chlorine by catalytic oxidation of hydrogen chloride |
US20160175818A1 (en) * | 2014-07-09 | 2016-06-23 | Lg Chem, Ltd. | High performance polyoxometal catalyst and method for producing the same |
CN105126930A (en) | 2015-08-28 | 2015-12-09 | 烟台大学 | Preparing method of catalyst carrier and application of preparing method in hydrogen chloride catalytic oxidation |
US20190009252A1 (en) * | 2016-01-09 | 2019-01-10 | Ascend Performance Materials Operations Llc | Catalyst compositions and process for direct production of hydrogen cyanide in an acrylonitrile reactor feed stream |
Non-Patent Citations (2)
Title |
---|
Extended European Search Report including Written Opinion for Application No. 16911312.3 dated Nov. 8, 2019, 10 pages. |
International Search Report PCT/CN2016/093559 dated Mar. 1, 2017. |
Also Published As
Publication number | Publication date |
---|---|
US20190291087A1 (en) | 2019-09-26 |
EP3450014A4 (en) | 2019-12-11 |
CN107684927B (en) | 2020-07-28 |
EP3450014A1 (en) | 2019-03-06 |
HUE064451T2 (en) | 2024-03-28 |
EP3450014B1 (en) | 2023-10-04 |
CN107684927A (en) | 2018-02-13 |
WO2018023717A1 (en) | 2018-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11000837B2 (en) | Catalyst for preparing chlorine gas by hydrogen chloride oxidation, and preparation method and application thereof | |
CN101318700B (en) | Bismuth vanadate powder and preparation method thereof | |
Wang et al. | Crystal phase-controlled synthesis of BiPO4 and the effect of phase structure on the photocatalytic degradation of gaseous benzene | |
Luo et al. | Cobalt‐doped biogenic manganese oxides for enhanced tetracycline degradation by activation of peroxymonosulfate | |
CN104785271B (en) | Preparation method of catalyst used for chlorine preparation, catalyst, and method used for preparing chlorine | |
CN104437355B (en) | Preparation method of CuO-CeO 2/FAU desulfurizer based on fly ash | |
CN108525697A (en) | A kind of alkalinity high-dispersion loading type Pt base nano-catalysts and its preparation and application | |
CN104248979B (en) | The preparation method of sphericity mesoporous silicon dioxide complex carrier and Catalysts and its preparation method and application and ethyl acetate | |
CN109985655B (en) | Preparation method and application of red mud-based composite photocatalyst | |
CN104248989B (en) | The preparation method of spherical mesoporous meerschaum complex carrier and Catalysts and its preparation method and application and ethyl acetate | |
CN106622316B (en) | A kind of vanadium-phosphor oxide catalyst, preparation method and application | |
Yuan et al. | High-alumina fly ash as sustainable aluminum sources for the in situ preparation of Al-based eco-MOFs | |
CN113856749B (en) | Samarium-based CHA molecular sieve catalyst and application thereof | |
CN102380404A (en) | Catalyst used for producing promoter N-cyclohexyl benzothiazole sulfonamide and its preparation method | |
CN106622315B (en) | A kind of vanadium phosphorus oxide and preparation method thereof | |
CN102335601B (en) | SCR (Silicon Controlled Rectifier) denitration catalyst with mesostructured cellular foam structure and preparation method thereof | |
CN107552062B (en) | Cheap denitration catalyst and preparation method thereof | |
Inoue et al. | Z-scheme heterojunction of graphitic carbon nitride and calcium ferrite in converter slag for the photocatalytic imidacloprid degradation and hydrogen evolution | |
CN100450608C (en) | Heavy metal resistant catalytic cracking auxiliary agent and preparation method thereof | |
CN109806881A (en) | A kind of iron-molybdic catalyst and preparation method thereof for prepn. of formaldehyde by oxidation of methanol | |
CN105727954B (en) | A kind of preparation method of synthesis gas preparing natural gas catalyst | |
CN101433857B (en) | Method for preparing rare-earth ultra-steady Y molecular sieve | |
CN111054422B (en) | Composite photocatalyst and preparation method and application thereof | |
CN102295581A (en) | Method for preparing 3,4-dichlorobenzonitrile by ammonia oxidation | |
CN110586178A (en) | SAPO-34 molecular sieve and Cu/SAPO-34 denitration catalyst, preparation method and application thereof, and denitration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
AS | Assignment |
Owner name: WANHUA CHEMICAL GROUP CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, HONGKE;ZHOU, BO;ZAI, ZHANGWEI;AND OTHERS;REEL/FRAME:053859/0507 Effective date: 20181108 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |