US10852410B2 - Angle estimating apparatus and angle estimating method - Google Patents
Angle estimating apparatus and angle estimating method Download PDFInfo
- Publication number
- US10852410B2 US10852410B2 US14/878,846 US201514878846A US10852410B2 US 10852410 B2 US10852410 B2 US 10852410B2 US 201514878846 A US201514878846 A US 201514878846A US 10852410 B2 US10852410 B2 US 10852410B2
- Authority
- US
- United States
- Prior art keywords
- angle
- circuit
- error
- estimating
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims description 60
- 238000011156 evaluation Methods 0.000 claims abstract description 69
- 239000013598 vector Substances 0.000 claims abstract description 67
- 239000011159 matrix material Substances 0.000 claims description 77
- 238000001228 spectrum Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 abstract description 18
- 230000006870 function Effects 0.000 description 39
- 238000010586 diagram Methods 0.000 description 18
- 238000001514 detection method Methods 0.000 description 9
- 238000012935 Averaging Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 206010057239 Post laminectomy syndrome Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/74—Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4021—Means for monitoring or calibrating of parts of a radar system of receivers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
Definitions
- the embodiments discussed herein are related to an angle estimating apparatus and an angle estimating method.
- One conventional apparatus generates a covariance matrix using baseband signal vectors generated by demodulating waves received by plural sensors and reflected from a target.
- the apparatus extracts a submatrix, and uses eigenvalues of a regular matrix calculated from the submatrix, to calculate the angle of the target (for example, refer to Japanese Laid-Open Patent Publication No. 2012-103132).
- Another conventional apparatus combines correlation vectors of baseband signals (hereinafter, expressed as simply “reception signals” when there is no confusion) generated from arriving signals received by plural sensors.
- the apparatus obtains a spatial average covariance matrix R, and uses (RR H ) ⁇ 1 (H: complex conjugate transpose) from the spatial average covariance matrix R to estimate the arrival direction of an arriving signal from angular distribution or an algebraic equation (for example, refer to Published Japanese-Translation of PCT Application, Publication No. 2006/067869).
- an angle estimating apparatus includes a receiving circuit configured to include a signal processor and plural receiving elements, and to use a weight set by calibration to weight respective signals incident to the plural receiving elements; an estimating circuit configured to estimate based on the respective signals weighted by the receiving circuit, an incident angle of the respective signals; a storing circuit configured to store a measured value of a mode vector reflecting characteristics of the receiving circuit in an error-free state of the weight for the characteristics of the receiving circuit, and to correlate and store the incident angle of the respective signals estimated by the estimating circuit and for the error-free state, a calculation result of an evaluation value by an evaluation function capable of calculating the evaluation value, which varies according to the incident angle of the respective signals and error; a detecting circuit configured to calculate the evaluation value based on the evaluation function and the measured value of the mode vector stored by the storing circuit, when the incident angle of the respective signals estimated by the estimating circuit is an angle corresponding to a value close to the incident angle of the respective signals stored by the storing circuit, and to detect
- FIG. 1 is a block diagram of a functional configuration of an angle estimating apparatus according to a first embodiment
- FIG. 2 is a diagram depicting an example of configuration of an angle estimating apparatus
- FIG. 3 is a diagram depicting an example of hardware configuration of a signal processor
- FIG. 4 is a diagram depicting an example of application of the angle estimating apparatus to a radar apparatus of a vehicle
- FIG. 5 is a diagram depicting calculation results in a case where angle estimation is performed by a Q-ESPRIT technique
- FIGS. 6A and 6B are diagrams depicting angular spectrum with respect to angle and distance in a case of two targets being present;
- FIG. 7 is a diagram depicting the angular spectrum when distance is constant
- FIG. 8 is a diagram (part 1 ) depicting an example of detection of an occurrence of calibration error.
- FIG. 9 is a diagram (part 2 ) depicting an example of the detection of the occurrence of calibration error.
- FIG. 1 is a block diagram of a functional configuration of an angle estimating apparatus according to the first embodiment.
- An angle estimating apparatus 100 is used in an apparatus that uses ultrasonic waves, electromagnetic waves, light, etc. to search for, sense, measure the distance of, or measure the angle of an object. More specifically, the angle estimating apparatus 100 is used with sonar, radar, etc.
- the angle estimating apparatus 100 has a receiving circuit 101 , an estimating unit 102 , a storing unit 103 , and a detecting unit 104 .
- the receiving circuit 101 includes plural receiving units 105 and non-depicted amplifiers that amplify signals received by the receiving units 105 .
- the receiving units 105 for example, are sensor arrays, antennas, etc.
- the receiving circuit 101 includes, for example, an amplifier, a mixer, a filter, an analog to digital (A/D) converter, and a signal processing unit (SPU).
- the receiving circuit 101 uses a weight set by calibration, to weight signals incident to the receiving units 105 .
- the signals are signals that are transmitted from a non-depicted transmitting unit and reflected by a target. Calibration, for example, is performed at the time of factory shipping.
- the estimating unit 102 estimates the incident angles of the signals weighted by the receiving circuit 101 .
- the storing unit 103 stores measured values of mode vectors (error-free mode vectors) reflecting characteristics of the receiving circuit 101 in a state when there is no error (hereinafter, “calibration error”) of the weight for characteristics of the receiving circuit 101 . Further, the storing unit 103 correlates and stores for the state when there is no calibration error, calculation results of evaluation values (reference values) calculated by the estimating unit 102 using an evaluation function and incident angles of signals.
- the evaluation function is a function capable of calculating an evaluation value that varies according to the calibration error and the incident angle of the signals.
- the storing unit 103 correlates and stores the evaluation value of a mode vector for case where the incident angle is 1 degree in a state when there is no calibration error, the calculation result (above reference value) for an evaluation value calculated by the evaluation function, and a one-degree incident angle estimated by the estimating unit 102 .
- a measured value of a (error-free) mode vector for a case where the incident angle is 1 degree in a state when there is no calibration error will be referred to as simply a measured value of a mode vector when there is no confusion.
- the storing unit 103 may correlate and store calculation results for evaluation values corresponding to plural incident angles and plural incident angles.
- the detecting unit 104 calculates an evaluation value based on the evaluation function and measured values of mode vectors stored by the storing unit 103 , when the incident angle of the signals estimated by the estimating unit 102 is an angle corresponding to a value close to an incident angle of a signal stored by the storing unit 103 .
- an angle corresponding to a value close to an incident angle of a signal stored by the storing unit 103 may be the same angle as an incident angle of a signal stored by the storing unit 103 or a close angle.
- the incident angle corresponding to a one-degree incident angle of a signal stored by the storing unit 103 is 1 degree or a close angle.
- a concrete definition of close is, for example, several a degrees with respect to the angle estimating resolution performance of the apparatus.
- a is a value representing angle, not noise power.
- the detecting unit 104 calculates the evaluation value (calculated value) based on an incident angle that corresponds to an incident angle of a signal stored by the storing unit 103 , a measured value of a mode vector, and an evaluation function.
- the detecting unit 104 further detects the occurrence of calibration error, based on comparison of the calculated evaluation value and the evaluation value (reference values) stored by the storing unit 103 .
- the detecting unit 104 for example, detects the occurrence of calibration error by the ratio of the calculated evaluation value and the evaluation value stored by the storing unit 103 . For example, when rate of the calculated evaluation value and the evaluation value stored by the storing unit 103 differs from 1, the detecting unit 104 detects that calibration error has occurred.
- the estimating unit 102 estimates the incident angles of signals, based on signal spatial phase differences between the plural receiving units. More specifically, the estimating unit 102 estimates the incident angles of signals by Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT).
- ESPRIT Rotational Invariance Techniques
- the estimating unit 102 further calculates a covariance matrix of the signals weighted by the receiving circuit 101 and estimates the incident angles of signals, based on a spectral scanning process.
- Techniques of estimating the incident angle based on a spectral scanning process include Capon techniques, Multiple SIgnal Classification (MUSIC) techniques, prism techniques, and linear prediction (LP).
- FIG. 2 is a diagram depicting an example of configuration of the angle estimating apparatus.
- the angle estimating apparatus 100 has an oscillator circuit 201 , a directional coupler 202 , a power amplifier 203 , a transmission antenna 204 , a reception antenna 205 , a low noise amplifier 206 , a mixer 207 , an A/D converter 208 , and a signal processor 209 .
- a baseband circuit such as a low pass filter (LPF) is generally disposed between the mixer 207 and the A/D converter 208 , to simplify the description, such components will not be described.
- LPF low pass filter
- the oscillator circuit 201 has a radio frequency-voltage controlled oscillator (RF-VCO) 111 and a baseband-oscillator (BB-OSC) 112 .
- the RF-VCO 111 is an oscillator that controls the oscillation frequency by voltage.
- the BB-OSC 112 obtains a frequency modulated continuous wave (FMCW) signal by adding a modulation signal to the RF-VCO 111 and performing frequency modulation, and outputs the FMCW signal to the directional coupler 202 .
- FMCW frequency modulated continuous wave
- the directional coupler 202 outputs to the power amplifier 203 and the mixer 207 , the signal output from the oscillator circuit 201 .
- the power amplifier 203 amplifies the power of the signal output from the directional coupler 202 and outputs the signal to the transmission antenna 204 .
- the transmission antenna 204 is a transmission sensor array having M (in this example, 1) sensor elements. The transmission antenna 204 transmits as a probe signal to a target sensing range, the signal output from the power amplifier 203 .
- the reception antenna 205 is a reception sensor array having N (in this example, 4) sensor elements.
- the reception antenna 205 receives reflected signals that, for example, are transmitted from the transmission antenna 204 and reflected by a target object such as a vehicle in front.
- the reception antenna 205 outputs the received signal to the low noise amplifier 206 .
- the low noise amplifier 206 amplifies the signal output from the reception antenna 205 and outputs the signal to the mixer 207 .
- the mixer 207 mixes the signal output from the low noise amplifier 206 and a signal output from the directional coupler 202 , and outputs the mixed signal to the A/D converter 208 .
- the A/D converter 208 converts the analog signal output from the mixer 207 into a digital signal and outputs the digital signal to the signal processor 209 .
- the signal processor 209 has an estimating unit 221 , an angle matrix reproducing unit 222 , a reference value table 223 , and a spectrum comparing unit 224 .
- the estimating unit 221 uses the signal output from the A/D converter 208 , to estimate the distance, speed, angle, etc. of a target by a known technique, and outputs the estimation results to the angle matrix reproducing unit 222 .
- the angle matrix reproducing unit 222 uses the estimation results output from the estimating unit 221 , to reproduce an angle matrix, and outputs the angle matrix to the reference value table 223 and the spectrum comparing unit 224 .
- the reference value table 223 records error-free mode vectors and the angle matrix output from the angle matrix reproducing unit 222 , updates reference values for determining calibration abnormalities, etc.
- the spectrum comparing unit 224 compares the matrix output from the angle matrix reproducing unit 222 and a reference value recorded in the reference value table 223 to determine whether a calibration error is present.
- the receiving units 105 depicted in FIG. 1 are realized by the reception antenna 205 . Further, the receiving circuit 101 described in FIG. 1 , for example, is realized by the low noise amplifier 206 and the mixer 207 .
- FIG. 3 is a diagram depicting an example of hardware configuration of the signal processor.
- the signal processor 209 includes a central processing unit (CPU) 301 , memory 302 , and an interface 303 .
- the CPU 301 , the memory 302 , and the interface 303 are connected by a bus 309 .
- the CPU 301 governs overall control of the signal processor 209 .
- the memory 302 for example, includes main memory and auxiliary memory.
- the main memory for example, is random access memory (RAM).
- the main memory is used as a work area of the CPU 301 .
- the auxiliary memory for example, is non-volatile memory such as a magnetic disk, an optical disk, and flash memory.
- the auxiliary memory stores various types of programs operate the signal processor 209 . Programs stored in the auxiliary memory are load onto the memory and executed by the CPU 301 .
- the interface 303 includes a user interface and a communications interface.
- the user interface for example, includes an input device that receives operation input from a user and an output device that outputs information to the user.
- the communications interface for example, is an interface that communicates wirelessly or by a cable, with an external apparatus of the signal processor 209 .
- the interface 303 is controlled by the CPU 301 .
- Functions of the estimating unit 102 , the storing unit 103 , and the detecting unit 104 depicted in FIG. 1 are realized by executing on the CPU 301 , the programs stored in the memory 302 .
- the receiving circuit 101 may be controlled.
- functions of the estimating unit 221 , the angle matrix reproducing unit 222 , and the spectrum comparing unit 224 depicted in FIG. 2 are realized by executing on the CPU 301 , the programs stored in the memory 302 .
- Functions of the storing unit 103 depicted in FIG. 1 and the reference value table 223 depicted in FIG. 2 are implemented by the memory 302 .
- FIG. 4 is a diagram depicting an example of application of the angle estimating apparatus to a radar apparatus of a vehicle.
- the radar apparatus equipped on a vehicle 400 senses vehicles 401 , 402 in front and measures the distance.
- the vehicle 401 is located in front of the vehicle 400 at an angle of + ⁇ .
- the vehicle 402 is located in front of the vehicle 400 at an angle of ⁇ .
- the radar apparatus emits a probe signal in a target sensing range in front, receives the reflected signal returning from the vehicles 401 , 402 after reflection, and estimates arrival angle (incident angle) of the reflected signal.
- the radar apparatus (the angle estimating apparatus 100 ) of the present disclosure detects whether an error in the calibration (weight) used when estimating angle has occurred.
- the transmission antenna 204 count M is assumed to be 1 and the reception antenna 205 count N is assumed to be 4.
- the reception antenna 205 is assumed to be disposed in a straight line at equal intervals d along the X axis.
- the reception antenna 205 with such a configuration is called a uniform linear array (ULA).
- K targets are present within a sensing range and when a probe signal transmitted from the transmission antenna 204 is reflected by each of the targets, these reflected RF echo signals are received by the reception antenna 205 .
- the RF echo signals are assumed to be incident at mutually differing angles ⁇ k with respect to a direction (Y axis) orthogonal to the array axis as a 0 reference.
- an echo signal is a signal that estimates the arrival direction and thus, the arrival direction of an echo signal is the angle of a target.
- an echo signal v n (t) obtained by mixing and demodulating the probe signal and the RF echo signal received by an n-th antenna can be expressed by equation (1), where a first reception antenna 205 is assumed to be a phase reference. Further, spatial phase ⁇ can be expressed by equation (2).
- g n ( ⁇ k ) represents characteristics of an n-th antenna element
- x k (t) represents a baseband signal
- n n (t) represents a noise signal
- ⁇ n,k represents a reception phase of an m-th wave at an element when an element 1 is a reference
- ⁇ represents the wavelength of the carrier wave
- j represents an imaginary unit
- t represents time.
- equation (3) is obtained.
- a ⁇ [ a ⁇ ( ⁇ 1 ) , ... ⁇ , a ⁇ ( ⁇ K ) ] [ g 1 ⁇ ( ⁇ 1 ) ⁇ exp ⁇ ( j ⁇ ⁇ ⁇ 1 , 1 ) ... g 1 ⁇ ( ⁇ K ) ⁇ exp ⁇ ( j ⁇ ⁇ ⁇ 1 , K ) ⁇ ⁇ g N ⁇ ( ⁇ 1 ) ⁇ exp ⁇ ( j ⁇ ⁇ ⁇ N , 1 ) ... g N ⁇ ( ⁇ K ) ⁇ exp ⁇ ( j ⁇ ⁇ ⁇ N , K ) ] ( 4 ) ⁇ x ⁇ ( t ) ⁇ [ x 1 ⁇ ( t ) , ... ⁇ , x K ⁇ ( t ) ] T ( 5 ) ⁇ n ⁇ ( t ) ⁇ [ n 1 ⁇ ( t ) , ... ⁇ ,
- v(t) represents an output signal vector
- x(t) represents a baseband vector
- n(t) represents a noise vector
- a( ⁇ k ) represents a mode vector (directional vector)
- T represents transposition.
- Equation (7) When a covariance matrix for v(t) is calculated from equation (3) when there is no correlation between x(t) and n(t), equation (7) is obtained.
- R vv is a basic target equation for estimating the arrival direction.
- R vv is an N ⁇ N covariance matrix.
- E ⁇ • ⁇ represents an expected value (ensemble or time average)
- H represents a complex conjugate transpose
- I represents a unit matrix
- ⁇ 2 represents variance (noise power) of a noise vector n(t)
- ⁇ 2 I represents a noise vector covariance matrix.
- R xx is a baseband signal covariance matrix defined by equation (8).
- R xx E [ x ( t ) x H ( t )] (8)
- R xx is K ⁇ K baseband signal covariance matrix.
- time t is omitted.
- An angle vector a( ⁇ ) generated with ⁇ as a parameter can be expressed by equation (10).
- a ( ⁇ ) ⁇ [ g 1 ( ⁇ ), . . . , g N ( ⁇ )exp[ j ⁇ ( N ⁇ 1)sin( ⁇ )]] T , ⁇ 2 ⁇ d/ ⁇ (10)
- an angle vector P capon ( ⁇ ) of equation (11) can be defined using an inverse matrix R vv ⁇ 1 of R vv and equation (10).
- P capon ( ⁇ ) is calculated while parameter ⁇ is varied and with the value of ⁇ indicating the peak, can be used as angle information of the target.
- R vv cannot be an inverse matrix. Therefore, in general, after performing a process called spatial averaging to restore the rank of R vv , angle estimation from the inverse matrix or eigenvalue is performed (herein, R vv after spatial averaging will also be indicated as R vv ). Here, this technique will be briefly described.
- extracting a submatrix from R vv and applying an averaging process means that characteristics g n ( ⁇ k ) of the element antennas of equation (4) are reflected in the estimation accuracy of the angle of a target, in a calculated manner.
- a 0 ⁇ [ a 0 ⁇ ( ⁇ 1 ) , ... ⁇ , a 0 ⁇ ( ⁇ K ) ] [ exp ⁇ ( j ⁇ ⁇ ⁇ 1 , 1 ) ... exp ⁇ ( j ⁇ ⁇ ⁇ 1 , K ) ⁇ ⁇ exp ⁇ ( j ⁇ ⁇ ⁇ N , 1 ) ... exp ⁇ ( j ⁇ ⁇ ⁇ N , K ) ] ( 12 )
- a reception signal w(t) when a calibration error occurs after calibration is first performed can be expressed by equation (14).
- w ( t ) C [ A 0 x ( t )+ n ( t )] (14)
- estimation results obtained by an ESPRIT technique will be described. As described above, if angle estimation is performed in this state, the estimated value includes error. Thus, with reference to FIG. 5 , calculation results in a case where angle estimation is performed by a quick(Q)-ESPRIT technique will be described.
- the Q-ESPRIT technique for example, is the same technique as the “high-speed ESPRIT technique” recited in Japanese Laid-Open Patent Publication No. 2012-103132.
- FIG. 5 is a diagram depicting calculation results in a case where angle estimation is performed by a Q-ESPRIT technique.
- the horizontal axis represents distance (bin index) and the vertical axis represents estimated angles (Estimated Azimuth).
- the distance is assumed to be 20 m (28bin) and 2 targets having a speed of 0 km/h are assumed to be present at positions of angles ⁇ 3 degrees.
- the unit “bin” of the horizontal axis in FIG. 5 represents a separator (index) of Fast Fourier Transform (FFT) and corresponds to distance. 28bin, for example, corresponds to a distance of 20 m.
- FFT Fast Fourier Transform
- solid lines indicate calculation results in a case of no calibration error.
- broken lines indicate calculation results in a case where a calibration error of ⁇ 0.75 dB occurs at the reception antennas 205 b , 205 c.
- curve 501 indicates the calculation results for the targets at the positions of an angle of +3 degrees in a case of no calibration error
- Curve 502 indicates the calculation results for the targets at the positions of an angle of +3 degrees in a case where calibration error has occurred.
- Curve 503 indicates calculation results for the target at the position of an angle of ⁇ 3 degrees in a case of no calibration error
- Curve 504 indicates the calculation results for the target at the position of angle of ⁇ 3 degrees in a case where calibration error has occurred.
- the occurrence of a calibration error of a mere 0.75 dB results in an estimation error of about 0.5 degrees.
- FIGS. 6A and 6B are diagrams depicting angular spectrum with respect to angle and distance in a case of 2 targets being present.
- FIGS. 6A and 6B similar to FIG. 5 , for example, 2 targets having a speed of 0 km/h are assumed to be present at positions of a distance of 20 m (28bin) and angles of ⁇ 3 degrees.
- FIG. 6A depicts the angular spectrum calculated using a PRISM technique.
- FIG. 6B depicts the angular spectrum calculated using a MUSIC technique (forward-backward spatial smoothing (FBSS: forward-backward spatial averaging)-MUSIC technique).
- FBSS forward-backward spatial smoothing
- the horizontal axis in FIGS. 6A and 6B represents angle and the vertical axis represents distance.
- FIGS. 6A and 6B when the angular spectrum concentrates at the 2 assumed target positions, i.e., the greater the extent to which the angular spectrum is displayed as points in a vicinity of the 2 targets, indicates that the arrival direction of the target has been estimated with high accuracy.
- an angular spectrum is depicted ⁇ 3 degrees along the horizontal axis and in a vicinity of 28bin on the vertical axis.
- an angular spectrum is depicted ⁇ 3 degrees along the horizontal axis and in a vicinity of 28bin on the vertical axis.
- FIGS. 6A and 6B the occurrence of error is difficult to assess and therefore, in FIG. 7 , at the distance at which the targets are present, angular spectra (a), (b) depicted in FIGS. 6A and 6B are cross-sectioned from a top portion of the paper to a bottom portion and depicted, where the horizontal axis represents angle (similar to FIGS. 6A, 6B ) and the vertical axis represents spectrum (Z axis in FIG. 6A, 6B ).
- FIG. 7 is a diagram depicting the angular spectrum when the distance is constant. In FIG.
- curves 701 , 702 indicate calculation results by each technique in a case where 2 targets are placed at positions of ⁇ 3 degrees, 20 m from the radar. More specifically, curve 701 indicates calculation results by a MUSIC technique. Curve 702 indicates calculation results by a PRISM technique. In both curves 701 , 702 , the peaks deviate from the positions of ⁇ 3 degrees and the occurrence of estimation error is clear.
- an evaluation function f(C, ⁇ ) is used where the value for angle ⁇ varies in response to only calibration error C.
- w 1 and w 2 are signals from subarrays (reception antennas 205 a to 205 c ) and (reception antennas 205 b to 205 d ).
- C elements are not far from 1, the rotation invariant relation of equation (16) is established between the 2 subarrays, which are basic premises of the ESPRIT technique.
- Equation (16) can be rewritten as equation (17).
- evaluation function f(C, ⁇ ) indicated by equation (20) can be obtained.
- evaluation function f(C, ⁇ ) indicated by equation (20) is a function expressed using a matrix W that is based on a combination of matrices V, ⁇ obtained by decomposing into eigenvalues, a given matrix U 1 ⁇ 1 U 2 (refer to equation (18)) obtained when angle estimation is performed at the estimating unit 102 depicted in FIG. 1 .
- R vv N ⁇ 1
- a value (C, ⁇ k ) of evaluation function f(C, ⁇ ) corresponding to ⁇ k is calculated using equation (20).
- the calculated value f(C, ⁇ k ) and a reference value f(I, ⁇ m ) are compared and if the difference, ratio, etc. exceeds a predetermined threshold, it can be determined that calibration error has occurred.
- Evaluation function f(C, ⁇ ) responds to arrival angle and calibration error and therefore, the occurrence of calibration error can be detected by comparison of f(I, ⁇ m ) and f(C, ⁇ k ).
- the reference value f(I, ⁇ m ), similar to the calculated value f(C, ⁇ k ), is a value calculated by the Q-ESPRIT technique.
- equation (21) clearly holds.
- the magnitude of calibration error is estimated using a diagonal element of matrix: C(A 0 A 0 H )C H and an error-free mode vector a 0 ( ⁇ k ).
- the detecting unit 104 depicted in FIG. 1 can detect based on a value related to the difference obtained from the diagonal element of WW H in equation (20), the receiving unit 105 (reception antenna 205 ) at which error occurred. More specifically, the error related value, for example, is
- diag[( WW H )] [
- 2 ⁇ k 1 K
- 2 ⁇ k 1 K
- the diagonal element of WW H is proportional to the square of the calibration error.
- 2 are all 1 when there is no calibration error.
- 2 is 1.
- the detecting unit 104 depicted in FIG. 1 further detects an amplitude component of the calibration error, based on the square root of the value (
- FIG. 8 is a diagram (part 1 ) depicting an example of the detection of the occurrence of calibration error.
- the graph in FIG. 8 depicts an example of detection of the occurrence of calibration error when equation (20) is used.
- the horizontal axis represents angle and the vertical axis represents angular correlation.
- the angular correction value corresponding to a position ⁇ m on the horizontal axis indicates the value f(I, ⁇ m ) of the evaluation function corresponding to the true angle ⁇ m in an error-free state.
- curve 802 indicates the angular correlation when calibration error occurs.
- the value f(C, ⁇ k ) of the evaluation function of an arrival angle ⁇ k estimated after the occurrence of the calibration error C is a low value compared to the reference value.
- the level shifts above/below curve 801 corresponding to whether the calibration error is positive/negative.
- the angle estimating apparatus 100 determines that calibration error has occurred when the difference between curves 801 and 802 exceeds a threshold.
- the angle estimating apparatus 100 compares the calculated value f(C, ⁇ k ) obtained by evaluation function f(C, ⁇ ) for which the value for angle ⁇ varies in response to the calibration error C and the reference value f(I, ⁇ m ) for an error-free state. Therefore, the occurrence of calibration error can be detected autonomously during operation of the angle estimating apparatus 100 . More specifically, even in a state where the actual arrival angle of a reception signal is unknown, the occurrence of calibration error can be detected.
- a warning may be given, whereby the user can be prompted to correct (repair) the calibration error.
- a correction process may be performed using the units described above or hereinafter. As a result, drops in the estimation accuracy of arrival angles by the angle estimating apparatus 100 can be suppressed.
- the second embodiment of the angle estimating apparatus 100 will be described.
- estimation of calibration error by an ESPRIT technique is described.
- estimation of calibration error by a spectral scanning technique will be described.
- parts differing from the first embodiment will be described.
- Equation (10) becomes a different equation that includes calibration error.
- the mode vector can be modeled using characteristics for the angle ⁇ of respective antenna elements as indicated by equation (23)
- a model b( ⁇ ) of the mode vector is generated using previous data b 0 ( ⁇ m ) and is similarly stored in the storing unit 103 .
- g is the overall characteristics of the receiving circuit 101 (more specifically, analog circuits from the reception antennas 205 a to d to the A/D converter 208 in FIG. 2 ).
- the detecting unit 104 substitutes the estimated angle into the mode vector model above.
- ⁇ in equation (24) is a variable.
- the value f(C, ⁇ k ) calculated when an arrival angle ⁇ k close to ⁇ m is detected can be calculated using the evaluation function f(C, ⁇ ) indicated by equation (24).
- the value of the calculated value f(C, ⁇ k ) and the reference value f(I, ⁇ m ) are compared and when the difference exceeds a predetermined threshold, it can be determined that calibration error has occurred.
- the reference value f(I, ⁇ m ) is a value calculated by a spectral scanning technique like the calculated value f(C, ⁇ k ).
- FIG. 9 is a diagram (part 2 ) depicting an example of the detection of the occurrence of calibration error.
- the graph in FIG. 9 depicts an example of calibration error detection using equation (24).
- the horizontal axis represents angle and the vertical axis represents angular correlation.
- Curve 901 in FIG. 9 indicates error-free values (reference values).
- curve 902 depicts a case where calibration error occurs.
- the level shifts above/below curve 901 corresponding to whether the calibration error is positive/negative.
- the angle estimating apparatus 100 of the third embodiment will be described.
- calibration error detection that takes phase error into consideration will be described.
- parts differing from the first and second embodiments will be described.
- the detecting unit 104 depicted in FIG. 1 extracts from among the output signals of the reception antennas 205 , a combination of 2 signals originating from mutually different antennas. For each combination, the detecting unit 104 calculates the spatial phase between the 2 signals, based on the interval of the receiving units 105 (reception antennas 205 ) making up the combination and an estimation result calculated by the estimating unit 102 using the 2 signals obtained from the combination. The detecting unit 104 further detects the occurrence of error in the weight for the characteristics of the receiving circuit 101 , based on the difference (spatial phase difference) calculated for each combination.
- ⁇ r is a constant defined by d r and therefore, equation (26) is obtained concerning phase.
- Equation (26) is obtained for N C 2 sets. If there is no calibration error, each ⁇ r should take on the same value. Therefore, if ⁇ r deviate from one another, phase error (calibration error) is determined to have occurred.
- phase error calibration error
- Equation (26) is obtained for N C 2 sets. If there is no calibration error, each ⁇ r should take on the same value. Therefore, if ⁇ r deviate from one another, phase error (calibration error) is determined to have occurred.
- parameter vector ⁇ defining an evaluation function ⁇ (C; ⁇ ) by equation (27), and obtaining as a least squares problem, a value of ⁇ that minimizes the equation, the solution is an estimated value of the phase error.
- equation (27) one example of expansion is depicted.
- phase error in calibration error can be detected.
- the occurrence of calibration error (phase error) during operation of the angle estimating apparatus 100 can be detected autonomously. More specifically, even in a state where the actual arrival angle of a reception signal is unknown, phase error can be detected by such operations as above.
- the angle estimating apparatus 100 of the fourth embodiment will be described.
- detection of calibration error using a noise-specific vector E n will be described.
- parts differing from the first to third embodiments will be described.
- the detecting unit 104 depicted in FIG. 1 calculates an evaluation value by an evaluation function, based on a measured value of a mode vector stored by the storing unit 103 , when an incident angle of signals estimated by the estimating unit 102 is a given incident angle (e.g., ⁇ k ).
- the evaluation function is a function that can calculate an evaluation value that varies according to the incident angle of signals and the calibration error.
- the matrix W is a matrix based on a measured value of a mode vector stored by the storing unit 103 and a function that can calculate an evaluation value that varies according to the incident angle of signals and the calibration error.
- the matrix W for example, can be expressed by equation (28).
- V is a matrix obtained from eigenvectors that decompose into eigenvalues, a given matrix (e.g., U 1 ⁇ 1 U 2 (refer to equation (18))) that is used when angle estimation is performed at the estimating unit 102 .
- ⁇ represents eigenvalues of the given matrix (e.g., U 1 ⁇ 1 U 2 ).
- L is a vector that similar to J 1 and J 2 , extracts a specific element from a matrix (refer to equation (16)).
- 0 1 x 2 representing L represents 1-row, 2-column row vector; 1 represents the scalar (The column count of L is defined to be equivalent to the row count of V ⁇ H , and the value of only one column is 1. In this example, the final element is indicated as 1).
- L can be expressed by 0 m x n , which represents an m-row, n-column row vector. In this case, the value of only one column may be 1, or the value of only one column may be a value other than 1.
- the matrix W can be a matrix that is based on a combination V, ⁇ of plural matrices obtained when a given matrix U 1 ⁇ 1 U 2 (refer to equation (18)) used when the incident angle of signals is estimated based on the spatial phase difference of signals at the receiving units 105 .
- the matrix W can be an angle matrix defined by equations (23) and (24) in the second embodiment.
- the detecting unit 104 detects the occurrence of calibration error, based on the evaluation function, the noise-specific vector E n , and the matrix W.
- the detecting unit 104 may obtain from the storing unit 103 , a noise-specific vector E n pre-stored in the storing unit 103 , when the incident angle of signals estimated by the estimating unit 102 is a given incident angle. Further, the detecting unit 104 may calculate the noise-specific vector E n , when the incident angle of signals estimated by the estimating unit 102 is a given incident angle.
- a noise-specific vector E n is a value calculated in a calibration error-free state.
- a noise-specific vector E n for example, is a value that can be calculated only when the difference of “the reception antenna 205 count” less “the signal count” is 1 or greater.
- the signal count is the number of targets. For example, when there are 4 of the reception antennas 205 , the noise-specific vector E n is a vector that can be calculated when the target count is 3 or less.
- a noise-specific vector E n is a noise-specific vector calculated using a MUSIC technique.
- the MUSIC technique is a technique of applying eigenvalue decomposition to a signal covariance matrix, expressing the matrix by vectors spanning signal-specific space and vectors spanning noise-specific space, and performing angle estimation of a target using the orthogonality of signal subspace and noise subspace.
- Equation (29) a relational expression obtained by decomposing the signal covariance matrix R vv into eigenvalues is indicated.
- E s is a matrix having as elements, eigenvectors spanning the signal subspaces;
- E n is a matrix having as elements, vectors spanning the noise subspaces;
- ⁇ s is an eigenvalue between signal subspaces;
- ⁇ 2 is the noise power.
- v arrival signals, s represents signals, and n represents noise.
- R vv E s ⁇ s E s H + ⁇ 2 E n E n H (29)
- the occurrence of calibration error can be detected autonomously during operation of the angle estimating apparatus 100 . More specifically, even in a state where the actual arrival angle of a reception signal is unknown, the occurrence of calibration error can be detected.
- the occurrence of calibration error can be detected.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
R w =E{v(t)v H(t)}=AR xx A H+σ2 I (7)
R xx =E[x(t)x H(t)] (8)
rank(R w)=rank(R xx)<K (9)
a(θ)≡[g 1(θ), . . . ,g N(θ)exp[jα(N−1)sin(θ)]]T,α=2πd/λ (10)
C≡diag[c 1 , . . . ,c N] (13)
w(t)=C[A 0 x(t)+n(t)] (14)
w 1 =J 1 Cv, J 1=[I 30]∈R 3×4
w 2 =J 2 Cv, J 2=[0I 3]∈R 3×4 (15)
J 1 CA 0 =
U 1 ≡w 1 w 1 H =
U 2 ≡w 1 w 2 H =
U 1 −1 U 2=(
f(C,θ)=a 0 H(θ)C(A 0 A 0 H)C H a 0(θ)→f(C,θ)=a 0 H(θ)(WW H)a 0(θ) (20)
diag[(WW H)]=[|c 1|2Σk=1 K |a 1k|2 , . . . ,|c 4|2Σk=1 K |a 4k|2] (21)
W=CA 0 ,WA 0 + =CA 0 A + =C (22)
b(θm)[g 1(θm)exp(jφ 1,m), . . . ,g N(θm)exp(jφ N,m)]T (23)
W≡[b(θ1), . . . ,b(θ1)]→f(C,θ)=b 0 H(θ)(WW H)b 0(θ) (24)
R vv =E sΛs E s H+σ2 E n E n H (29)
Claims (15)
f(C,θ)=a 0 H(θ)(WW H)a 0(θ) (30)
b(θm)≡[g 1(θm)exp(jϕ l,m), . . . ,g N(θm)exp(j ϕN,m)]T (31)
f(C,θ)=b 0 H(θ)(WW H)b 0(θ) (32)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-208417 | 2014-10-09 | ||
JP2014208417A JP6362262B2 (en) | 2014-10-09 | 2014-10-09 | Angle estimation apparatus and angle estimation method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160103207A1 US20160103207A1 (en) | 2016-04-14 |
US10852410B2 true US10852410B2 (en) | 2020-12-01 |
Family
ID=55644355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/878,846 Active 2037-02-09 US10852410B2 (en) | 2014-10-09 | 2015-10-08 | Angle estimating apparatus and angle estimating method |
Country Status (3)
Country | Link |
---|---|
US (1) | US10852410B2 (en) |
JP (1) | JP6362262B2 (en) |
DE (1) | DE102015219483B4 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6321216B2 (en) * | 2015-01-15 | 2018-05-09 | 日本電信電話株式会社 | Matrix / key generation device, matrix / key generation system, matrix combination device, matrix / key generation method, program |
US10481242B2 (en) * | 2015-09-25 | 2019-11-19 | Texas Instruments Incorporated | Method for joint antenna-array calibration and direction of arrival estimation for automotive applications |
KR101796472B1 (en) | 2016-09-30 | 2017-12-12 | 숭실대학교 산학협력단 | Radar apparatus and DOA estimation method using the same |
CN113287032A (en) * | 2018-08-23 | 2021-08-20 | 德克萨斯大学系统董事会 | Controlling a device by tracking hand movements through sound signals |
JP7222952B2 (en) | 2020-07-29 | 2023-02-15 | 京セラ株式会社 | ELECTRONIC DEVICE, ELECTRONIC DEVICE CONTROL METHOD, AND PROGRAM |
JP7472060B2 (en) * | 2021-03-03 | 2024-04-22 | 株式会社日立国際電気 | Direction of Arrival Estimation System |
WO2024209571A1 (en) * | 2023-04-05 | 2024-10-10 | 三菱電機株式会社 | Phase calibration device, phase calibration method, and radar device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6317073B1 (en) * | 1998-09-07 | 2001-11-13 | Denso Corporation | FM-CW radar system for measuring distance to and relative speed of a target |
WO2006067869A1 (en) | 2004-12-24 | 2006-06-29 | Fujitsu Limited | Arriving correction deducing device and program |
US20070120730A1 (en) * | 2005-11-30 | 2007-05-31 | Gaku Takano | Radar signal processor |
JP2010019086A (en) | 2008-07-08 | 2010-01-28 | Toyota Motor Corp | Internal combustion engine device, control method thereof, and vehicle |
JP2011038837A (en) | 2009-08-07 | 2011-02-24 | Denso Corp | Signal processor |
US20120112954A1 (en) | 2010-11-10 | 2012-05-10 | Fujitsu Limited | Radar device |
US20130069818A1 (en) * | 2011-09-20 | 2013-03-21 | Fujitsu Limited | System and method for detection and ranging |
US20130147656A1 (en) * | 2011-12-08 | 2013-06-13 | C/O Fujitsu Ten Limited | Detection and ranging system and angle estimation method |
US9348023B2 (en) * | 2012-12-07 | 2016-05-24 | Fujitsu Ten Limited | Radar apparatus and signal processing method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4320441B2 (en) * | 2004-03-09 | 2009-08-26 | よこはまティーエルオー株式会社 | Array antenna calibration method and calibration apparatus |
JP2006067869A (en) | 2004-09-01 | 2006-03-16 | Matsushita Electric Ind Co Ltd | Separating and recovering method |
US7199753B2 (en) * | 2005-06-16 | 2007-04-03 | Raytheon Company | Calibration method for receive only phased array radar antenna |
US7667646B2 (en) * | 2006-02-21 | 2010-02-23 | Nokia Corporation | System and methods for direction finding using a handheld device |
US7873326B2 (en) * | 2006-07-11 | 2011-01-18 | Mojix, Inc. | RFID beam forming system |
JP5768953B2 (en) * | 2010-08-02 | 2015-08-26 | 日本電気株式会社 | Communication satellite, calibration system, and array antenna calibration method |
JP5701106B2 (en) | 2011-03-04 | 2015-04-15 | 富士通テン株式会社 | Radar device and method of calculating angle of arrival of radar device |
-
2014
- 2014-10-09 JP JP2014208417A patent/JP6362262B2/en active Active
-
2015
- 2015-10-08 US US14/878,846 patent/US10852410B2/en active Active
- 2015-10-08 DE DE102015219483.3A patent/DE102015219483B4/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6317073B1 (en) * | 1998-09-07 | 2001-11-13 | Denso Corporation | FM-CW radar system for measuring distance to and relative speed of a target |
WO2006067869A1 (en) | 2004-12-24 | 2006-06-29 | Fujitsu Limited | Arriving correction deducing device and program |
US20080122681A1 (en) * | 2004-12-24 | 2008-05-29 | Kazuo Shirakawa | Direction-of-arrival estimating device and program |
US20070120730A1 (en) * | 2005-11-30 | 2007-05-31 | Gaku Takano | Radar signal processor |
JP2007147554A (en) | 2005-11-30 | 2007-06-14 | Denso It Laboratory Inc | System for processing radar signal |
JP2010019086A (en) | 2008-07-08 | 2010-01-28 | Toyota Motor Corp | Internal combustion engine device, control method thereof, and vehicle |
JP2011038837A (en) | 2009-08-07 | 2011-02-24 | Denso Corp | Signal processor |
US20120112954A1 (en) | 2010-11-10 | 2012-05-10 | Fujitsu Limited | Radar device |
JP2012103132A (en) | 2010-11-10 | 2012-05-31 | Fujitsu Ten Ltd | Radar device |
US20130069818A1 (en) * | 2011-09-20 | 2013-03-21 | Fujitsu Limited | System and method for detection and ranging |
US20130147656A1 (en) * | 2011-12-08 | 2013-06-13 | C/O Fujitsu Ten Limited | Detection and ranging system and angle estimation method |
US9348023B2 (en) * | 2012-12-07 | 2016-05-24 | Fujitsu Ten Limited | Radar apparatus and signal processing method |
Also Published As
Publication number | Publication date |
---|---|
US20160103207A1 (en) | 2016-04-14 |
JP2016080369A (en) | 2016-05-16 |
DE102015219483A1 (en) | 2016-04-14 |
DE102015219483B4 (en) | 2023-06-15 |
JP6362262B2 (en) | 2018-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10852410B2 (en) | Angle estimating apparatus and angle estimating method | |
US11874395B2 (en) | Radar processing chain for frequency-modulated continuous wave radar systems | |
US8203485B2 (en) | Method of estimating direction of arrival and apparatus thereof | |
US7782249B2 (en) | Detection and ranging device and detection and ranging method | |
US10389421B2 (en) | Apparatus for estimating arrival-angle and apparatus for beam-forming | |
US10690743B2 (en) | Doppler measurements to resolve angle of arrival ambiguity of wide aperture radar | |
US9470782B2 (en) | Method and apparatus for increasing angular resolution in an automotive radar system | |
US8896481B2 (en) | Monitoring a production or conveyor environment by means of radar | |
US20080143605A1 (en) | Radio frequency navigation using frequency response matching | |
US10928496B2 (en) | Sensor and method for estimating position of living body | |
CN107390197B (en) | Radar self-adaption sum-difference beam angle measurement method based on feature space | |
US8130147B2 (en) | Signal wave arrival angle measuring device | |
US10663561B2 (en) | Radar signal processing device | |
US20190187266A1 (en) | Object detection apparatus and object detection method | |
CN106486769B (en) | Spatial interpolation method and apparatus for linear phased array antenna | |
US11892558B2 (en) | Method and apparatus for estimating direction of arrival of radar reception signal using antenna array extrapolation | |
Lee et al. | Enhanced performance of MUSIC algorithm using spatial interpolation in automotive FMCW radar systems | |
Gamba et al. | Direction of arrival (doa) estimation | |
RU2581898C1 (en) | Method of measuring angular coordinates of target | |
Bialer et al. | A Multi-radar Joint Beamforming Method | |
ÖZÇETİN | Music, CBF and differential algebraic constant modulus algorithms for direction of arrival estimation in passive coherent locators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJITSU LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIRAKAWA, KAZUO;KURONO, YASUHIRO;SIGNING DATES FROM 20150918 TO 20151202;REEL/FRAME:037414/0103 Owner name: FUJITSU TEN LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIRAKAWA, KAZUO;KURONO, YASUHIRO;SIGNING DATES FROM 20150918 TO 20151202;REEL/FRAME:037414/0103 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: DENSO TEN LIMITED, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:FUJITSU TEN LIMITED;REEL/FRAME:046460/0108 Effective date: 20171101 Owner name: DENSO TEN LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU LIMITED;REEL/FRAME:046460/0350 Effective date: 20180531 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |