US10824352B2 - Reducing unnecessary calibration of a memory unit for which the error count margin has been exceeded - Google Patents
Reducing unnecessary calibration of a memory unit for which the error count margin has been exceeded Download PDFInfo
- Publication number
- US10824352B2 US10824352B2 US15/833,797 US201715833797A US10824352B2 US 10824352 B2 US10824352 B2 US 10824352B2 US 201715833797 A US201715833797 A US 201715833797A US 10824352 B2 US10824352 B2 US 10824352B2
- Authority
- US
- United States
- Prior art keywords
- memory unit
- calibration
- block
- exceeded
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000015654 memory Effects 0.000 title claims abstract description 215
- 230000000116 mitigating Effects 0.000 claims description 25
- 238000004590 computer program Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 abstract description 21
- 238000000034 method Methods 0.000 description 41
- 238000010586 diagram Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 15
- 230000014759 maintenance of location Effects 0.000 description 9
- 230000000875 corresponding Effects 0.000 description 7
- 238000010192 crystallographic characterization Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 230000005055 memory storage Effects 0.000 description 4
- 230000003068 static Effects 0.000 description 4
- 239000008187 granular material Substances 0.000 description 3
- 230000001902 propagating Effects 0.000 description 3
- 230000001052 transient Effects 0.000 description 3
- 230000033590 base-excision repair Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001747 exhibiting Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000004301 light adaptation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical Effects 0.000 description 2
- 230000000737 periodic Effects 0.000 description 2
- 239000009484 FIBS Substances 0.000 description 1
- 101700027333 FIBS Proteins 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound   [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling Effects 0.000 description 1
- 230000001419 dependent Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 230000000051 modifying Effects 0.000 description 1
- 230000002093 peripheral Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0629—Configuration or reconfiguration of storage systems
- G06F3/0632—Configuration or reconfiguration of storage systems by initialisation or re-initialisation of storage systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0751—Error or fault detection not based on redundancy
- G06F11/0754—Error or fault detection not based on redundancy by exceeding limits
- G06F11/076—Error or fault detection not based on redundancy by exceeding limits by exceeding a count or rate limit, e.g. word- or bit count limit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0706—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
- G06F11/073—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a memory management context, e.g. virtual memory or cache management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1076—Parity data used in redundant arrays of independent storages, e.g. in RAID systems
- G06F11/108—Parity data distribution in semiconductor storages, e.g. in SSD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
- G06F12/0246—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0604—Improving or facilitating administration, e.g. storage management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0673—Single storage device
- G06F3/0679—Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0616—Improving the reliability of storage systems in relation to life time, e.g. increasing Mean Time Between Failures [MTBF]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0655—Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
- G06F3/0659—Command handling arrangements, e.g. command buffers, queues, command scheduling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/0671—In-line storage system
- G06F3/0683—Plurality of storage devices
- G06F3/0688—Non-volatile semiconductor memory arrays
Abstract
Description
-
- data retention time;
- accumulated number of reads of the block since last programmed;
- accumulated number of reads of pages in the block since last programmed;
- accumulated number of reads of page groups in the block since last programmed;
- accumulated number of reads to the block while being partially programmed;
- accumulated number of reads to neighboring blocks;
- block BER state (e.g., HBS or LBS);
- sweep count/retention time of the block;
- time elapsed between the programming of the first and last pages;
- block programming state (e.g., block is partially programmed or fully programmed); and/or
- time elapsed since block was last read.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/833,797 US10824352B2 (en) | 2017-12-06 | 2017-12-06 | Reducing unnecessary calibration of a memory unit for which the error count margin has been exceeded |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/833,797 US10824352B2 (en) | 2017-12-06 | 2017-12-06 | Reducing unnecessary calibration of a memory unit for which the error count margin has been exceeded |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190171381A1 US20190171381A1 (en) | 2019-06-06 |
US10824352B2 true US10824352B2 (en) | 2020-11-03 |
Family
ID=66657638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/833,797 Active US10824352B2 (en) | 2017-12-06 | 2017-12-06 | Reducing unnecessary calibration of a memory unit for which the error count margin has been exceeded |
Country Status (1)
Country | Link |
---|---|
US (1) | US10824352B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10140040B1 (en) | 2017-05-25 | 2018-11-27 | Micron Technology, Inc. | Memory device with dynamic program-verify voltage calibration |
US10452480B2 (en) | 2017-05-25 | 2019-10-22 | Micron Technology, Inc. | Memory device with dynamic processing level calibration |
US10825540B2 (en) | 2018-05-16 | 2020-11-03 | Micron Technology, Inc. | Memory system quality integral analysis and configuration |
US10509579B2 (en) | 2018-05-16 | 2019-12-17 | Micron Technology, Inc. | Memory system quality threshold intersection analysis and configuration |
US10535417B2 (en) | 2018-05-16 | 2020-01-14 | Micron Technology, Inc. | Memory system quality margin analysis and configuration |
US10740026B2 (en) * | 2018-05-18 | 2020-08-11 | Micron Technology, Inc. | Time indicator of super block operations |
US10990466B2 (en) * | 2018-06-20 | 2021-04-27 | Micron Technology, Inc. | Memory sub-system with dynamic calibration using component-based function(s) |
US11188416B2 (en) | 2018-07-12 | 2021-11-30 | Micron Technology, Inc. | Enhanced block management for a memory sub-system |
US11113129B2 (en) | 2018-07-13 | 2021-09-07 | Micron Technology, Inc. | Real time block failure analysis for a memory sub-system |
US10936246B2 (en) | 2018-10-10 | 2021-03-02 | Micron Technology, Inc. | Dynamic background scan optimization in a memory sub-system |
US10783024B2 (en) * | 2018-10-12 | 2020-09-22 | International Business Machines Corporation | Reducing block calibration overhead using read error triage |
US11307950B2 (en) * | 2019-02-08 | 2022-04-19 | NeuShield, Inc. | Computing device health monitoring system and methods |
US11061752B2 (en) * | 2019-07-17 | 2021-07-13 | Micron Technology, Inc. | Dynamic programming of page margins |
US11150812B2 (en) * | 2019-08-20 | 2021-10-19 | Micron Technology, Inc. | Predictive memory management |
KR20210090439A (en) * | 2020-01-10 | 2021-07-20 | 에스케이하이닉스 주식회사 | Memory controller and operating method thereof |
KR20210094741A (en) * | 2020-01-22 | 2021-07-30 | 삼성전자주식회사 | Nonvolatile memory device and operating method thereof |
CN112069004A (en) * | 2020-08-21 | 2020-12-11 | 苏州浪潮智能科技有限公司 | Method and system for testing conversion relation between block reading and page reading in flash memory chip |
Citations (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070263444A1 (en) | 2006-05-15 | 2007-11-15 | Gorobets Sergey A | Non-Volatile Memory System with End of Life Calculation |
US20080133288A1 (en) | 2006-11-30 | 2008-06-05 | Microsoft Corporation | Grouping Failures to Infer Common Causes |
CN101419843A (en) | 2008-12-04 | 2009-04-29 | 北京中星微电子有限公司 | Flash memory recognition method, recognition device and chip controller |
US7616499B2 (en) | 2006-12-28 | 2009-11-10 | Sandisk Corporation | Retention margin program verification |
US20090319859A1 (en) | 2008-06-24 | 2009-12-24 | Sandisk Il Ltd. | Method and apparatus for error correction according to erase counts of a solid-state memory |
US20100023800A1 (en) | 2005-09-26 | 2010-01-28 | Eliyahou Harari | NAND Flash Memory Controller Exporting a NAND Interface |
US20110007562A1 (en) | 2009-07-13 | 2011-01-13 | Aaron Yip | Dynamic wordline start voltage for nand programming |
US20120226959A1 (en) | 2011-03-03 | 2012-09-06 | Ningde Xie | Adjustable programming speed for nand memory devices |
CN102880554A (en) | 2012-10-09 | 2013-01-16 | 邹粤林 | Flash-memory storage system and controller thereof and method for improving storage efficiency of flash memory chips |
EP2549482A1 (en) | 2011-07-22 | 2013-01-23 | Fusion-io, Inc. | Apparatus, system and method for determining a configuration parameter for solid-state storage media |
US8422303B2 (en) | 2010-12-22 | 2013-04-16 | HGST Netherlands B.V. | Early degradation detection in flash memory using test cells |
EP2587362A2 (en) | 2011-10-31 | 2013-05-01 | Apple Inc. | Systems and methods for obtaining and using nonvolatile memory health information |
US8579986B1 (en) | 2004-07-15 | 2013-11-12 | University Of South Florida | Bone fusion material compressor and method of use |
US20140056067A1 (en) | 2012-08-24 | 2014-02-27 | Lsi Corporation | Threshold optimization for flash memory |
US20140164880A1 (en) | 2012-12-11 | 2014-06-12 | Lsi Corporation | Error correction code rate management for nonvolatile memory |
WO2014088682A1 (en) | 2012-12-07 | 2014-06-12 | Western Digital Technologies, Inc. | System and method for lower page data recovery in a solid state drive |
US20140229799A1 (en) | 2013-02-12 | 2014-08-14 | Lsi Corporation | Statistical adaptive error correction for a flash memory |
US8990485B2 (en) | 2007-12-21 | 2015-03-24 | Rambus Inc. | Memory pre-characterization |
US9069688B2 (en) | 2011-04-15 | 2015-06-30 | Sandisk Technologies Inc. | Dynamic optimization of back-end memory system interface |
US9176859B2 (en) | 2009-01-07 | 2015-11-03 | Siliconsystems, Inc. | Systems and methods for improving the performance of non-volatile memory operations |
US20160041891A1 (en) | 2014-08-07 | 2016-02-11 | Sandisk Technologies Inc. | Storage Module and Method for Analysis and Disposition of Dynamically Tracked Read Error Events |
US20160103630A1 (en) | 2014-10-09 | 2016-04-14 | Sandisk Technologies Inc. | Health indicator of a storage device |
US20160110249A1 (en) | 2014-10-20 | 2016-04-21 | Fusion-Io, Inc. | Adaptive storage reliability management |
US20160110248A1 (en) | 2014-10-21 | 2016-04-21 | International Business Machines Corporation | Storage array management employing a merged background management process |
US20160110124A1 (en) * | 2014-10-21 | 2016-04-21 | International Business Machines Corporation | Detecting error count deviations for non-volatile memory blocks for advanced non-volatile memory block management |
US9361167B2 (en) | 2012-10-24 | 2016-06-07 | SanDisk Technologies, Inc. | Bit error rate estimation for wear leveling and for block selection based on data type |
US20160170672A1 (en) | 2014-12-10 | 2016-06-16 | California Institute Of Technology | Nand flash reliability with rank modulation |
US20160179412A1 (en) | 2014-12-23 | 2016-06-23 | International Business Machines Corporation | Endurance enhancement scheme using memory re-evaluation |
CN105718206A (en) | 2014-12-03 | 2016-06-29 | 中国人民解放军国防科学技术大学 | Flash translation layer capable of perceiving RAID (Redundant Array of Independent Disks) and implementation method thereof |
US9530522B1 (en) | 2016-01-28 | 2016-12-27 | International Business Machines Corporation | Sorting non-volatile memories |
US20170003880A1 (en) * | 2015-06-30 | 2017-01-05 | International Business Machines Corporation | Wear leveling of a memory array |
US9563504B2 (en) | 2014-12-05 | 2017-02-07 | Sandisk Technologies Llc | Partial block erase for data refreshing and open-block programming |
US9576671B2 (en) | 2014-11-20 | 2017-02-21 | Western Digital Technologies, Inc. | Calibrating optimal read levels |
US20170161142A1 (en) | 2015-12-08 | 2017-06-08 | Nvidia Corporation | Method for scrubbing and correcting dram memory data with internal error-correcting code (ecc) bits contemporaneously during self-refresh state |
US20170220416A1 (en) | 2016-02-01 | 2017-08-03 | Lattice Semiconductor Corporation | Segmented Error Coding for Block-Based Memory |
US9772901B2 (en) | 2015-05-08 | 2017-09-26 | Nxp Usa, Inc. | Memory reliability using error-correcting code |
US9805809B1 (en) | 2016-08-31 | 2017-10-31 | Sandisk Technologies Llc | State-dependent read compensation |
US20170358365A1 (en) | 2016-06-13 | 2017-12-14 | Sandisk Technologies Llc | Cell current based bit line voltage |
US20180190362A1 (en) * | 2016-12-30 | 2018-07-05 | Western Digital Technologies, Inc. | Methods and apparatus for read disturb detection and handling |
US10140040B1 (en) | 2017-05-25 | 2018-11-27 | Micron Technology, Inc. | Memory device with dynamic program-verify voltage calibration |
US20180341413A1 (en) * | 2017-05-24 | 2018-11-29 | Western Digital Technologies, Inc. | Priority-based internal data movement |
US20180374549A1 (en) * | 2017-06-26 | 2018-12-27 | Micron Technology, Inc. | Methods of error-based read disturb mitigation and memory devices utilizing the same |
US10170195B1 (en) | 2017-12-06 | 2019-01-01 | International Business Machines Corporation | Threshold voltage shifting at a lower bit error rate by intelligently performing dummy configuration reads |
US10170162B2 (en) | 2017-05-23 | 2019-01-01 | Sandisk Technologies Llc | Sense amplifier calibration |
US10236067B2 (en) | 2017-08-02 | 2019-03-19 | International Business Machines Corporation | State-dependent read voltage threshold adaptation for nonvolatile memory |
US20190155749A1 (en) * | 2017-11-17 | 2019-05-23 | Western Digital Technologies, Inc. | Adaptive management of intermediate storage |
US20190172542A1 (en) | 2017-09-15 | 2019-06-06 | Pure Storage, Inc. | Tracking of optimum read voltage thresholds in nand flash devices |
US10453537B1 (en) | 2018-05-10 | 2019-10-22 | International Business Machines Corporation | Techniques for reducing read voltage threshold calibration in non-volatile memory |
US10552063B2 (en) | 2018-06-21 | 2020-02-04 | International Business Machines Corporation | Background mitigation reads in a non-volatile memory system |
-
2017
- 2017-12-06 US US15/833,797 patent/US10824352B2/en active Active
Patent Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8579986B1 (en) | 2004-07-15 | 2013-11-12 | University Of South Florida | Bone fusion material compressor and method of use |
US20130111113A1 (en) | 2005-09-26 | 2013-05-02 | Eliyahou Harari | NAND Flash Memory Controller Exporting a NAND Interface |
US20100023800A1 (en) | 2005-09-26 | 2010-01-28 | Eliyahou Harari | NAND Flash Memory Controller Exporting a NAND Interface |
US20070263444A1 (en) | 2006-05-15 | 2007-11-15 | Gorobets Sergey A | Non-Volatile Memory System with End of Life Calculation |
US20080133288A1 (en) | 2006-11-30 | 2008-06-05 | Microsoft Corporation | Grouping Failures to Infer Common Causes |
US7616499B2 (en) | 2006-12-28 | 2009-11-10 | Sandisk Corporation | Retention margin program verification |
US8990485B2 (en) | 2007-12-21 | 2015-03-24 | Rambus Inc. | Memory pre-characterization |
US20090319859A1 (en) | 2008-06-24 | 2009-12-24 | Sandisk Il Ltd. | Method and apparatus for error correction according to erase counts of a solid-state memory |
CN101419843A (en) | 2008-12-04 | 2009-04-29 | 北京中星微电子有限公司 | Flash memory recognition method, recognition device and chip controller |
US9176859B2 (en) | 2009-01-07 | 2015-11-03 | Siliconsystems, Inc. | Systems and methods for improving the performance of non-volatile memory operations |
US20110007562A1 (en) | 2009-07-13 | 2011-01-13 | Aaron Yip | Dynamic wordline start voltage for nand programming |
US8422303B2 (en) | 2010-12-22 | 2013-04-16 | HGST Netherlands B.V. | Early degradation detection in flash memory using test cells |
US20120226959A1 (en) | 2011-03-03 | 2012-09-06 | Ningde Xie | Adjustable programming speed for nand memory devices |
US9069688B2 (en) | 2011-04-15 | 2015-06-30 | Sandisk Technologies Inc. | Dynamic optimization of back-end memory system interface |
EP2549482A1 (en) | 2011-07-22 | 2013-01-23 | Fusion-io, Inc. | Apparatus, system and method for determining a configuration parameter for solid-state storage media |
EP2587362A2 (en) | 2011-10-31 | 2013-05-01 | Apple Inc. | Systems and methods for obtaining and using nonvolatile memory health information |
US20140056067A1 (en) | 2012-08-24 | 2014-02-27 | Lsi Corporation | Threshold optimization for flash memory |
CN102880554A (en) | 2012-10-09 | 2013-01-16 | 邹粤林 | Flash-memory storage system and controller thereof and method for improving storage efficiency of flash memory chips |
US9361167B2 (en) | 2012-10-24 | 2016-06-07 | SanDisk Technologies, Inc. | Bit error rate estimation for wear leveling and for block selection based on data type |
WO2014088682A1 (en) | 2012-12-07 | 2014-06-12 | Western Digital Technologies, Inc. | System and method for lower page data recovery in a solid state drive |
US20140164880A1 (en) | 2012-12-11 | 2014-06-12 | Lsi Corporation | Error correction code rate management for nonvolatile memory |
US20140229799A1 (en) | 2013-02-12 | 2014-08-14 | Lsi Corporation | Statistical adaptive error correction for a flash memory |
US20160041891A1 (en) | 2014-08-07 | 2016-02-11 | Sandisk Technologies Inc. | Storage Module and Method for Analysis and Disposition of Dynamically Tracked Read Error Events |
US20160103630A1 (en) | 2014-10-09 | 2016-04-14 | Sandisk Technologies Inc. | Health indicator of a storage device |
US20160110249A1 (en) | 2014-10-20 | 2016-04-21 | Fusion-Io, Inc. | Adaptive storage reliability management |
US20160110124A1 (en) * | 2014-10-21 | 2016-04-21 | International Business Machines Corporation | Detecting error count deviations for non-volatile memory blocks for advanced non-volatile memory block management |
US20160110248A1 (en) | 2014-10-21 | 2016-04-21 | International Business Machines Corporation | Storage array management employing a merged background management process |
US20170091006A1 (en) | 2014-10-21 | 2017-03-30 | International Business Machines Corporation | Detecting error count deviations for non-volatile memory blocks for advanced non-volatile memory block management |
US9576671B2 (en) | 2014-11-20 | 2017-02-21 | Western Digital Technologies, Inc. | Calibrating optimal read levels |
CN105718206A (en) | 2014-12-03 | 2016-06-29 | 中国人民解放军国防科学技术大学 | Flash translation layer capable of perceiving RAID (Redundant Array of Independent Disks) and implementation method thereof |
US9563504B2 (en) | 2014-12-05 | 2017-02-07 | Sandisk Technologies Llc | Partial block erase for data refreshing and open-block programming |
US20160170672A1 (en) | 2014-12-10 | 2016-06-16 | California Institute Of Technology | Nand flash reliability with rank modulation |
US20160179412A1 (en) | 2014-12-23 | 2016-06-23 | International Business Machines Corporation | Endurance enhancement scheme using memory re-evaluation |
US9772901B2 (en) | 2015-05-08 | 2017-09-26 | Nxp Usa, Inc. | Memory reliability using error-correcting code |
US20170003880A1 (en) * | 2015-06-30 | 2017-01-05 | International Business Machines Corporation | Wear leveling of a memory array |
US10082962B2 (en) | 2015-06-30 | 2018-09-25 | International Business Machines Corporation | Wear leveling of a memory array |
US9857986B2 (en) | 2015-06-30 | 2018-01-02 | International Business Machines Corporation | Wear leveling of a memory array |
US20170161142A1 (en) | 2015-12-08 | 2017-06-08 | Nvidia Corporation | Method for scrubbing and correcting dram memory data with internal error-correcting code (ecc) bits contemporaneously during self-refresh state |
US9530522B1 (en) | 2016-01-28 | 2016-12-27 | International Business Machines Corporation | Sorting non-volatile memories |
US20170220416A1 (en) | 2016-02-01 | 2017-08-03 | Lattice Semiconductor Corporation | Segmented Error Coding for Block-Based Memory |
US20170358365A1 (en) | 2016-06-13 | 2017-12-14 | Sandisk Technologies Llc | Cell current based bit line voltage |
US9805809B1 (en) | 2016-08-31 | 2017-10-31 | Sandisk Technologies Llc | State-dependent read compensation |
US20180190362A1 (en) * | 2016-12-30 | 2018-07-05 | Western Digital Technologies, Inc. | Methods and apparatus for read disturb detection and handling |
US10170162B2 (en) | 2017-05-23 | 2019-01-01 | Sandisk Technologies Llc | Sense amplifier calibration |
US20180341413A1 (en) * | 2017-05-24 | 2018-11-29 | Western Digital Technologies, Inc. | Priority-based internal data movement |
US10140040B1 (en) | 2017-05-25 | 2018-11-27 | Micron Technology, Inc. | Memory device with dynamic program-verify voltage calibration |
US20180374549A1 (en) * | 2017-06-26 | 2018-12-27 | Micron Technology, Inc. | Methods of error-based read disturb mitigation and memory devices utilizing the same |
US10236067B2 (en) | 2017-08-02 | 2019-03-19 | International Business Machines Corporation | State-dependent read voltage threshold adaptation for nonvolatile memory |
US20190172542A1 (en) | 2017-09-15 | 2019-06-06 | Pure Storage, Inc. | Tracking of optimum read voltage thresholds in nand flash devices |
US20190155749A1 (en) * | 2017-11-17 | 2019-05-23 | Western Digital Technologies, Inc. | Adaptive management of intermediate storage |
US10170195B1 (en) | 2017-12-06 | 2019-01-01 | International Business Machines Corporation | Threshold voltage shifting at a lower bit error rate by intelligently performing dummy configuration reads |
US10453537B1 (en) | 2018-05-10 | 2019-10-22 | International Business Machines Corporation | Techniques for reducing read voltage threshold calibration in non-volatile memory |
US10552063B2 (en) | 2018-06-21 | 2020-02-04 | International Business Machines Corporation | Background mitigation reads in a non-volatile memory system |
Non-Patent Citations (9)
Title |
---|
A. Prodromakis et al., "MLC NAND Flash memory: Aging effect and chip/channel emulation", 2015, describe.measuring BER (see document) https://pdfs.semanticscholar.org/8407/bf47ed375c28a05bd2bb1a9f9c8f4d00cbe3.pdf. |
Appendix P. |
Cai et al.; "Error Analysis and Retention-Aware Error Management for NAND Flash Memory", Intel Technology Journal, vol. 17, Issue 1, 2013. |
Fang et al.; "Efficient Bit Error Rate Estimation for High-Speed Link by Bayesian Model Fusion", 2015 Design, Automation & Test in Europe Conference & Exhibition, pp. 1024-1029. |
Fatadin, Irshaad et al.; "Calibration of Estimated BER From Vector Magnitude With Carrier Phase Recovery", Scientific Pages Photonics Opt 1(1):1-6, 2017. |
Jimenez et al.; "Phoenix: Reviving MLC Blocks As SLC to Extend NAND Flash Devices Lifetime", 2013. |
Neis et al.; "Retention Time Measurements and Modeling of Bit Error Rates of Wide I/O DRAM in MPSoCs", 2015 Design, Automation & Test in Europe Conference & Exhibition, pp. 495-500. |
Pletka, Roman A. et al; "Health-Binning: Maximizing the Performance and the Endurance of Consumer-Level NAND Flash." Proceedings of the 9th ACM International on Systems and Storage Conference. ACM, 2016. |
Yaakobi et al., "Error Characterization and Coding Schemes for Flash Memory", describes bit-level BER, page-level BER measurements and a proposed error correcting scheme (see section III B-C and section IV). 2010 https://cseweb.ucsd.edu/˜swanson/papers/ACTEMT2010ECC.pdf. |
Also Published As
Publication number | Publication date |
---|---|
US20190171381A1 (en) | 2019-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10824352B2 (en) | Reducing unnecessary calibration of a memory unit for which the error count margin has been exceeded | |
US10170195B1 (en) | Threshold voltage shifting at a lower bit error rate by intelligently performing dummy configuration reads | |
US10082962B2 (en) | Wear leveling of a memory array | |
US10236067B2 (en) | State-dependent read voltage threshold adaptation for nonvolatile memory | |
US10101931B1 (en) | Mitigating read errors following programming in a multi-level non-volatile memory | |
US10453537B1 (en) | Techniques for reducing read voltage threshold calibration in non-volatile memory | |
US10552063B2 (en) | Background mitigation reads in a non-volatile memory system | |
US9588702B2 (en) | Adapting erase cycle parameters to promote endurance of a memory | |
US10365859B2 (en) | Storage array management employing a merged background management process | |
WO2015097956A1 (en) | Extending useful life of a non-volatile memory by health grading | |
US10552288B2 (en) | Health-aware garbage collection in a memory system | |
US10699791B2 (en) | Adaptive read voltage threshold calibration in non-volatile memory | |
US9524116B1 (en) | Reducing read-after-write errors in a non-volatile memory system using an old data copy | |
US9740609B1 (en) | Garbage collection techniques for a data storage system | |
US9898215B2 (en) | Efficient management of page retirement in non-volatile memory utilizing page retirement classes | |
US10956317B2 (en) | Garbage collection in non-volatile memory that fully programs dependent layers in a target block | |
US10936205B2 (en) | Techniques for retention and read-disturb aware health binning | |
US10115472B1 (en) | Reducing read disturb effect on partially programmed blocks of non-volatile memory | |
US20170115900A1 (en) | Dummy page insertion for flexible page retirement in flash memory storing multiple bits per memory cell | |
US10254981B2 (en) | Adaptive health grading for a non-volatile memory | |
US10656847B2 (en) | Mitigating asymmetric transient errors in non-volatile memory by proactive data relocation | |
US10459839B1 (en) | Accelerating garbage collection of flushed logical erase blocks in non-volatile memory | |
US10489086B1 (en) | Reducing read errors by performing mitigation reads to blocks of non-volatile memory | |
US9417809B1 (en) | Efficient management of page retirement in non-volatile memory utilizing page retirement classes | |
US11016693B2 (en) | Block health estimation for wear leveling in non-volatile memories |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IOANNOU, NIKOLAS;PAPANDREOU, NIKOLAOS;PLETKA, ROMAN A.;AND OTHERS;REEL/FRAME:044321/0533 Effective date: 20171205 Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IOANNOU, NIKOLAS;PAPANDREOU, NIKOLAOS;PLETKA, ROMAN A.;AND OTHERS;REEL/FRAME:044321/0533 Effective date: 20171205 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STCB | Information on status: application discontinuation |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |