US10877254B2 - Light sheet microscope for simultaneously imaging a plurality of object planes - Google Patents

Light sheet microscope for simultaneously imaging a plurality of object planes Download PDF

Info

Publication number
US10877254B2
US10877254B2 US15/744,877 US201615744877A US10877254B2 US 10877254 B2 US10877254 B2 US 10877254B2 US 201615744877 A US201615744877 A US 201615744877A US 10877254 B2 US10877254 B2 US 10877254B2
Authority
US
United States
Prior art keywords
light sheet
detection
microlens array
light
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/744,877
Other versions
US20180203217A1 (en
Inventor
Werner Knebel
Florian Fahrbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems CMS GmbH filed Critical Leica Microsystems CMS GmbH
Assigned to LEICA MICROSYSTEMS CMS GMBH reassignment LEICA MICROSYSTEMS CMS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KNEBEL, WERNER, FAHRBACH, FLORIAN
Publication of US20180203217A1 publication Critical patent/US20180203217A1/en
Application granted granted Critical
Publication of US10877254B2 publication Critical patent/US10877254B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison

Definitions

  • the invention is in the field of light sheet microscopy, and relates in particular to a light sheet microscope with which more information about an object can be obtained for a given light efficiency, or increased light efficiency can be made available for a given information content.
  • the invention further relates to a method on the basis of said light sheet microscope.
  • Light sheet microscopy or light sheet fluorescence microscopy (LSFM), or single plane illumination microscopy (SPIM), is a fluorescence microscopy method in which only a thin layer (typically a few micrometers) in a sample is illuminated. This results in better resolution and appreciably decreased image background as compared with conventional incident- or transmitted-light fluorescence microscopy. Negative effects due to bleaching or light-induced stress in biological samples are furthermore diminished.
  • Light sheet microscopy is used in cell biology, for fluorescence investigations of living organisms and, in the field of developmental biology, for long-term observations of embryo development in model organisms (developmental biology).
  • the plane to be detected is illuminated from the side with a thin light beam in the shape of a light sheet.
  • the “depth of focus” is to be understood in this context as the distance along the illumination axis over which the thickness of the light sheet remains approximately the same, or exceeds the thickness at the “waist” of the beam only by a factor of ⁇ 2. This therefore also limits the maximum size of an object or objects that can be imaged with good image quality through the detection objective of the microscope and onto a sensor. Because the thickness of the light sheet directly determines both image contrast and the resolution along the detection axis, it should therefore be as thin as possible.
  • the thickness of the light sheet is desirable in particular for the thickness of the light sheet to be smaller than the depth of focus of the detection objective in order to avoid unsharp imaging of portions of the object.
  • Many developers have therefore concentrated their efforts in recent years on reducing the (effective) thickness of the light sheet for a given depth of focus; this is only possible with considerable technical complexity, however, and moreover almost always results in greater sample stress due to the light sheet.
  • FIG. 1 a shows a large sample that is being illuminated, through an illumination optic 2 , with a light sheet 1 whose thickness exceeds the depth of focus of a detection optic 3 .
  • a portion of the illuminated region is therefore imaged via a tube lens 4 unsharply onto a camera 5 .
  • a thinner light sheet 1 b results in a smaller depth of focus and a greater convergence and divergence, so that only smaller image fields can be viewed with higher resolution and higher contrast.
  • One solution is to increase the depth of focus of the detection optic by stopping down (reducing the numerical aperture). The result, however, is that resolution is lost, in particular in the form of information regarding the position of objects along the detection axis, i.e. depth information.
  • the present invention provides a light sheet microscope for simultaneous imaging of several object planes illuminated by a light sheet.
  • the light sheet microscope includes a camera and a detection optic defining a detection light beam between the light sheet and the camera.
  • the object planes are arranged around the focal plane of the detection optic.
  • FIGS. 1 a and 1 b show the principle of a conventional light sheet microscope with a light sheet of different thicknesses
  • FIG. 2 shows the principle of the light sheet microscope according to an embodiment of the present invention
  • FIG. 3 shows different beam profiles of the illumination beam generated by the illumination optic of the light sheet microscope of FIG. 2 ;
  • FIGS. 4 a and 4 b show images of three object planes generated with the camera of the light sheet microscope of FIG. 2 through its detection optic and its microlens array;
  • FIG. 5 shows an embodiment of the light sheet microscope according to the present invention with a light sheet that is movable through a sample perpendicularly to the image field dimension;
  • FIG. 6 shows an embodiment of the light sheet microscope according to the present invention having a beam splitter configuration, comprising a beam splitter or hinged mirror, in the detection beam path in order to generate two detection paths leading to different cameras;
  • FIG. 7 shows an embodiment of the light sheet microscope according to the present invention having a beam splitter configuration, comprising a beam splitter or hinged mirror, in the detection beam path in order to generate two detection paths leading to the same sensor;
  • FIGS. 8 a and 8 b schematically illustrate the arrangement of a microlens array in an optical beam path
  • FIG. 9 schematically illustrates the arrangement of a microlens array in an optical beam path.
  • Embodiments of the present invention provide a light sheet microscope, and a method for operating it, which ensure particularly effective utilization of the excited fluorescence without reducing the thickness of the illumination beam and thus its depth of focus.
  • a further advantage is to obtain as much depth information as possible regarding the object or objects.
  • the invention creates a light sheet microscope having a means for simultaneous imaging of several object planes, illuminated by means of a light sheet, by a camera, having a detection optic defining a detection beam path between the light sheet and the camera, the object planes being arranged around the focal plane of the detection optic.
  • an embodiment of the present invention draws upon light sheet technology, an optical means that furnishes object data simultaneously from several planes of an object being placed between a detection lens and a camera, from which data it is then possible to obtain, in a post-processing unit, sharp images of the several object planes that end up being located around the focal plane of the detection optic.
  • An embodiment of the present invention thus on the one hand achieves a significant increase in depth information for a given light efficiency, or an increase in light efficiency for a given quantity of depth information.
  • simultaneous imaging of several planes is made possible; this is advantageous or in fact necessary for many dynamic processes, in particular if events in different planes are to be correlated with one another.
  • the light sheet microscope according to an embodiment of the present invention thus allows simultaneous imaging of large volumes at increased speed and is thus particularly suitable for applications such as tracking of organelles in living cells and observation of extremely fast processes, in which serial scanning of the adjacent planes, for example by moving the object, the light sheet, and thus the detection objective synchronously, and/or internal focusing, is either impossible or undesirable.
  • the light sheet technique has hitherto been used exclusively paired with wide-field illumination, e.g. by Prevedel et al. and by Broxton et al. Because of the wide-field illumination, the images of thick samples exhibit only very low contrast when the fluorescence in the object extends over several tens of times the depth of focus along the detection axis.
  • MFM multi-focus microscopy
  • US 2015/0177506 A1 describes a method that is related to the light field technique. This method utilizes illumination of the sample with a ray bundle from the side. The components coming from different spatial angles are filtered via a displaceable aperture diaphragm in the pupil of the detection objective. This has the disadvantage of sequential imaging of the various sample portions, whereas highly parallelized (“single shot”) image acquisition is preferred in a light field microscope.
  • Skupsch et al. have presented an apparatus for particle imaging velocimetry (PIV) in which the sample is illuminated from the side with several light sheets through a cylindrical lens, and detection is carried out via a microlens array and reconstruction in accordance with the light field technique.
  • PV particle imaging velocimetry
  • a microlens array which is preferably integrated into the camera, is arranged in the beam path between the detection optic and the camera.
  • the microlens array is arranged with reference to the beam path at a distance in front of the camera. This distance is preferably at least a few pixels, and is a multiple of the focal length of the microlenses.
  • the microlenses of the microlens array are furthermore larger than the pixel spacing.
  • two different types of reconstruction can be utilized.
  • the method to be used depends greatly on the selected position of the microlens array.
  • the microlens array can be arranged in the image plane of the tube lens (TL) or at that point in the detection optic at which an image sensor (S) or a camera would be positioned for conventional image acquisition.
  • the image sensor is then positioned at the distance equal to the focal length of the microlenses. This placement will be referred to here as “type A.”
  • type A The disadvantage of this method is that the pixel count (and thus the resolution) of the images of individual object planes scales as 1:1 with the number of microlenses.
  • the number of pixels per image is therefore equal to the number of microlenses, and the number of resolvable planes scales with the ratio of the edge lengths of the pixels and microlenses. For example, five planes can be resolved if the edge length of a microlens corresponds to five pixels on the sensor.
  • the microlens arrays can be positioned so that, together with the tube lens, they produce a telescope.
  • the microlens array then images the (virtual) image of the tube lens onto the sensor as depicted in FIG. 8 (“type B”).
  • Image reconstruction is effected using a correspondingly adapted reconstruction algorithm, which ascertains the position of the images of a point in the object in the images of several microlenses, and can calculate back therefrom to the position in the object, for example by triangulation and utilizing parallax.
  • the Z resolution, and thus the number of resolvable planes is determined in this case by the distance between the images of the same object point through different microlenses (base length for triangulation).
  • a prerequisite for identifying an object point in the images of different microlenses is the availability of features of the object point which permit a correlation between the images of the individual microlenses, i.e. it must be possible to assign the several images of a point in the object to a point light source.
  • a linear region or the region in the object volume of the point spread function [PSF] belonging to the microlens
  • a second such linear region is defined by the position of the image of the same object point on the sensor behind another microlens. The object point must then therefore lie at the intersection of the two linear regions.
  • the focal length and the diameter or aperture value of the microlenses, and the location of the microlens array along the optical axis, are important aspects that principally influence the imaging quality.
  • the aperture value of the microlenses ideally corresponds to the aperture value of the tube lens.
  • type B it is the position of the microlens array relative to the sensor, and the diameter of the microlenses of the microlens array, which are principally important, as will be further explained later on.
  • the distinguishability of object points depends on the spot size of the images of the object points on the sensor and their spacing. These values are determined by the focal length and diameter, or aperture value, of the microlenses, and the location of the microlens array along the optical axis.
  • the variables are identified in FIG. 9 .
  • point light sources (PLS) in the focal plane are imaged sharply onto the sensor.
  • the sharpness of the image (the spot diameter s) then decreases (spot size s increases) if g is decreased or increased.
  • a fixed limit is represented, however, by the fact that g should only be decreased (or the absolute value of ⁇ g should only be increased) to the point where g>f is still valid (especially in the case of a Keplerian telescope). Otherwise an unequivocal reconstruction becomes difficult due to the large spot size on the sensor. The resolution in this area is then also extremely poor.
  • the spot size and the resolution on the sensor are independent of ⁇ ML / ⁇ TL , but the corresponding point spread function in the object volume is given approximately by 0.61 ⁇ /NA ⁇ ML / ⁇ TL .
  • the absolute value of ⁇ g can become so large that ⁇ ML ⁇ TL and a very large number of microlenses image each object point, with the result that the signal in each individual image drops and resolution again becomes very low.
  • the thickness of the illuminated region can be coordinated exactly with the depth-of-focus region of the detection optic (or vice versa). Only those regions in which (a) unequivocal allocation is possible, and (b) maximum possible resolution is achieved, are therefore illuminated.
  • Condition (a) is achieved by the fact that object points whose intermediate image is located too close to the microlens array (g ⁇ f) are not illuminated. Reconstruction artifacts are thereby avoided.
  • Condition (b) is achieved by illuminating only object points in a region located in such a way that the object points are respectively imaged only through a small number (for example, two or three) microlenses along an axis transverse to the optical axis (i.e. by approximately four to seven microlenses in total). As described above, this illuminated region should ideally also be limited, or adapted to the microlens array, in such a way that the spot size does not exceed an acceptable value, e.g. twice the minimum value.
  • light sheet illumination is ideally suitable for the above-described advantageous selective and targeted illumination of a narrow region around the focal plane of the detected object.
  • microlens array it is appropriate in general to use two different types of microlens array, namely those that have only microlenses having a single focal length, also referred to in the present case as “homogeneous” arrays; and those having lenses having several different focal lengths, e.g. having three different focal lengths, also referred to here as “heterogeneous” microlens arrays.
  • homogeneous arrays those having lenses having several different focal lengths, e.g. having three different focal lengths, also referred to here as “heterogeneous” microlens arrays.
  • heterogeneous microlens arrays The advantage of using more-complex arrays having different microlenses is the greater resolution achievable in the reconstructed images, since the spot size on the sensor also depends on the focal length.
  • the present disclosure furthermore discusses advantageous beam profiles, which is novel in the context of combination with light sheet microscopy.
  • the microlens array can preferably constitute part of the light field microscope.
  • the centers of the microlenses of the microlens array are arranged on a rectangular or square grid, or alternatively on a hexagonal grid.
  • the microlenses are arranged on a hexagonal grid.
  • the lenses are arranged on a square grid.
  • the square grid is usual for a reconstruction in which the microlens array is located in the image plane, since it is then simpler to associate the light collected behind each microlens with a pixel in a “usual” image having square pixels.
  • a hexagonal structure is preferred for the arrangement in which the microlens array performs imaging.
  • the detection optic of the microscope and the microlens array are designed and coordinated with one another in such a way that for an illumination beam having a full width at half maximum (FWHM) depth of focus of approximately 300 ⁇ m (corresponding to a numerical aperture ⁇ 0.06), images of three planes at a spacing of 2 ⁇ m, or images of five planes with a spacing of 1 ⁇ m, are generated by the camera.
  • FWHM full width at half maximum
  • the depth of focus of the unit comprising the detection optic and microlens array is therefore considerably smaller than the dimension of the object (or of an object region of interest) along the detection axis.
  • a combination having a shorter or longer depth of focus can also be used.
  • One problem with illumination using a beam having a Gaussian profile is that individual object planes along the illumination axis are not illuminated with uniform intensity, and adjacent planes are not illuminated with the same power level.
  • means are provided for homogenizing the Gaussian profile of the illumination beam in such a way that the entire image field becomes illuminated with a beam profile that is substantially the same along the detection axis.
  • all the planes to be imaged are also illuminated with a substantially identical light intensity.
  • An advantageous embodiment of the beam profile homogenizing means is constituted by a beam-shaping optical element, arranged in the illumination beam path, which is designed to impart to the illumination beam a top-hat profile whose width is selected in such a way that all the planes to be imaged are illuminated with substantially the same light intensity.
  • the beam profile homogenizing means provided is an optical element arranged in the illumination beam path, for example a TAG lens or an electrically tunable lens (ETL), which displaces the illumination beam axially back and forth at high frequency in such a way that all the planes to be imaged are illuminated with substantially the same light intensity. This is advantageous in particular on condition that the lateral profile along the illumination axis exhibits modulations that one wishes to compensate for or blur out.
  • An alternative imaging mode could also involve illuminating and synchronously detecting several planes that are farther apart from one another than would be necessary, at the effective depth of field of the detection objective (and microlens array), in order to scan along the detection axis in accordance with the Nyquist theorem.
  • an image stack could be acquired in such a way that the object is displaced, relative to the focal plane of the detection objective, in steps that permit Nyquist sampling but are smaller than the spacing of the planes detected in one step or for one position.
  • the depth of focus of the detection optic can be greatly increased. It is possible to synchronously image and illuminate planes whose spacing is appreciably greater than the depth of focus of the “normal” detection optic (objective alone, without a microlens array). Within this increased depth of focus, the light sheet can also be structured in order to enable better localization of the position along the detection axis.
  • Bessel beams and Bessel-like beams are also, however, alternative possibilities.
  • the ring structure of the Bessel beams is adapted to the detection optic in such a way that each ring illuminates a different plane. Beams that, for example, generate a stripe pattern along the detection plane as an interference pattern of different sub-beams would be particularly desirable for illumination in this case. This can also be achieved, for example, by simple two-beam interference. It is particularly advantageous to use a Mathieu beam or a beam whose angular spectrum is made up of two oppositely located ring segments arranged symmetrically around the origin.
  • the orientation of the ring segments is to be selected in such a way that a stripe pattern forms along the detection axis in the region around the optical axis of the illumination, with the goal of furnishing a beam shape that enables the various detected planes to be illuminated with maximum uniformity and, if possible, identical intensity.
  • a means for generating the light sheet which is arranged in front of an illumination optic, and preferably encompasses a scanning minor, can advantageously be provided in order to move the light sheet, in steps or continuously, along the detection axis of the detection optic into mutually offset positions in such a way that different planes—selectably the focal plane and the respective object plane—are successively illuminated.
  • the light sheet can be moved through a sample perpendicularly to the image field dimension; this is advantageous, for example, when scanning a biological sample that, for reasons including its stability, should not be moved in the course of investigation with the light sheet microscope.
  • the detection beam path is split, by a beam splitter configuration comprising a beam splitter, into a further detection path leading to the camera via the microlens array and a detection path that leads to a camera without interposition of a microlens array.
  • the beam splitter configuration for generating two detection paths can advantageously be designed, using mirrors, in such a way that the detection path having a microlens array, as well as the detection path not having one, are imaged next to one another onto the same camera.
  • An embodiment of the invention furthermore provides a method for simultaneous imaging of several object planes illuminated by means of a light sheet using the light sheet microscope according to an embodiment of the present invention, in which object volumes of the light sheet structure are correspondingly detected and imaged in a layered fashion.
  • the beam path having a microlens array or the beam path having no microlens array can be used selectably.
  • the two beam paths can also have different magnifications, for example as a result of different focal-length combinations of the lenses or by way of additionally integrated telescopes.
  • object volumes are advantageously imaged onto the camera successively in time by moving the detected object planes relative to the object.
  • the object volumes are detected and imaged synchronously by simultaneously detecting several illuminated object planes that are farther apart from one another than would be necessary, at the effective depth of focus of the detection optic having no microlens array, in order to scan along the detection axis in accordance with the Nyquist theorem.
  • image stacks are detected and imaged in such a way that the object is displaced, relative to the focal plane of the detection optic, in steps that permit Nyquist sampling but are smaller than the spacing of the planes detected in one step for one position.
  • the light sheet microscope encompasses in the illumination beam path a scanning mirror with the aid of which the light sheet can be displaced along the detection axis. It is thereby possible to illuminate several planes in the sample successively in specific fashion, and to acquire an image with the camera for each position of the light sheet.
  • the microlens array is used in order to increase the depth of focus. Regardless of the position of the light sheet, the image of one or several object planes within the illuminated volume can be reconstructed from the data acquired by the sensor. What is critical in this application case is that the light sheet be appreciably narrower than the depth of focus of the detection optic that encompasses at least an objective, a microlens array, and preferably a tube lens.
  • FIGS. 1 a and 1 b The principle of a conventional light sheet microscope shown in FIGS. 1 a and 1 b has already been explained above.
  • FIG. 2 shows the principle of the light sheet microscope according to the present invention, which encompasses, like the microscope of FIGS. 1 a and 1 b , an illumination optic 20 to generate a light sheet 10 , a detection optic 30 having a tube lens 40 , and a camera 50 in the form of an area detector or sensor.
  • the light sheet microscope additionally encompasses a microlens array 60 in the beam path between tube lens 40 and camera 50 .
  • Microlens array 60 which preferably is integrated into camera 50 with the result that the latter constitutes a light field camera, serves as a means for simultaneous imaging of several object planes (object plane 1 , object plane 2 ), illuminated by means of light sheet 10 , via detection optic 30 by means of camera 50 , object planes 1 and 2 being arranged around the focal plane of the detection optic which, in conventional fashion, defines an object plane.
  • Microlens array 60 shown arranged in the beam path in FIG. 2 , encompasses a plurality of microlenses having the same focal length, as schematically depicted by semispherical microlens bodies of identical size.
  • a microlens array 60 ′ that is shown in FIG. 2 arranged at an offset from the microlens array, and encompasses a plurality of microlenses of different focal lengths as schematically depicted by semispherical microlens bodies of different sizes, is used in the beam path between tube lens 40 and camera 50 .
  • the centers of the microlenses of microlens array 60 , 60 ′ are arranged on a rectangular or square grid, or alternatively on a hexagonal grid.
  • detection optic 30 and tube lens 40 of the microscope, and microlens array 60 , 60 ′ are designed and coordinated with one another in such a way that for an illumination beam having a FWHM depth of focus of approximately 300 ⁇ m (corresponding to a numerical aperture ⁇ 0.06), images of three planes at a spacing of 2 ⁇ m are generated by the camera.
  • images of five planes at a spacing of 1 ⁇ m, or 10 planes at a spacing of 0.5 ⁇ m are generated.
  • FIG. 3 shows that, for the light sheet microscope of FIG. 2 , the illumination beam generated by illumination optic 20 in the form of a light sheet 10 typically exhibits a Gaussian profile, with the result that the various object planes are illuminated with appreciably different intensities.
  • means are provided for homogenizing the Gaussian profile of the illumination beam in such a way that all the planes that are to be imaged are illuminated with substantially the same light intensity.
  • the beam profile homogenizing means is a beam-shaping optical element, arranged in the illumination beam path, which is designed to impart to the illumination beam, originally having a Gaussian beam profile, a top-hat profile whose width is selected in such a way that all the planes to be imaged are illuminated with substantially the same light intensity at least in the center of the image field.
  • the beam profile homogenizing means can encompass an optical element, for example a TAG lens or an electrically tunable lens (ETL), which is arranged in the illumination beam path and axially displaces the illumination beam, continuously or in steps, in the illumination direction during the exposure time of the camera, in such a way that all the planes to be imaged are illuminated with substantially the same light intensity.
  • an optical element for example a TAG lens or an electrically tunable lens (ETL)
  • ETL electrically tunable lens
  • the corresponding stripe pattern which ensures substantially equal-intensity illumination of the detection planes or object planes, can be generated, for example, by two-beam interference along the respective detection plane.
  • the amplitude of the motion of the illumination beam is adapted either to the size of the image field or to the axial structure of the illumination beam which is to be blurred out. For example, if the beam has an intensity modulation along the illumination axis having a period p, the beam p is then displaced, for a modulation with a spatial limit frequency of k, by at least 1/k.
  • FIG. 4 shows images, generated with camera 50 of the light sheet microscope of FIG. 2 through detection optic 30 and microlens array 60 , 60 ′, of the three object planes (object planes 1 and 2 and the focal plane corresponding to the third object plane) in different locations and with different mutual spacings.
  • object planes 1 and 2 and the focal plane corresponding to the third object plane can be achieved by corresponding coordination and design of the detection optic and microlens array, and by adapting the reconstruction algorithm.
  • FIG. 5 shows an embodiment of the light sheet microscope according to the present invention which is designed to displace or offset the light sheet through a sample perpendicularly to the propagation direction Y.
  • the depth-of-focus region of the detection optic encompassing objective 30 , tube lens 40 , and microlens array 60 is illuminated by a light sheet that is appreciably thinner than the depth of focus of the detection optic.
  • a means is provided for moving the thin light sheet along detection axis Z, in stepped or continuous fashion, into mutually offset positions 100 , 110 , 120 in such a way that different planes are successively illuminated, for example the focal plane in light sheet position 100 , object plane 1 in light sheet position 110 , and object plane 2 in light sheet position 130 .
  • This means encompasses an optical element for deflecting ray bundle 140 that generates the light sheet via illumination optic 20 , which bundle passes, as a result of the deflection, through various points in illumination optic 20 along detection axis Z.
  • the deflection element comprises a scanning mirror 130 .
  • Camera 50 acquires images of the respective plane for the various light sheet positions 100 , 110 , 120 offset in the direction of detection axis Z.
  • the spacing between the planes corresponds to approximately half the beam width in order to conform to the Nyquist criterion. Larger steps are also possible in order to increase the volume size for a given speed, or to increase the speed for a given volume size.
  • post-processing does not primarily involve reconstruction of a 3D volume of a sample from a single image.
  • the illuminated region of the sample can be regarded approximately as a plane, and that a sharp image can be generated by the detection optic with no need to refocus the detection optic onto the illuminated plane.
  • Information regarding the position of the light sheet can also be used for this purpose in order to assist reconstruction.
  • the motion of the light sheet along the detection axis can also occur continuously and during the exposure time of the sensor, so that a region that is thicker than the light sheet is effectively illuminated in the image acquired by camera 50 .
  • An advantage of this procedure is that the homogeneity with which the detected volume is illuminated can be enhanced.
  • the exposure time of the camera must be adapted to the scan speed at which the light sheet is shifted.
  • the light sheet is displaced during the exposure time by an amount equal to only a fraction, preferably less than 10%, preferably less than 5%, of its thickness.
  • FIG. 6 shows an embodiment of the light sheet microscope according to the present invention that, in addition to imaging of the various planes of a sample (focal plane, object plane 1 , and object plane 2 ) at reduced resolution in accordance with the embodiments of the light sheet microscope shown in FIGS. 2 and 5 by means of camera 50 preceded by microlens array 60 , permits high-resolution imaging of a single plane of the sample, for example the focal plane or one of the object planes.
  • the light in the detection beam path is split, by a beam splitter configuration comprising a beam splitter ( 240 ), into the detection path to camera 50 which encompasses the tube lens ( 40 ) and microlens array 60 , and a detection path proceeding perpendicularly thereto which leads via a tube lens 210 to a camera 200 that is not preceded by a microlens array.
  • Beam splitter 240 either can act in spectrally neutral fashion or can be configured as a dichroic short- or longpass filter or as a bandpass filter. It is also conceivable to embody beam splitter 240 as a movable hinged mirror, which directs the light either via lens 210 onto camera 200 or via lens 40 and microlens array 60 onto camera 50 .
  • the depth-of-focus region of the detection path in the light sheet having no microlenses is labeled 230
  • the depth-of-focus region of the detection path in the light sheet having microlenses is labeled 220 .
  • the beam splitter configuration of FIG. 6 can preferably be configured, as shown in FIG. 7 , in such a way that the two partial beam paths are imaged onto one and the same sensor of a shared camera 500 .
  • the images generated by the two partial beams paths are preferably imaged onto the sensor next to one another, as is known in principle, for example, from two-color splitters.
  • a microlens array is located, however, in at least one partial beam path.
  • the microlens array must be arranged within the splitter in one partial beam path in a plane conjugated with the original location. As is evident from FIG. 7 , this is achieved, proceeding from the beam splitter configuration of FIG.
  • the second detection path not having a microlens array is deflected 90°, after beam splitter 240 , in such a way that it extends parallel to the first detection path encompassing the microlens array.
  • the first detection path encompasses, following microlens array 60 , a lens 250 and a mirror 260 that deflects this detection path 90° onto beam splitter 290 , by way of which, passing through converging lens 300 , it reaches the shared camera 500 in which it is imaged onto the same sensor alongside the second detection path.
  • Beam splitters 240 and 290 either can act in spectrally neutral fashion or can be configured as dichroic short- or longpass filters or as bandpass filters.
  • the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise.
  • the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.

Abstract

A light sheet microscope for simultaneous imaging of several object planes illuminated by a light sheet includes a camera and a detection optic defining a detection light beam between the light sheet and the camera. The object planes are arranged around the focal plane of the detection optic. The detection optic can include a microlens array.

Description

CROSS-REFERENCE TO PRIOR APPLICATIONS
This application is a U.S. National Stage Application under 35 U.S.C. § 371 of International Application No. PCT/EP2016/067033 filed on Jul. 18, 2016, and claims benefit to German Patent Application Nos. DE 10 2015 111 698.7 filed on Jul. 17, 2015 and DE 10 2016 109 717.9 filed on May 25, 2016. The International Application was published in German on Jan. 26, 2017 as WO 2017/013054 Al under PCT Article 21(2).
FIELD
The invention is in the field of light sheet microscopy, and relates in particular to a light sheet microscope with which more information about an object can be obtained for a given light efficiency, or increased light efficiency can be made available for a given information content. The invention further relates to a method on the basis of said light sheet microscope.
BACKGROUND
Light sheet microscopy or light sheet fluorescence microscopy (LSFM), or single plane illumination microscopy (SPIM), is a fluorescence microscopy method in which only a thin layer (typically a few micrometers) in a sample is illuminated. This results in better resolution and appreciably decreased image background as compared with conventional incident- or transmitted-light fluorescence microscopy. Negative effects due to bleaching or light-induced stress in biological samples are furthermore diminished. Light sheet microscopy is used in cell biology, for fluorescence investigations of living organisms and, in the field of developmental biology, for long-term observations of embryo development in model organisms (developmental biology).
In a light sheet microscope, the plane to be detected is illuminated from the side with a thin light beam in the shape of a light sheet. As a result of diffraction, an unavoidable correlation exists between the thickness of the light sheet and its depth of focus. The “depth of focus” is to be understood in this context as the distance along the illumination axis over which the thickness of the light sheet remains approximately the same, or exceeds the thickness at the “waist” of the beam only by a factor of √2. This therefore also limits the maximum size of an object or objects that can be imaged with good image quality through the detection objective of the microscope and onto a sensor. Because the thickness of the light sheet directly determines both image contrast and the resolution along the detection axis, it should therefore be as thin as possible. It is desirable in particular for the thickness of the light sheet to be smaller than the depth of focus of the detection objective in order to avoid unsharp imaging of portions of the object. Many developers have therefore concentrated their efforts in recent years on reducing the (effective) thickness of the light sheet for a given depth of focus; this is only possible with considerable technical complexity, however, and moreover almost always results in greater sample stress due to the light sheet.
FIG. 1a shows a large sample that is being illuminated, through an illumination optic 2, with a light sheet 1 whose thickness exceeds the depth of focus of a detection optic 3. A portion of the illuminated region is therefore imaged via a tube lens 4 unsharply onto a camera 5. As shown in FIG. 1b , conversely, a thinner light sheet 1 b results in a smaller depth of focus and a greater convergence and divergence, so that only smaller image fields can be viewed with higher resolution and higher contrast. One solution is to increase the depth of focus of the detection optic by stopping down (reducing the numerical aperture). The result, however, is that resolution is lost, in particular in the form of information regarding the position of objects along the detection axis, i.e. depth information.
The existing art regarding light sheet microscopy and microscopy related thereto is disclosed, for example, in the documents U.S. Pat. No. 7,936,392 B2, EP 2 244 484 Bl, EP 2 422 525 B1, and US 2015/0177506A1. The following scientific publications are also part of this existing art:
    • Levoy, M., Zhang, Z. & McDowall, I. Recording and controlling the 4D light field in a microscope using microlens arrays. J. Microsc. 235, 144-162 (2009).
    • Broxton, M. et al. Wave optics theory and 3-D deconvolution for the light field microscope. pt. Express 21, 25418 (2013).
    • Skupsch, C. & Brucker, C. Multiple-plane particle image velocimetry using a light-field camera. Opt. Express 21, 1726-1740 (2013).
    • Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods 11, 727-730 (2014).
    • P. P. Mondal, S. Dilipkumar and M. Kavya, Efficient Generation of Diffraction-Limited Multi-Sheet Pattern for Biological Imaging, Optics Letters, 40, 609-612 (2015).
    • S. B. Purnapatra, M. Kavya and P. P. Mondal, Generation of multiple sheets of light using spatial-filtering techniques, Optics Letters, 39, 4715 (2014).
SUMMARY
In an embodiment, the present invention provides a light sheet microscope for simultaneous imaging of several object planes illuminated by a light sheet. The light sheet microscope includes a camera and a detection optic defining a detection light beam between the light sheet and the camera. The object planes are arranged around the focal plane of the detection optic.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be described in even greater detail below based on the exemplary figures. The invention is not limited to the exemplary embodiments. All features described and/or illustrated herein can be used alone or combined in different combinations in embodiments of the invention. The features and advantages of various embodiments of the present invention will become apparent by reading the following detailed description with reference to the attached drawings which illustrate the following:
FIGS. 1a and 1b show the principle of a conventional light sheet microscope with a light sheet of different thicknesses;
FIG. 2 shows the principle of the light sheet microscope according to an embodiment of the present invention;
FIG. 3 shows different beam profiles of the illumination beam generated by the illumination optic of the light sheet microscope of FIG. 2;
FIGS. 4a and 4b show images of three object planes generated with the camera of the light sheet microscope of FIG. 2 through its detection optic and its microlens array;
FIG. 5 shows an embodiment of the light sheet microscope according to the present invention with a light sheet that is movable through a sample perpendicularly to the image field dimension;
FIG. 6 shows an embodiment of the light sheet microscope according to the present invention having a beam splitter configuration, comprising a beam splitter or hinged mirror, in the detection beam path in order to generate two detection paths leading to different cameras;
FIG. 7 shows an embodiment of the light sheet microscope according to the present invention having a beam splitter configuration, comprising a beam splitter or hinged mirror, in the detection beam path in order to generate two detection paths leading to the same sensor; and
FIGS. 8a and 8b schematically illustrate the arrangement of a microlens array in an optical beam path; and
FIG. 9 schematically illustrates the arrangement of a microlens array in an optical beam path.
DETAILED DESCRIPTION
Embodiments of the present invention provide a light sheet microscope, and a method for operating it, which ensure particularly effective utilization of the excited fluorescence without reducing the thickness of the illumination beam and thus its depth of focus. A further advantage is to obtain as much depth information as possible regarding the object or objects.
In accordance an embodiment, the invention creates a light sheet microscope having a means for simultaneous imaging of several object planes, illuminated by means of a light sheet, by a camera, having a detection optic defining a detection beam path between the light sheet and the camera, the object planes being arranged around the focal plane of the detection optic.
In other words, an embodiment of the present invention draws upon light sheet technology, an optical means that furnishes object data simultaneously from several planes of an object being placed between a detection lens and a camera, from which data it is then possible to obtain, in a post-processing unit, sharp images of the several object planes that end up being located around the focal plane of the detection optic.
An embodiment of the present invention thus on the one hand achieves a significant increase in depth information for a given light efficiency, or an increase in light efficiency for a given quantity of depth information. On the other hand, simultaneous imaging of several planes is made possible; this is advantageous or in fact necessary for many dynamic processes, in particular if events in different planes are to be correlated with one another. The light sheet microscope according to an embodiment of the present invention thus allows simultaneous imaging of large volumes at increased speed and is thus particularly suitable for applications such as tracking of organelles in living cells and observation of extremely fast processes, in which serial scanning of the adjacent planes, for example by moving the object, the light sheet, and thus the detection objective synchronously, and/or internal focusing, is either impossible or undesirable.
Illumination of several mutually parallel object planes in a light sheet microscope using a spatial filter to generate the object planes is disclosed in P. P. Mondal et al. and in S. B. Purnapatra et al.
In the sector involving observation of living organisms several hundreds of μm in size, the light sheet technique has hitherto been used exclusively paired with wide-field illumination, e.g. by Prevedel et al. and by Broxton et al. Because of the wide-field illumination, the images of thick samples exhibit only very low contrast when the fluorescence in the object extends over several tens of times the depth of focus along the detection axis.
Alternative methods for synchronous imaging of several planes are, for example, multi-focus microscopy (MFM), which is described e.g. in US 2013/0176622 A1. With these methods, nine or 25 planes are imaged alongside one another onto one sensor. The optical system necessary for this is, however, far more complex than with light field microscopy. MFM is also based on transmitted light illumination or epifluorescence excitation. WO 2014/147261 describes the MFM method in combination with light sheet illumination.
US 2015/0177506 A1 describes a method that is related to the light field technique. This method utilizes illumination of the sample with a ray bundle from the side. The components coming from different spatial angles are filtered via a displaceable aperture diaphragm in the pupil of the detection objective. This has the disadvantage of sequential imaging of the various sample portions, whereas highly parallelized (“single shot”) image acquisition is preferred in a light field microscope.
Skupsch et al. have presented an apparatus for particle imaging velocimetry (PIV) in which the sample is illuminated from the side with several light sheets through a cylindrical lens, and detection is carried out via a microlens array and reconstruction in accordance with the light field technique.
According to a particularly advantageous embodiment of the invention, provision is made that for simultaneous imaging of several object planes illuminated by means of a light sheet, a microlens array (MLA), which is preferably integrated into the camera, is arranged in the beam path between the detection optic and the camera. The microlens array is arranged with reference to the beam path at a distance in front of the camera. This distance is preferably at least a few pixels, and is a multiple of the focal length of the microlenses. The microlenses of the microlens array are furthermore larger than the pixel spacing.
According to an embodiment of the present invention, two different types of reconstruction can be utilized. The method to be used depends greatly on the selected position of the microlens array. The microlens array can be arranged in the image plane of the tube lens (TL) or at that point in the detection optic at which an image sensor (S) or a camera would be positioned for conventional image acquisition. The image sensor is then positioned at the distance equal to the focal length of the microlenses. This placement will be referred to here as “type A.” The disadvantage of this method is that the pixel count (and thus the resolution) of the images of individual object planes scales as 1:1 with the number of microlenses. The number of pixels per image is therefore equal to the number of microlenses, and the number of resolvable planes scales with the ratio of the edge lengths of the pixels and microlenses. For example, five planes can be resolved if the edge length of a microlens corresponds to five pixels on the sensor.
Alternatively thereto, the microlens arrays can be positioned so that, together with the tube lens, they produce a telescope. The microlens array then images the (virtual) image of the tube lens onto the sensor as depicted in FIG. 8 (“type B”). Image reconstruction is effected using a correspondingly adapted reconstruction algorithm, which ascertains the position of the images of a point in the object in the images of several microlenses, and can calculate back therefrom to the position in the object, for example by triangulation and utilizing parallax. The Z resolution, and thus the number of resolvable planes, is determined in this case by the distance between the images of the same object point through different microlenses (base length for triangulation). A prerequisite for identifying an object point in the images of different microlenses is the availability of features of the object point which permit a correlation between the images of the individual microlenses, i.e. it must be possible to assign the several images of a point in the object to a point light source. In other words, based on the location on the sensor behind a microlens at which an object point is imaged, a linear region (or the region in the object volume of the point spread function [PSF] belonging to the microlens) along which the imaged object point can be located is defined. A second such linear region is defined by the position of the image of the same object point on the sensor behind another microlens. The object point must then therefore lie at the intersection of the two linear regions.
The focal length and the diameter or aperture value of the microlenses, and the location of the microlens array along the optical axis, are important aspects that principally influence the imaging quality. When type A is used, the aperture value of the microlenses ideally corresponds to the aperture value of the tube lens. With type B, it is the position of the microlens array relative to the sensor, and the diameter of the microlenses of the microlens array, which are principally important, as will be further explained later on. The distinguishability of object points (resolution of the optical system) depends on the spot size of the images of the object points on the sensor and their spacing. These values are determined by the focal length and diameter, or aperture value, of the microlenses, and the location of the microlens array along the optical axis.
The diameters of the spot size, as a geometric approximation for a given microlens diameter v, microlens focal length fML, distance d of the sensor from the intermediate image plane (IIP) as a function of g, i.e. the distance of the intermediate image from the microlens array, is given by
s=v(1−d/b)
where 1/fML=1/b+1/g, i.e. b=gfML/(g−fML). The variables are identified in FIG. 9.
Changes in g result from the location Δz of the point light source in the object along the optical axis z with respect to the focal plane (FP) of the objective (OL), as Δg=−M2Δz, provided the values of Δz are small.
If the microlens array and the sensor are positioned so that the distance of the microlens array from the IIP corresponds approximately to gopt, point light sources (PLS) in the focal plane are imaged sharply onto the sensor. Point light sources farther away are imaged less sharply with increasing distance dz from the focal plane, such that dz=(g−gopt) M2, or
g=g opt −dz M 2.
This approximation is sufficient in principle to ascertain the region in which a specific spot size on the sensor will not be exceeded; the validity limits of geometric optics must of course be taken into account.
In an embodiment, for example, the distance d between the microlens array and the sensor is selected so that objects in the focal plane of the objective are imaged sharply onto the sensor, i.e. so that for Δz=0 and Δg=0, a distance g between the intermediate image and the microlens array is obtained such that b=d, i.e. d=g fML/(g−fML). The sharpness of the image (the spot diameter s) then decreases (spot size s increases) if g is decreased or increased.
In a particularly advantageous exemplifying embodiment, d is selected so that d=g fML/(g−fML), where g defines an intermediate image plane that corresponds to a plane in the object which is somewhat closer to (for a Galilean telescope; FIG. 8a ) or somewhat farther from (for a Keplerian telescope; FIG. 8b ) the detection objective than the latter's focal plane. Planes that are located respectively somewhat farther from and somewhat closer to the objective are then located in a region with good resolution, and can be unequivocally reconstructed.
A fixed limit is represented, however, by the fact that g should only be decreased (or the absolute value of Δg should only be increased) to the point where g>f is still valid (especially in the case of a Keplerian telescope). Otherwise an unequivocal reconstruction becomes difficult due to the large spot size on the sensor. The resolution in this area is then also extremely poor.
A further important variable relates to the number of microlenses that image an object point, i.e. that subdivide the aperture of the objective along an axis transverse to the optical axis. This number is obtained from the quotient of the capture angle of the microlenses θML=arctanv/2g) and the capture angle of the tube lens θTL=arctan(dTL/2/(fTL−Δg)), where d is the aperture of the tube lens. The spot size and the resolution on the sensor are independent of θMLTL, but the corresponding point spread function in the object volume is given approximately by 0.61λ/NA×θMLTL.
For objects in planes far away from the focal plane, or with a large Δz, the absolute value of Δg can become so large that θML<<θTL and a very large number of microlenses image each object point, with the result that the signal in each individual image drops and resolution again becomes very low.
The significance of the above-described estimates in the context of the invention is that with light sheet illumination, in contrast to the illumination types hitherto used in this context (epifluorescence excitation), the thickness of the illuminated region can be coordinated exactly with the depth-of-focus region of the detection optic (or vice versa). Only those regions in which (a) unequivocal allocation is possible, and (b) maximum possible resolution is achieved, are therefore illuminated.
Condition (a) is achieved by the fact that object points whose intermediate image is located too close to the microlens array (g<f) are not illuminated. Reconstruction artifacts are thereby avoided. Condition (b) is achieved by illuminating only object points in a region located in such a way that the object points are respectively imaged only through a small number (for example, two or three) microlenses along an axis transverse to the optical axis (i.e. by approximately four to seven microlenses in total). As described above, this illuminated region should ideally also be limited, or adapted to the microlens array, in such a way that the spot size does not exceed an acceptable value, e.g. twice the minimum value.
According to the present invention, light sheet illumination is ideally suitable for the above-described advantageous selective and targeted illumination of a narrow region around the focal plane of the detected object.
It is appropriate in general to use two different types of microlens array, namely those that have only microlenses having a single focal length, also referred to in the present case as “homogeneous” arrays; and those having lenses having several different focal lengths, e.g. having three different focal lengths, also referred to here as “heterogeneous” microlens arrays. The advantage of using more-complex arrays having different microlenses is the greater resolution achievable in the reconstructed images, since the spot size on the sensor also depends on the focal length.
The present disclosure furthermore discusses advantageous beam profiles, which is novel in the context of combination with light sheet microscopy.
According to an advantageous embodiment of the invention, provision is made to introduce a microlens array in the detection beam path of a light sheet microscope between the detection optic and the camera, with the purpose of generating, by post-processing of the raw data acquired with the camera, images of several object planes that are arranged around the original focal plane of the detection optic. The microlens array can preferably constitute part of the light field microscope.
Advantageously, inter alia in order to ensure a high packing density of the microlenses and thus high resolution in the planes in which they end up being located, the centers of the microlenses of the microlens array are arranged on a rectangular or square grid, or alternatively on a hexagonal grid. In order to ensure a high packing density, the microlenses are arranged on a hexagonal grid. In a standard basis, however, the lenses are arranged on a square grid. The square grid is usual for a reconstruction in which the microlens array is located in the image plane, since it is then simpler to associate the light collected behind each microlens with a pixel in a “usual” image having square pixels. A hexagonal structure is preferred for the arrangement in which the microlens array performs imaging.
Advantageously, the detection optic of the microscope and the microlens array are designed and coordinated with one another in such a way that for an illumination beam having a full width at half maximum (FWHM) depth of focus of approximately 300 μm (corresponding to a numerical aperture≈0.06), images of three planes at a spacing of 2 μm, or images of five planes with a spacing of 1 μm, are generated by the camera. In the context of this invention it is ideal to use a combination of microscope detection optic and microlens array which generates, over a region of 4 μm, three to five individual images each having a depth of focus of 1 μm. Unlike in Skupsch et al., the depth of focus of the unit comprising the detection optic and microlens array is therefore considerably smaller than the dimension of the object (or of an object region of interest) along the detection axis. A combination having a shorter or longer depth of focus can also be used.
One problem with illumination using a beam having a Gaussian profile is that individual object planes along the illumination axis are not illuminated with uniform intensity, and adjacent planes are not illuminated with the same power level. In order to overcome this problem, according to the present invention means are provided for homogenizing the Gaussian profile of the illumination beam in such a way that the entire image field becomes illuminated with a beam profile that is substantially the same along the detection axis. Ideally, all the planes to be imaged are also illuminated with a substantially identical light intensity. An advantageous embodiment of the beam profile homogenizing means is constituted by a beam-shaping optical element, arranged in the illumination beam path, which is designed to impart to the illumination beam a top-hat profile whose width is selected in such a way that all the planes to be imaged are illuminated with substantially the same light intensity. Alternatively thereto, the beam profile homogenizing means provided is an optical element arranged in the illumination beam path, for example a TAG lens or an electrically tunable lens (ETL), which displaces the illumination beam axially back and forth at high frequency in such a way that all the planes to be imaged are illuminated with substantially the same light intensity. This is advantageous in particular on condition that the lateral profile along the illumination axis exhibits modulations that one wishes to compensate for or blur out.
An alternative imaging mode could also involve illuminating and synchronously detecting several planes that are farther apart from one another than would be necessary, at the effective depth of field of the detection objective (and microlens array), in order to scan along the detection axis in accordance with the Nyquist theorem. In this case an image stack could be acquired in such a way that the object is displaced, relative to the focal plane of the detection objective, in steps that permit Nyquist sampling but are smaller than the spacing of the planes detected in one step or for one position. The result is that while adjacent planes are no longer imaged simultaneously, fewer raw images are needed in order to allow large volumes to be imaged, so that the speed can be increased.
When light field cameras are combined with light sheet illumination, a clear advantage results from the fact that the depth of focus of the detection optic can be greatly increased. It is possible to synchronously image and illuminate planes whose spacing is appreciably greater than the depth of focus of the “normal” detection optic (objective alone, without a microlens array). Within this increased depth of focus, the light sheet can also be structured in order to enable better localization of the position along the detection axis.
Multiple planes can of course also be illuminated using beams other than Gaussian beams. As mentioned above, maximally flat beam profiles are advisable. Bessel beams and Bessel-like beams are also, however, alternative possibilities. Here the ring structure of the Bessel beams is adapted to the detection optic in such a way that each ring illuminates a different plane. Beams that, for example, generate a stripe pattern along the detection plane as an interference pattern of different sub-beams would be particularly desirable for illumination in this case. This can also be achieved, for example, by simple two-beam interference. It is particularly advantageous to use a Mathieu beam or a beam whose angular spectrum is made up of two oppositely located ring segments arranged symmetrically around the origin. The orientation of the ring segments is to be selected in such a way that a stripe pattern forms along the detection axis in the region around the optical axis of the illumination, with the goal of furnishing a beam shape that enables the various detected planes to be illuminated with maximum uniformity and, if possible, identical intensity.
Further areas of application of the light sheet microscope according to the present invention become accessible if the region of the depth of focus of the detection optic is illuminated by a light sheet that is appreciably thinner than the depth of focus of the detection optic. With this prerequisite, a means for generating the light sheet which is arranged in front of an illumination optic, and preferably encompasses a scanning minor, can advantageously be provided in order to move the light sheet, in steps or continuously, along the detection axis of the detection optic into mutually offset positions in such a way that different planes—selectably the focal plane and the respective object plane—are successively illuminated. As a result, the light sheet can be moved through a sample perpendicularly to the image field dimension; this is advantageous, for example, when scanning a biological sample that, for reasons including its stability, should not be moved in the course of investigation with the light sheet microscope.
According to a further advantageous embodiment of the microscope according to the present invention, the detection beam path is split, by a beam splitter configuration comprising a beam splitter, into a further detection path leading to the camera via the microlens array and a detection path that leads to a camera without interposition of a microlens array. This permits high-resolution imaging of the sample in the focal plane of the detection optic, in addition to imaging at relatively reduced resolution by means of the camera having the microlens array in front of it.
The beam splitter configuration for generating two detection paths can advantageously be designed, using mirrors, in such a way that the detection path having a microlens array, as well as the detection path not having one, are imaged next to one another onto the same camera. An embodiment of the invention furthermore provides a method for simultaneous imaging of several object planes illuminated by means of a light sheet using the light sheet microscope according to an embodiment of the present invention, in which object volumes of the light sheet structure are correspondingly detected and imaged in a layered fashion.
Instead of beam splitters, it is also possible to use hinged mirrors so that the beam path having a microlens array or the beam path having no microlens array can be used selectably. The two beam paths can also have different magnifications, for example as a result of different focal-length combinations of the lenses or by way of additionally integrated telescopes.
With this method, object volumes are advantageously imaged onto the camera successively in time by moving the detected object planes relative to the object.
Alternatively thereto, the object volumes are detected and imaged synchronously by simultaneously detecting several illuminated object planes that are farther apart from one another than would be necessary, at the effective depth of focus of the detection optic having no microlens array, in order to scan along the detection axis in accordance with the Nyquist theorem.
Advantageously, in order to image large object volumes, image stacks are detected and imaged in such a way that the object is displaced, relative to the focal plane of the detection optic, in steps that permit Nyquist sampling but are smaller than the spacing of the planes detected in one step for one position.
Advantageously, the light sheet microscope according to an embodiment of the present invention encompasses in the illumination beam path a scanning mirror with the aid of which the light sheet can be displaced along the detection axis. It is thereby possible to illuminate several planes in the sample successively in specific fashion, and to acquire an image with the camera for each position of the light sheet. In this case the microlens array is used in order to increase the depth of focus. Regardless of the position of the light sheet, the image of one or several object planes within the illuminated volume can be reconstructed from the data acquired by the sensor. What is critical in this application case is that the light sheet be appreciably narrower than the depth of focus of the detection optic that encompasses at least an objective, a microlens array, and preferably a tube lens.
The principle of a conventional light sheet microscope shown in FIGS. 1a and 1b has already been explained above.
FIG. 2 shows the principle of the light sheet microscope according to the present invention, which encompasses, like the microscope of FIGS. 1a and 1b , an illumination optic 20 to generate a light sheet 10, a detection optic 30 having a tube lens 40, and a camera 50 in the form of an area detector or sensor. The light sheet microscope additionally encompasses a microlens array 60 in the beam path between tube lens 40 and camera 50. Microlens array 60, which preferably is integrated into camera 50 with the result that the latter constitutes a light field camera, serves as a means for simultaneous imaging of several object planes (object plane 1, object plane 2), illuminated by means of light sheet 10, via detection optic 30 by means of camera 50, object planes 1 and 2 being arranged around the focal plane of the detection optic which, in conventional fashion, defines an object plane.
Microlens array 60, shown arranged in the beam path in FIG. 2, encompasses a plurality of microlenses having the same focal length, as schematically depicted by semispherical microlens bodies of identical size. Alternatively, a microlens array 60′ that is shown in FIG. 2 arranged at an offset from the microlens array, and encompasses a plurality of microlenses of different focal lengths as schematically depicted by semispherical microlens bodies of different sizes, is used in the beam path between tube lens 40 and camera 50. The centers of the microlenses of microlens array 60, 60′ are arranged on a rectangular or square grid, or alternatively on a hexagonal grid.
In the example shown in FIG. 2, detection optic 30 and tube lens 40 of the microscope, and microlens array 60, 60′, are designed and coordinated with one another in such a way that for an illumination beam having a FWHM depth of focus of approximately 300 μm (corresponding to a numerical aperture≈0.06), images of three planes at a spacing of 2 μm are generated by the camera. Alternatively, by corresponding design of detection optic 30 and of microlens array 60, 60′, images of five planes at a spacing of 1 μm, or 10 planes at a spacing of 0.5 μm, are generated.
FIG. 3 shows that, for the light sheet microscope of FIG. 2, the illumination beam generated by illumination optic 20 in the form of a light sheet 10 typically exhibits a Gaussian profile, with the result that the various object planes are illuminated with appreciably different intensities. In order to equalize those illumination differences as effectively as possible, means are provided for homogenizing the Gaussian profile of the illumination beam in such a way that all the planes that are to be imaged are illuminated with substantially the same light intensity.
The beam profile homogenizing means is a beam-shaping optical element, arranged in the illumination beam path, which is designed to impart to the illumination beam, originally having a Gaussian beam profile, a top-hat profile whose width is selected in such a way that all the planes to be imaged are illuminated with substantially the same light intensity at least in the center of the image field.
Alternatively, the beam profile homogenizing means can encompass an optical element, for example a TAG lens or an electrically tunable lens (ETL), which is arranged in the illumination beam path and axially displaces the illumination beam, continuously or in steps, in the illumination direction during the exposure time of the camera, in such a way that all the planes to be imaged are illuminated with substantially the same light intensity. Two beam profiles resulting therefrom, having a stripe pattern respectively having three beam maxima in the region of the object planes, are shown in FIG. 3 in the form of a sine grid/Mathieu beam profile and a top-hat sine grid beam. The corresponding stripe pattern, which ensures substantially equal-intensity illumination of the detection planes or object planes, can be generated, for example, by two-beam interference along the respective detection plane. The amplitude of the motion of the illumination beam is adapted either to the size of the image field or to the axial structure of the illumination beam which is to be blurred out. For example, if the beam has an intensity modulation along the illumination axis having a period p, the beam p is then displaced, for a modulation with a spatial limit frequency of k, by at least 1/k.
FIG. 4 shows images, generated with camera 50 of the light sheet microscope of FIG. 2 through detection optic 30 and microlens array 60, 60′, of the three object planes (object planes 1 and 2 and the focal plane corresponding to the third object plane) in different locations and with different mutual spacings. These different object plane locations and spacings can be achieved by corresponding coordination and design of the detection optic and microlens array, and by adapting the reconstruction algorithm.
FIG. 5 shows an embodiment of the light sheet microscope according to the present invention which is designed to displace or offset the light sheet through a sample perpendicularly to the propagation direction Y. Such a procedure makes it possible, for example, to scan a biological sample that, for reasons including its stability, should not be moved in the course of investigation with the light sheet microscope.
With this embodiment of the light sheet microscope, the depth-of-focus region of the detection optic encompassing objective 30, tube lens 40, and microlens array 60 is illuminated by a light sheet that is appreciably thinner than the depth of focus of the detection optic. A means is provided for moving the thin light sheet along detection axis Z, in stepped or continuous fashion, into mutually offset positions 100, 110, 120 in such a way that different planes are successively illuminated, for example the focal plane in light sheet position 100, object plane 1 in light sheet position 110, and object plane 2 in light sheet position 130. This means encompasses an optical element for deflecting ray bundle 140 that generates the light sheet via illumination optic 20, which bundle passes, as a result of the deflection, through various points in illumination optic 20 along detection axis Z. In the embodiment of FIG. 5, the deflection element comprises a scanning mirror 130.
Camera 50 acquires images of the respective plane for the various light sheet positions 100, 110, 120 offset in the direction of detection axis Z. Ideally, the spacing between the planes corresponds to approximately half the beam width in order to conform to the Nyquist criterion. Larger steps are also possible in order to increase the volume size for a given speed, or to increase the speed for a given volume size.
In the case of the embodiment according to FIG. 5, post-processing does not primarily involve reconstruction of a 3D volume of a sample from a single image. In this case it is of course also possible to generate images of several object planes within the region illuminated by the thin light sheet, as described earlier. It is particularly advantageous in this context, however, that the illuminated region of the sample can be regarded approximately as a plane, and that a sharp image can be generated by the detection optic with no need to refocus the detection optic onto the illuminated plane. Information regarding the position of the light sheet can also be used for this purpose in order to assist reconstruction.
The motion of the light sheet along the detection axis can also occur continuously and during the exposure time of the sensor, so that a region that is thicker than the light sheet is effectively illuminated in the image acquired by camera 50. An advantage of this procedure is that the homogeneity with which the detected volume is illuminated can be enhanced.
In order to avoid broadening the effective thickness of the light sheet, however, the exposure time of the camera must be adapted to the scan speed at which the light sheet is shifted. For this purpose, the light sheet is displaced during the exposure time by an amount equal to only a fraction, preferably less than 10%, preferably less than 5%, of its thickness.
FIG. 6 shows an embodiment of the light sheet microscope according to the present invention that, in addition to imaging of the various planes of a sample (focal plane, object plane 1, and object plane 2) at reduced resolution in accordance with the embodiments of the light sheet microscope shown in FIGS. 2 and 5 by means of camera 50 preceded by microlens array 60, permits high-resolution imaging of a single plane of the sample, for example the focal plane or one of the object planes.
For this purpose, the light in the detection beam path is split, by a beam splitter configuration comprising a beam splitter (240), into the detection path to camera 50 which encompasses the tube lens (40) and microlens array 60, and a detection path proceeding perpendicularly thereto which leads via a tube lens 210 to a camera 200 that is not preceded by a microlens array. Beam splitter 240 either can act in spectrally neutral fashion or can be configured as a dichroic short- or longpass filter or as a bandpass filter. It is also conceivable to embody beam splitter 240 as a movable hinged mirror, which directs the light either via lens 210 onto camera 200 or via lens 40 and microlens array 60 onto camera 50.
The depth-of-focus region of the detection path in the light sheet having no microlenses is labeled 230, while the depth-of-focus region of the detection path in the light sheet having microlenses is labeled 220.
The beam splitter configuration of FIG. 6 can preferably be configured, as shown in FIG. 7, in such a way that the two partial beam paths are imaged onto one and the same sensor of a shared camera 500. The images generated by the two partial beams paths are preferably imaged onto the sensor next to one another, as is known in principle, for example, from two-color splitters. A microlens array is located, however, in at least one partial beam path. The microlens array must be arranged within the splitter in one partial beam path in a plane conjugated with the original location. As is evident from FIG. 7, this is achieved, proceeding from the beam splitter configuration of FIG. 6, by the fact that the second detection path not having a microlens array is deflected 90°, after beam splitter 240, in such a way that it extends parallel to the first detection path encompassing the microlens array. Located in the second detection path, following the beam splitter, are a first lens 210 and a second lens 280, followed by a beam splitter 290 through which this detection path reaches the shared camera 500 through a converging lens 300. The first detection path encompasses, following microlens array 60, a lens 250 and a mirror 260 that deflects this detection path 90° onto beam splitter 290, by way of which, passing through converging lens 300, it reaches the shared camera 500 in which it is imaged onto the same sensor alongside the second detection path. Beam splitters 240 and 290 either can act in spectrally neutral fashion or can be configured as dichroic short- or longpass filters or as bandpass filters. Alternatively, it is possible to embody beam splitters 240 and 290 as movable hinged mirrors that direct the light onto camera 500 either via lenses 40 and 250 and microlens array 60, or via lenses 210 and 290. In this case the images through the two partial beam paths are always directed onto the same region of the sensor.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. It will be understood that changes and modifications may be made by those of ordinary skill within the scope of the following claims. In particular, the present invention covers further embodiments with any combination of features from different embodiments described above and below. Additionally, statements made herein characterizing the invention refer to an embodiment of the invention and not necessarily all embodiments.
The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.

Claims (24)

The invention claimed is:
1. A light sheet microscope for simultaneous imaging of several object planes in a sample illuminated by a light sheet, the light sheet microscope comprising:
a camera;
a detection optic defining a detection light beam between the light sheet and the camera, the object planes being arranged around the focal plane of the detection optic and the light sheet extending from a side of the sample and across the focal and object planes; and
a microlens array configured to provide for the simultaneous imaging of the object planes illuminated by the light sheet.
2. The light sheet microscope according to claim 1, wherein the microlens array includes microlenses of the same focal length or microlenses of different focal lengths, the centers of the microlenses of the microlens array being arranged on a rectangular or square grid, or on a hexagonal grid.
3. The light sheet microscope according to claim 1, wherein the microlens array is arranged in an image plane of a tube lens, or wherein the microlens array is arranged at a point in the detection optic at which an image sensor would be positioned for conventional image acquisition.
4. The light sheet microscope according to claim 1, wherein the microlens array is arranged such that the microlens array images a (virtual) image of a tube lens onto a sensor.
5. The light sheet microscope according to claim 1, wherein the detection optic and a reconstruction algorithm are designed and coordinated with one another in such a way that, for an illumination beam having a full width at half maximum (FWHM) depth of focus of approximately 300 μm (corresponding to a numerical aperture 0.06), images of three planes at a spacing of 2μm, or images of five planes with a spacing of 1 μm, are generated by the camera.
6. The light sheet microscope according to claim 1, wherein the detection optic and a reconstruction algorithm are designed and coordinated with one another in such a way that for an illumination beam having a full width at half maximum (FWHM) depth of focus of approximately 300 μm (corresponding to a numerical aperture 0.06), between four and 10 individual images having a depth of focus from 0.4 to 1 μm are generated by the camera over a FWHM thickness region of 4 μm to 10 μm.
7. The light sheet microscope according to claim 1, further comprising an illumination beam exhibiting a Gaussian profile, the light sheet microscope being configured to homogenize the Gaussian profile of the illumination beam in such a way that all the object planes to be imaged are illuminated with substantially the same light intensity.
8. The light sheet microscope according to claim 7, wherein, for the homogenizing of the Gaussian profile, a beam-shaping optical element, arranged in the illumination beam path, is designed to impart to the illumination beam a top-hat profile whose width is selected in such a way that all the object planes to be imaged are illuminated with substantially the same light intensity.
9. The light sheet microscope according to claim 7, wherein, for the homogenizing of the Gaussian profile, an optical element arranged in the illumination beam path briefly displaces the illumination beam axially in such a way that all the object planes to be imaged are illuminated with substantially the same light intensity.
10. The light sheet microscope according to claim 1, further comprising an illumination beam exhibiting a Bessel profile or a Bessel-like profile, a ring structure of the illumination beam profile being adapted to the detection optic in such a way that each ring of the ring structure illuminates a different object plane.
11. The light sheet microscope according to claim 10, wherein the light beam profile generates a stripe pattern.
12. The light sheet microscope according to claim 1, further comprising a Mathieu illumination beam whose angular spectrum is made up of two oppositely located ring segments arranged symmetrically around a beam origin, an orientation of the ring segments being selected in such a way that a stripe pattern forms along a detection axis in a region around an optical axis of the illumination beam.
13. The light sheet microscope according to claim 1, wherein an element shifts an illumination beam in a beam direction at high frequency over a distance that corresponds at maximum to an image field dimension being provided in order to homogenize the beam profile.
14. The light sheet microscope according to claim 1, further comprising a post-processing device configured to generate images of the object planes.
15. The light sheet microscope according to claim 1, wherein a region of the depth of focus of the detection optic is illuminated by the light sheet that is thinner than the depth of focus of the detection optic.
16. The light sheet microscope according to claim 15, further comprising a light sheet generator configured to generate the light sheet which is arranged in front of an illumination optic in order to move the light sheet, continuously or in steps, along the detection axis of the detection optic into mutually offset positions in such a way that selectably the focal plane and the respective object plane are successively illuminated.
17. The light sheet microscope according to claim 1, further comprising a beam splitter configuration including a beam splitter and being configured to split a path of the detection beam into a detection path leading to the camera via the microlens array and a detection path that leads to a camera without interposition of a microlens array.
18. The light sheet microscope according to claim 17, the beam splitter configuration being designed, using mirrors, in such a way that the detection path having the microlens array, as well as the detection path without interposition of a microlens array, are both imaged next to one another onto the same camera.
19. The light sheet microscope according to claim 1, wherein the microlens array is integrated into the camera and is arranged in a beam path in front of the camera.
20. The light sheet microscope according to claim 1, wherein the light sheet extends perpendicular to the detection light beam.
21. A method for simultaneous imaging of several object planes in a sample illuminated by a light sheet a light sheet microscope, the method comprising:
providing the light sheet microscope comprising:
a camera;
a detection optic defining a detection light beam between the light sheet and the camera, the object planes being arranged around the focal plane of the detection optic; and
a microlens array configured to provide for the simultaneous imaging of the object planes illuminated by the light sheet,
generating the light sheet extending from a side of the sample and across the focal and object planes, and
detecting and imaging object volumes of the light sheet structure correspondingly in layered fashion.
22. The method according to claim 21, wherein the object volumes are imaged onto the camera successively in time by moving the detected object planes relative to the object.
23. The method according to claim 21, wherein the object volumes are detected and imaged synchronously by simultaneously detecting several illuminated object planes that are farther apart from one another than would be necessary, at an effective depth of focus of the detection optic, in order to scan along the detection axis in accordance with the Nyquist theorem.
24. The method according to claim 21, wherein, in order to image large object volumes, an image stack is detected and imaged in such a way that the object is displaced, relative to the focal plane of the detection optic and of the microlens array, in steps that permit Nyquist sampling but are smaller than a spacing of the object planes detected in one step for one position.
US15/744,877 2015-07-17 2016-07-18 Light sheet microscope for simultaneously imaging a plurality of object planes Active 2036-11-19 US10877254B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE102015111698 2015-07-17
DE102015111698 2015-07-17
DE102015111698.7 2015-07-17
DE102016109717 2016-05-25
DE102016109717.9 2016-05-25
DE102016109717 2016-05-25
PCT/EP2016/067033 WO2017013054A1 (en) 2015-07-17 2016-07-18 Light sheet microscope for simultaneously imaging a plurality of object planes

Publications (2)

Publication Number Publication Date
US20180203217A1 US20180203217A1 (en) 2018-07-19
US10877254B2 true US10877254B2 (en) 2020-12-29

Family

ID=56413695

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/744,877 Active 2036-11-19 US10877254B2 (en) 2015-07-17 2016-07-18 Light sheet microscope for simultaneously imaging a plurality of object planes

Country Status (5)

Country Link
US (1) US10877254B2 (en)
EP (1) EP3326019A1 (en)
JP (1) JP6934856B2 (en)
CN (1) CN107850767B (en)
WO (1) WO2017013054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067781B2 (en) * 2016-05-03 2021-07-20 Leica Microsystems Cms Gmbh Microscope and method for localizing fluorescent molecules in three spatial dimensions

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203822A (en) * 2016-05-09 2017-11-16 オリンパス株式会社 Illumination setting method, sheet illumination microscopic device, and program
EP3497502B1 (en) * 2016-08-15 2022-10-26 Leica Microsystems CMS GmbH Light sheet microscope
DE102017122718A1 (en) * 2017-09-29 2019-04-04 Carl Zeiss Microscopy Gmbh Method and apparatus for optically examining a plurality of microscopic samples
DE102017009804A1 (en) * 2017-10-20 2019-04-25 Vermicon Ag Method for evaluating microscopic samples and apparatus for carrying out this method
EP3575848A1 (en) * 2018-05-30 2019-12-04 Siemens Healthcare Diagnostics Inc. Analyser for three-dimensional analysis of a medical sample by means of a light field camera
DE102018210603A1 (en) * 2018-06-28 2020-01-02 Carl Zeiss Microscopy Gmbh Method for generating an overview image using a high aperture lens
IT201800007857A1 (en) * 2018-08-03 2020-02-03 Istituto Naz Fisica Nucleare DEVICE AND PROCEDURE FOR THE ACQUISITION OF MICROSCOPIC PLENOPTIC IMAGES WITH ATTENUATION OF TURBULENCE.
WO2020163349A1 (en) 2019-02-04 2020-08-13 Copious Imaging Llc Systems and methods for digital imaging using computational pixel imagers with multiple in-pixel counters
ES2779500B2 (en) 2019-02-15 2021-08-05 Univ Valencia MICROSCOPE FOR QUANTITATIVE MEASUREMENTS OF THE WAVE FRONT, MODULE AND KIT FOR MICROSCOPE, METHOD AND COMPUTER PROGRAM FOR THE COMPUTATIONAL RECONSTRUCTION OF THE WAVE FRONT
CN110262025A (en) * 2019-07-01 2019-09-20 达科为(深圳)医疗设备有限公司 A kind of digitlization pathology imaging device
CN111157500A (en) * 2020-01-06 2020-05-15 南开大学 Transient body imaging microscope system using light sheet crystal lattice array illumination
GB202001902D0 (en) * 2020-02-12 2020-03-25 Univ Oslo Microscope apparatus
CN113267141B (en) * 2020-03-09 2022-09-13 天目爱视(北京)科技有限公司 Microscopic three-dimensional information acquisition equipment
EP4137864A1 (en) * 2020-06-01 2023-02-22 Hamamatsu Photonics K.K. Sample observation device and sample observation method
DE102020210369B3 (en) * 2020-08-14 2021-11-25 Leica Microsystems Cms Gmbh Process, optical device, light sheet microscope and retrofit kit for generating light sheets by means of a retroreflector
DE102020128524A1 (en) * 2020-10-29 2022-05-05 Carl Zeiss Microscopy Gmbh Light sheet microscope and method of light sheet microscopy
DE102020213713A1 (en) * 2020-11-01 2022-05-05 Carl Zeiss Microscopy Gmbh Device and method for capturing image data
CN113391438B (en) * 2021-03-01 2023-05-30 清华大学 Multi-plane microscopic imaging system and imaging method based on micro lens
DE102021109153B4 (en) 2021-04-13 2022-12-22 Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel Method for improved optical resolution in large measuring volumes in telecentric shadowgraphy and device for carrying out the method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060241496A1 (en) * 2002-01-15 2006-10-26 Xillix Technologies Corp. Filter for use with imaging endoscopes
US20080266655A1 (en) * 2005-10-07 2008-10-30 Levoy Marc S Microscopy Arrangements and Approaches
US7936392B2 (en) 2004-10-01 2011-05-03 The Board Of Trustees Of The Leland Stanford Junior University Imaging arrangements and methods therefor
EP2244484B1 (en) 2009-04-22 2012-03-28 Raytrix GmbH Digital imaging method for synthesizing an image using data recorded with a plenoptic camera
US20120281264A1 (en) 2009-09-24 2012-11-08 Carl Zeiss Microimaging Gmbh Microscope
US20130176622A1 (en) 2012-01-11 2013-07-11 Howard Hughes Medical Institute Multi-Dimensional Imaging Using Multi-Focus Microscopy
US20140240559A1 (en) * 2013-02-26 2014-08-28 Kabushiki Kaisha Toshiba Solid state imaging device, portable information terminal, and solid state imaging system
US20140263963A1 (en) * 2013-03-15 2014-09-18 The Board Of Trustees Of The Leland Stanford Junior University Volume imaging with aliased views
WO2014147261A1 (en) 2013-03-22 2014-09-25 Leica Microsystems Cms Gmbh Spim arrangement
US20140375776A1 (en) * 2013-06-20 2014-12-25 The University Of North Carolina At Charlotte Wavelength discriminating imaging systems and methods
US20150177506A1 (en) 2013-12-19 2015-06-25 Olympus Corporation Microscope device and microscope system
WO2016020684A1 (en) 2014-08-05 2016-02-11 Imperial Innovations Limited Multiplexed optical tomography
US20180149854A1 (en) * 2015-05-28 2018-05-31 Carl Zeiss Microscopy Gmbh Light Sheet Microscopy Arrangement and Method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060241496A1 (en) * 2002-01-15 2006-10-26 Xillix Technologies Corp. Filter for use with imaging endoscopes
US7936392B2 (en) 2004-10-01 2011-05-03 The Board Of Trustees Of The Leland Stanford Junior University Imaging arrangements and methods therefor
US20080266655A1 (en) * 2005-10-07 2008-10-30 Levoy Marc S Microscopy Arrangements and Approaches
EP2422525B1 (en) 2009-04-22 2014-05-21 Raytrix GmbH Digital imaging system, plenoptic optical device and image data processing method
EP2244484B1 (en) 2009-04-22 2012-03-28 Raytrix GmbH Digital imaging method for synthesizing an image using data recorded with a plenoptic camera
US20120281264A1 (en) 2009-09-24 2012-11-08 Carl Zeiss Microimaging Gmbh Microscope
US20130176622A1 (en) 2012-01-11 2013-07-11 Howard Hughes Medical Institute Multi-Dimensional Imaging Using Multi-Focus Microscopy
US20140240559A1 (en) * 2013-02-26 2014-08-28 Kabushiki Kaisha Toshiba Solid state imaging device, portable information terminal, and solid state imaging system
US20140263963A1 (en) * 2013-03-15 2014-09-18 The Board Of Trustees Of The Leland Stanford Junior University Volume imaging with aliased views
WO2014147261A1 (en) 2013-03-22 2014-09-25 Leica Microsystems Cms Gmbh Spim arrangement
US20160048014A1 (en) 2013-03-22 2016-02-18 Leica Microsystems Cms Gmbh SPIM Arrangement
US20140375776A1 (en) * 2013-06-20 2014-12-25 The University Of North Carolina At Charlotte Wavelength discriminating imaging systems and methods
US20150177506A1 (en) 2013-12-19 2015-06-25 Olympus Corporation Microscope device and microscope system
WO2016020684A1 (en) 2014-08-05 2016-02-11 Imperial Innovations Limited Multiplexed optical tomography
US20180149854A1 (en) * 2015-05-28 2018-05-31 Carl Zeiss Microscopy Gmbh Light Sheet Microscopy Arrangement and Method

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Christoph Skupsch, et al., "Multiple-plane particle image velocimetry using a light-field camera", Optics Express, vol. 21, No. 2, Jan. 28, 2013, pp. 1726-1740.
Huisken J et al: "Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM)", Optics Letters, Optical Society of America, US, vol. 32, No. 17, Sep. 1, 2007 (Sep. 1, 2007), pp. 2608-2610, XP002508397.
HUISKEN J.; STAINER D. Y. R.: "Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM)", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, US, vol. 32, no. 17, 1 September 2007 (2007-09-01), US, pages 2608 - 2610, XP002508397, ISSN: 0146-9592, DOI: 10.1364/OL.32.002608
KAVYA MOHAN, SUBHAJIT B. PURNAPATRA, PARTHA PRATIM MONDAL: "Three Dimensional Fluorescence Imaging Using Multiple Light-Sheet Microscopy", PLOS ONE, vol. 9, no. 6, pages e96551, XP055277114, DOI: 10.1371/journal.pone.0096551
Kayva Mohan et al: "Three Dimensional Fluorescence Imaging Using Multiple Light-Sheet Microscopy", PLOS One, vol. 9, No. 6, Jun. 9, 2014 (Jun. 9, 2014), p. e96551, XP055277114.
M. Levoy, et al., "Recordings and controlling the 4D light field in a microscope using microlens arrays", Journal of Microscopy, vol. 235, pt. 2, Apr. 7, 2009, pp. 144-162.
Michael Broxton, et al., "Wave optics theory and 3-D deconvolution for the light field microscope", Optics Express, vol. 21, No. 21, Oct. 17, 2013, pp. 25418-25439.
Ober R J et al: "Simultaneous Imaging of Different Focal Planes in Fluorescence Microscopy for the Study of Cellular Dynamics in Three Dimensions", IEEE Transactions on Nanobioscience, IEEE Service Center, vol. 3, No. 4, Dec. 1, 2004 (Dec. 1, 2004), pp. 237-242, XP011122942.
OBER R.J., PRABHAT P., RAM S., WARD E.S.: "Simultaneous Imaging of Different Focal Planes in Fluorescence Microscopy for the Study of Cellular Dynamics in Three Dimensions", IEEE TRANSACTIONS ON NANOBIOSCIENCE., IEEE SERVICE CENTER, PISCATAWAY, NY., US, vol. 3, no. 4, 1 December 2004 (2004-12-01), US, pages 237 - 242, XP011122942, ISSN: 1536-1241, DOI: 10.1109/TNB.2004.837899
Partha Pratim Mondal, et al., "Efficient generation of diffraction-limited multi-sheet pattern for biological imaging", Optics Letters, vol. 40, No. 4, Feb. 15, 2015, pp. 609-612.
Robert Prevedel, et al., "Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy", Nature Methods 11, Jan. 21, 2014, pp. 1-19.
Subhajit B. Purnapatra, et al., "Generation of multiple sheets of light using spatial-filtering technique", Optics Letters, vol. 39, No. 16, Aug. 15, 2014, pp. 4715-4718.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067781B2 (en) * 2016-05-03 2021-07-20 Leica Microsystems Cms Gmbh Microscope and method for localizing fluorescent molecules in three spatial dimensions

Also Published As

Publication number Publication date
US20180203217A1 (en) 2018-07-19
JP2018520388A (en) 2018-07-26
JP6934856B2 (en) 2021-09-15
CN107850767B (en) 2021-09-28
EP3326019A1 (en) 2018-05-30
CN107850767A (en) 2018-03-27
WO2017013054A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
US10877254B2 (en) Light sheet microscope for simultaneously imaging a plurality of object planes
US11604342B2 (en) Microscopy devices, methods and systems
JP6967560B2 (en) High resolution scanning microscope
JP6208157B2 (en) High resolution scanning microscope
US9810896B2 (en) Microscope device and microscope system
US10371932B2 (en) Light field imaging with scanning optical unit
US10514533B2 (en) Method for creating a microscope image, microscopy device, and deflecting device
US10429301B2 (en) Method and apparatus for investigating a sample by means of optical projection tomography
WO2015039806A1 (en) Laser scanning microscope and method for correcting imaging aberrations more particularly in high-resolution scanning microscopy
CA2973361A1 (en) Multichannel line scan sted microscopy, method and device
US20220043246A1 (en) Microscope and method for microscopic image recording with variable illumination
JP2019532360A (en) Optical group for microscope detection light, method for microscopy, and microscope
US11016277B2 (en) Method and device for examination of a sample
US10191263B2 (en) Scanning microscopy system
US20220137388A1 (en) Device and method for rapid three-dimensional capture of image data
CN111175259A (en) Method and apparatus for acceleration of three-dimensional microscopy with structured illumination
US20130250088A1 (en) Multi-color confocal microscope and imaging methods
CN108885336B (en) Method and microscope for investigating a sample
JP6928757B2 (en) Systems and methods for image processing in light microscopy
US20140293037A1 (en) Optical microscope and method for examining a microscopic sample
US10866396B2 (en) Illumination arrangement for a light sheet microscope
JP5822067B2 (en) Microscope equipment
US20220137383A1 (en) Apparatus and method for capturing image data
CN117369106B (en) Multi-point confocal image scanning microscope and imaging method

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: LEICA MICROSYSTEMS CMS GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNEBEL, WERNER;FAHRBACH, FLORIAN;SIGNING DATES FROM 20171215 TO 20180108;REEL/FRAME:044707/0110

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE