US10784185B2 - Method for manufacturing semiconductor device with through silicon via structure - Google Patents
Method for manufacturing semiconductor device with through silicon via structure Download PDFInfo
- Publication number
- US10784185B2 US10784185B2 US16/701,201 US201916701201A US10784185B2 US 10784185 B2 US10784185 B2 US 10784185B2 US 201916701201 A US201916701201 A US 201916701201A US 10784185 B2 US10784185 B2 US 10784185B2
- Authority
- US
- United States
- Prior art keywords
- substrate
- tsv
- wafer
- conductive pad
- wafers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L24/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
- H01L22/34—Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
- H01L24/92—Specific sequence of method steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L2224/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
- H01L2224/081—Disposition
- H01L2224/0812—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/08135—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/08145—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
- H01L2224/241—Disposition
- H01L2224/24135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/24145—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/808—Bonding techniques
- H01L2224/80894—Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
- H01L2224/80896—Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically insulating surfaces, e.g. oxide or nitride layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/82—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/82—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
- H01L2224/82009—Pre-treatment of the connector or the bonding area
- H01L2224/8203—Reshaping, e.g. forming vias
- H01L2224/82031—Reshaping, e.g. forming vias by chemical means, e.g. etching, anodisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/82—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
- H01L2224/821—Forming a build-up interconnect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/9202—Forming additional connectors after the connecting process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/921—Connecting a surface with connectors of different types
- H01L2224/9212—Sequential connecting processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/82—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
Definitions
- the disclosure relates in general to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device with a Through Silicon Via (TSV) structure.
- TSV Through Silicon Via
- TSV through silicon via
- UBM under bump metal
- the disclosure is directed to a method for manufacturing a semiconductor device.
- the semiconductor device has a Through Silicon Via (TSV) structure, and a sidewall of the TSV structure is connected to a conductive pad. No under bump metal (UBM) is formed on upper and lower surfaces of the TSV structure.
- the semiconductor device has an isolation structure. The isolation structure is only disposed in the substrate and surrounds the TSV structure. There is no isolation structure in the dielectric layer. Therefore, the provided semiconductor device of the present application can achieve a good electrical connection between the TSV structure and the conductive pad, and a good electrical isolation between the TSV structure and the substrate can also be established by the isolation structure. Accordingly, the cost of the process can be decreased and the chip performance can also be increased.
- a semiconductor device comprising at least one wafer and at least one TSV (through silicon via) structure.
- the at least one wafer each comprises a substrate, an isolation structure, and a conductive pad.
- the isolation structure is formed in the substrate and extends from a first side of the substrate toward a second side of the substrate. The second side is opposite to the first side.
- the conductive pad is formed at a dielectric layer disposed on the first side of the substrate, wherein the conductive pad is electrically connected to an active area in the substrate.
- the at least one TSV structure penetrates the at least one wafer.
- the conductive pad contacts a sidewall of the at least one TSV structure, and electrically connects the at least one TSV structure and the active area in the substrate.
- the isolation structure separates from and surrounds the at least one TSV structure.
- a method for manufacturing a semiconductor device comprises forming at least one wafer and forming at least one TSV (through silicon via) structure penetrating the at least one wafer.
- the method for forming the at least one wafer each comprises providing a substrate; forming an isolation structure in the substrate and extended from a first side of the substrate toward a second side of the substrate, wherein the second side is opposite to the first side, and a conductive pad; and forming the conductive pad at a dielectric layer disposed on the first side of the substrate, wherein the conductive pad is electrically connected to an active area in the substrate.
- the conductive pad contacts a sidewall of the at least one TSV structure, and electrically connects the at least one TSV structure and the active area in the substrate.
- the isolation structure separates from and surrounds the at least one TSV structure.
- FIG. 1 - FIG. 7 illustrate a semiconductor device according to one embodiment of the disclosure.
- FIG. 8 is a top view of a semiconductor device according to one embodiment of the disclosure.
- FIG. 9 is a top view of a semiconductor device according to another embodiment of the disclosure.
- FIG. 10 is a cross-section view of a semiconductor device according to a further embodiment of the disclosure.
- the disclosure provides a semiconductor device and a method for manufacturing the same.
- the semiconductor device and the method for manufacturing the same provide the semiconductor device having a Through Silicon Via (TSV) structure.
- a sidewall of the TSV structure is connected to a conductive pad to achieve an electrical interconnection between wafers.
- No under bump metal (UBM) is needed to be formed on upper and lower surfaces of the TSV structure. In this way, the steps in the process can be simplified, and the cost of the process can be reduced.
- the semiconductor device has an isolation structure.
- the isolation structure is only disposed in the substrate and surrounds the TSV structure to prevent the leakage between the TSV structure and the substrate. There is no isolation structure in the dielectric layer, and no oxide linear is formed on the sidewall of the TSV structure.
- the sidewall of the TSV structure can directly contact the conductive pad, and a good electrical connection between the TSV structure and the conductive pad can be achieved. Further, a good electrical isolation between the TSV structure and the substrate can also be established by the isolation structure. Accordingly, the cost of the process can be decreased and the performance of the chip can also be increased.
- FIG. 1 - FIG. 7 illustrate a semiconductor device according to one embodiment of the disclosure.
- a substrate 100 is provided.
- the substrate 100 has a first side 100 a and a second side 100 b which is opposite to the first side 100 a .
- the first side 100 a and the second side 100 b can be a top surface and a bottom surface of the substrate, respectively.
- the substrate 100 can be a silicon substrate.
- a trench 102 is formed in the substrate 100 .
- the trench 102 is formed by, for example, an etching method.
- the trench 102 extends from the first side 100 a of the substrate 100 toward the second side 100 b of the substrate 100 , but not penetrates through the substrate 100 .
- the trench 102 has a depth D 1 extending from a bottom 102 a toward the first side 100 a .
- the depth D 1 of the trench 102 is larger than a thickness D 2 of the substrate 100 after the substrate 100 is thinned down (as shown in FIG. 5 ).
- the depth D 1 of the trench 102 is, for example, larger than 12 ⁇ m.
- the trench 102 has a width of, for example, 6 ⁇ m.
- a shape of the trench 102 can be a circle, a rectangular, or any other shape which can form a closed loop.
- a dielectric material can be filled into the trench 102 by, for example, Atomic Layer Deposition (ALD) or Chemical Vapor Deposition (CVD) . . . etc.
- ALD Atomic Layer Deposition
- CVD Chemical Vapor Deposition
- CMP Chemical Mechanical Polishing
- the isolation structure 104 is, for example, an isolation ring formed in the substrate 100 extending from the first side 100 a of the substrate 100 toward the second side 100 b of the substrate 100 , and defines a closed area Ac to the substrate 100 which is used as a space for forming the TSV structure 120 in the following steps (as shown in FIG. 7 ).
- the isolation structure 104 can be formed of a dielectric material, such as an oxide or tetraethoxysilane (TEOS).
- TEOS tetraethoxysilane
- a shape of the isolation structure 104 can be a circle (as shown in a top view of FIG. 8 ), a rectangular (as shown in a top view of FIG. 9 ), or any other shape which can form a closed loop.
- a conductive pad 112 is formed at a dielectric layer 110 disposed on the first side 100 a of the substrate 100 .
- An active circuit and a conductive line 114 for electrically connecting the active circuit and the conductive pad 112 are formed in the substrate 100 .
- the conductive pad 112 can be formed of aluminum (Al).
- An area corresponding to the active circuit in the substrate 100 is called as an active area A 1 .
- the conductive pad 112 is electrically connected to the active area A 1 in the substrate 100 , and can be an electrical input/output port of the first wafer C 1 .
- the conductive pad 112 corresponds to a closed area Ac formed by the isolation structure 104 in the substrate 100 .
- the conductive pad 112 corresponds to a position where the TSV structure to be formed in the following steps (as shown in FIG. 7 ), such that the TSV structure 120 can connect to the conductive pad 112 to achieve the electrical connection between each of the wafers.
- the conductive pad 112 is embedded in the dielectric layer 100 , and is not exposed from the dielectric layer 100 .
- the dimension of the conductive pad 112 is, for example, 20 ⁇ m ⁇ 20 ⁇ m or 25 ⁇ m ⁇ 25 ⁇ m. However, the dimension of the conductive pad 112 is not limited thereto. It will be suitable if the dimension of the conductive pad 112 is large enough to contact the TSV structure 120 .
- the dielectric layer 110 has a first surface 110 a and a connecting surface 110 b contacting the first side 100 a of the substrate 100 , and the first surface 110 a is opposite to the connecting surface 110 b , i.e. opposite to the first side 100 a of the substrate 100 .
- the dielectric layer 110 can be an inter-metal dielectric (IMD) layer.
- a thinning process (or a lapping process) is performed from the second side 100 b of the substrate 100 to remove a portion of the substrate 100 and expose the isolation structure 104 , such that a first wafer C 1 is formed.
- the thickness D 2 of the substrate 100 is smaller than the depth D 1 .
- the thickness D 2 of the substrate is, for example, 12 ⁇ m.
- the first wafer C 1 has a first surface 110 a on the dielectric layer 110 , and has a second surface 101 on the substrate 100 .
- the first surface 110 a is opposite to the first side 100 a of the substrate 100 .
- the second surface 101 corresponds to the second side 100 b of the substrate 100 .
- a second wafer C 2 is formed according to the method for manufacturing the first wafer C 1 as described above referring to FIG. 1 to FIG. 5 .
- the second wafer C 2 has a first surface 210 a on the dielectric layer 201 , and has a second surface 201 on the substrate 200 .
- the first surface 210 a is opposite to the first side 200 a of the substrate 200
- the second surface 201 corresponds to the second side 200 b of the substrate 200 .
- the elements similar to that in the first wafer C 1 are designated with the similar reference numerals. The redundancy is not repeated here.
- the present disclosure only exemplarily shows the first wafer C 1 and the second wafer C 2 . However, the present disclosure can also include a third wafer C 3 , a fourth wafer C 4 . . . a n th wafer Cn and so on, wherein n is an integer larger than 1.
- the first wafer C 1 , the second wafer C 2 , the third wafer C 3 , the fourth wafer C 4 . . . and the n th wafer Cn are stacked together to form a semiconductor device 10 .
- the first surface 110 a of the first wafer C 1 is connected to the first surface 210 a of the second wafer C 2 .
- the second surface 201 of the second wafer C 2 is connected to a second surface of the third wafer C 3 (not shown).
- a first surface of the third wafer C 3 is connected to a first surface of the fourth wafer C 4 (not shown).
- any two of the isolation structures such as isolation structure 104 and isolation structure 204 , are aligned with each other.
- the closed areas Ac formed by any two of the isolation structures, such as isolation structures 104 and 204 are aligned with each other.
- Any two of the conductive pads, such as conductive pads 112 and 212 are also aligned with each other.
- a TSV structure 120 penetrating through the stack of n wafers is formed corresponding to the determined closed areas Ac formed by the isolation structures, such as isolation structures 104 and 204 , and the conductive pads, such as conductive pads 112 and 212 .
- the isolation structures such as isolation structures 104 and 204
- the conductive pads such as conductive pads 112 and 212 .
- a portion of the substrate 100 , the dielectric layer 110 , and the conductive pad 112 in the first wafer C 1 , and a portion of the substrate 200 , the dielectric layer 210 , and the conductive pad 212 in the second wafer C 2 can be removed to form an opening by an etching method, and a conductive material can be filled into the opening to form the TSV structure 120 .
- the TSV structure 120 is formed of metal, such as copper (Cu).
- the TSV structure 120 can include no insulating material. In this way, the sidewall 120 s of the TSV structure 120 directly contact a portion of the substrates, such as substrates 100 and 200 , the dielectric layers, such as dielectric layers 110 and 210 , and the conductive pads, such as conductive pads 112 and 212 . Since the sidewall 120 s of the TSV structure 120 has no insulating layer, such as an oxide layer, the sidewall 120 s of the TSV structure 120 can directly contact the conductive pads, such as conductive pads 112 and 212 , and a good electrical connection can be achieved.
- FIG. 7 only exemplarily shows that the TSV structure 120 penetrates through the first wafer C 1 and the second wafer C 2 .
- the present disclosure is not limited thereto.
- the semiconductor device 10 further includes the third wafer C 3 , the fourth wafer C 4 . . . the n th wafer Cn
- the TSV structure 120 can further penetrate through the wafers described above to achieve the purpose of electrical connection.
- the conductive pad, such as conductive pads 112 and 212 , of each of the wafers can contact the sidewall 120 s of the TSV structure 120 , and is electrically connected to the active area, such as active areas A 1 and A 2 , in the substrate, such as substrates 100 and 200 .
- the isolation structure, such as isolation structures 104 and 204 , of each of the wafers is separated from the TSV structure 120 , and surrounds the TSV structure 120 .
- the diameter of the TSV structure 120 is 15 ⁇ m. Since the etching process is performed from top to bottom, the diameter of the TSV structure 120 can be gradually decreased from top to bottom.
- the number of the TSV structures, such as TSV structures 120 and 220 can be plural.
- the number of the isolation structures, such as isolation structures 104 and 204 can also be plural, and one isolation structure 104 surrounds one TSV structure 120 .
- the TSV structure 120 and the TSV structure 220 can be surrounded by different isolation structures 104 .
- the forming of the TSV structure, such as TSV structures 120 and 220 , and the forming of the isolation structure, such as isolation structures 104 and 204 are based on multiple wafers, but not a single wafer.
- the TSV structure, such as TSV structures 120 and 220 is formed as an integral structure after forming a stack of n wafers, but not formed as different TSV structures in n wafers and then being stacked together. Therefore, there is no need to form the conductive pad and under bump metal on both of the top and bottom surfaces of the TSV structure to electrically connect the n wafers.
- the amount of the under bump metal can be reduced, the cost of the process can be decreased and the chip performance can be increased by forming the TSV structure, such as TSV structure 120 and 220 , of the present application.
- the possible leakage between the TSV structure and the substrate may be prevented by forming the isolation structure, such as isolation structures 104 and 204 , in the substrate, which surrounds the TSV structure, such as TSV structure 120 and 220 , of the present application.
- isolation structure such as isolation structures 104 and 204
- the isolation structure is not formed in the dielectric layer, such as dielectric layers 110 and 210
- the electrical connection between the TSV structure, such as TSV structure 120 and 220 , and the conductive pad, such as conductive pads 112 and 212 can not be affected by the isolation structure.
- FIG. 8 is a top view of a semiconductor device according to one embodiment of the disclosure. Referring to FIG. 8 , it particularly illustrates a top view of the TSV structure 120 in FIG. 7 .
- the isolation structure 104 has a shape of circle, and is separated from the TSV structure 120 by a portion of the substrate 100 with a same distance t 1 .
- the distance t 1 is, for example, 6 ⁇ m.
- FIG. 9 is a top view of a semiconductor device according to another embodiment of the disclosure.
- the isolation structure 104 has a shape of rectangular.
- One isolation structure 104 surrounds four TSV structures 120 , 220 , 320 and 420 .
- the isolation structure can be any kind of shape which can form a closed loop, such as oval, triangle and rhombus, according to the design of the circuit, and can surround any amount of TSV structures.
- FIG. 10 is a cross-section view of a semiconductor device according to a further embodiment of the disclosure.
- the first wafer C 1 , the second wafer C 2 , the third wafer C 3 and the fourth wafer C 4 are stacked together in the same direction, and a semiconductor device 20 is formed.
- the first surface 110 a of the first wafer C 1 is exposed to the top of the semiconductor structure 20 .
- the second surface 401 of the fourth wafer C 4 is exposed to the bottom of the semiconductor structure 20 .
- the second surface 101 of the first wafer C 1 is connected to the first surface 210 a of the second wafer C 2 .
- the second surface 201 of the second wafer C 2 is connected to the first surface 310 a of the third wafer C 3 .
- the second surface 301 of the third wafer C 3 is connected to the first surface 410 a of the fourth wafer C 4 .
- the conductive pads 512 , 612 , 712 and 812 are not embedded in the dielectric layers 110 , 210 , 310 and 410 , but are exposed from the dielectric layers 110 , 210 , 310 and 410 .
- the isolation structures 104 , 204 and 304 respectively surround the TSV structures 520 and 620 in the substrates 100 , 200 and 300 .
- Conductive pads 512 , 612 and 712 contact sidewalls 520 s and 620 s of the TSV structures 520 and 620 .
- the conductive pads 812 contact the bottom of the TSV structures 520 and 620 .
- the TSV structure 520 is determined to transmit the electrical signal from the first wafer C 1 to the fourth wafer C 4 , conductive pads 512 , 612 , 712 and 812 are formed in each of the wafers.
- the conductive pads 512 , 612 , 712 and 812 are used as the signal input/output port of the first to fourth wafers C 1 -C 4 .
- the TSV structure 620 is determined to transmit the electrical signal between the second wafer C 2 and the fourth wafer C 4 , only the conductive pads 612 and 812 are formed in the second wafer C 2 and the fourth wafer C 4 .
- the present disclosure provides a semiconductor device and method for manufacturing the same.
- the semiconductor device has a TSV structure, and the sidewall of the TSV structure contacts the conductive pad in the dielectric layer.
- no conductive pad and under bump metal are needed to be formed on top and bottom surfaces of the TSV structure of the present disclosure, such that the amount of the under bump metal can be greatly reduced, the step of process can be simplified, the cost of the process can be decreased and the chip performance can be increased.
- the sidewall of the TSV structure of the present application directly contacts the conductive pad in the dielectric layer, and no oxide linear is formed on the sidewall of the TSV structure. Therefore, the electrical connection between the TSV structure and the conductive pad is really excellent in the present application.
- the semiconductor structure has an isolation structure. The isolation structure only surrounds the TSV structure in the substrate to prevent the possible leakage between the TSV structure and the substrate.
- the semiconductor device provided in the present application not only achieve a good electrical connection between the TSV structure and the conductive pad, but also can establish a good electrical isolation between the TSV structure and the substrate. The cost and the time for the process can be decreased and the performance of the chip can also be increased.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
Claims (9)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/701,201 US10784185B2 (en) | 2017-07-11 | 2019-12-03 | Method for manufacturing semiconductor device with through silicon via structure |
| US16/998,137 US11081427B2 (en) | 2017-07-11 | 2020-08-20 | Semiconductor device with through silicon via structure |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW106123251 | 2017-07-11 | ||
| TW106123251A TWI708358B (en) | 2017-07-11 | 2017-07-11 | Semiconductor device and method for manufacturing the same |
| TW106123251A | 2017-07-11 | ||
| US15/678,541 US10546801B2 (en) | 2017-07-11 | 2017-08-16 | Semiconductor device with through silicon via structure and method for manufacturing the same |
| US16/701,201 US10784185B2 (en) | 2017-07-11 | 2019-12-03 | Method for manufacturing semiconductor device with through silicon via structure |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/678,541 Division US10546801B2 (en) | 2017-07-11 | 2017-08-16 | Semiconductor device with through silicon via structure and method for manufacturing the same |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/998,137 Continuation US11081427B2 (en) | 2017-07-11 | 2020-08-20 | Semiconductor device with through silicon via structure |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20200105647A1 US20200105647A1 (en) | 2020-04-02 |
| US10784185B2 true US10784185B2 (en) | 2020-09-22 |
Family
ID=64999088
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/678,541 Active 2038-01-13 US10546801B2 (en) | 2017-07-11 | 2017-08-16 | Semiconductor device with through silicon via structure and method for manufacturing the same |
| US16/701,201 Active US10784185B2 (en) | 2017-07-11 | 2019-12-03 | Method for manufacturing semiconductor device with through silicon via structure |
| US16/998,137 Active US11081427B2 (en) | 2017-07-11 | 2020-08-20 | Semiconductor device with through silicon via structure |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/678,541 Active 2038-01-13 US10546801B2 (en) | 2017-07-11 | 2017-08-16 | Semiconductor device with through silicon via structure and method for manufacturing the same |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/998,137 Active US11081427B2 (en) | 2017-07-11 | 2020-08-20 | Semiconductor device with through silicon via structure |
Country Status (2)
| Country | Link |
|---|---|
| US (3) | US10546801B2 (en) |
| TW (1) | TWI708358B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230352427A1 (en) * | 2021-08-27 | 2023-11-02 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor die including guard ring structure and three-dimensional device structure including the same |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11171117B2 (en) * | 2018-06-12 | 2021-11-09 | Invensas Bonding Technologies, Inc. | Interlayer connection of stacked microelectronic components |
| US11089673B2 (en) * | 2019-07-19 | 2021-08-10 | Raytheon Company | Wall for isolation enhancement |
| CN112687615B (en) * | 2019-10-17 | 2025-03-07 | 美光科技公司 | Microelectronic device assembly, package and related methods |
| US12199068B2 (en) | 2019-10-17 | 2025-01-14 | Micron Technology, Inc. | Methods of forming microelectronic device assemblies and packages |
| KR20230009205A (en) | 2021-07-08 | 2023-01-17 | 삼성전자주식회사 | Semiconductor chip and semiconductor package including the same |
| CN119673896A (en) * | 2025-02-20 | 2025-03-21 | 北京芯力技术创新中心有限公司 | Chip packaging structure and preparation method thereof, and electronic device |
| CN119815908B (en) * | 2025-03-10 | 2025-07-11 | 合肥晶合集成电路股份有限公司 | High-integration-level double-layer integrated circuit structure and preparation method thereof |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120168935A1 (en) * | 2011-01-03 | 2012-07-05 | Nanya Technology Corp. | Integrated circuit device and method for preparing the same |
| US8546953B2 (en) | 2011-12-13 | 2013-10-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Through silicon via (TSV) isolation structures for noise reduction in 3D integrated circuit |
| US20130277852A1 (en) * | 2012-04-19 | 2013-10-24 | Macronic International Co., Ltd. | Method for Creating a 3D Stacked Multichip Module |
| US20140054742A1 (en) | 2012-08-27 | 2014-02-27 | Agency For Science, Technology And Research | Semiconductor Structure |
| US8742590B2 (en) | 2010-12-07 | 2014-06-03 | Imec | Method for forming isolation trenches |
| US20170194291A1 (en) * | 2015-12-31 | 2017-07-06 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and method of manufacturing the same |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8158456B2 (en) * | 2008-12-05 | 2012-04-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming stacked dies |
| US8736066B2 (en) * | 2010-12-02 | 2014-05-27 | Tessera, Inc. | Stacked microelectronic assemby with TSVS formed in stages and carrier above chip |
| US8587127B2 (en) * | 2011-06-15 | 2013-11-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures and methods of forming the same |
| TWI588946B (en) * | 2012-12-21 | 2017-06-21 | 高通公司 | Back-to-back stacked integrated circuit assembly and method of making |
| US9082757B2 (en) * | 2013-10-31 | 2015-07-14 | Freescale Semiconductor, Inc. | Stacked semiconductor devices |
| US9748184B2 (en) * | 2015-10-15 | 2017-08-29 | Micron Technology, Inc. | Wafer level package with TSV-less interposer |
| KR102473664B1 (en) * | 2016-01-19 | 2022-12-02 | 삼성전자주식회사 | Multi-Stacked Device Having a TSV Structure |
-
2017
- 2017-07-11 TW TW106123251A patent/TWI708358B/en active
- 2017-08-16 US US15/678,541 patent/US10546801B2/en active Active
-
2019
- 2019-12-03 US US16/701,201 patent/US10784185B2/en active Active
-
2020
- 2020-08-20 US US16/998,137 patent/US11081427B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8742590B2 (en) | 2010-12-07 | 2014-06-03 | Imec | Method for forming isolation trenches |
| US20120168935A1 (en) * | 2011-01-03 | 2012-07-05 | Nanya Technology Corp. | Integrated circuit device and method for preparing the same |
| US8546953B2 (en) | 2011-12-13 | 2013-10-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Through silicon via (TSV) isolation structures for noise reduction in 3D integrated circuit |
| US20130277852A1 (en) * | 2012-04-19 | 2013-10-24 | Macronic International Co., Ltd. | Method for Creating a 3D Stacked Multichip Module |
| US20140054742A1 (en) | 2012-08-27 | 2014-02-27 | Agency For Science, Technology And Research | Semiconductor Structure |
| US20170194291A1 (en) * | 2015-12-31 | 2017-07-06 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and method of manufacturing the same |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230352427A1 (en) * | 2021-08-27 | 2023-11-02 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor die including guard ring structure and three-dimensional device structure including the same |
| US12027475B2 (en) * | 2021-08-27 | 2024-07-02 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor die including guard ring structure and three-dimensional device structure including the same |
| US20240312931A1 (en) * | 2021-08-27 | 2024-09-19 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor die including guard ring structure and three-dimensional device structure including the same |
| US12417987B2 (en) * | 2021-08-27 | 2025-09-16 | Taiwan Semiconductor Manufacturing Company Limited | Semiconductor die including guard ring structure and three-dimensional device structure including the same |
Also Published As
| Publication number | Publication date |
|---|---|
| US20200381340A1 (en) | 2020-12-03 |
| TWI708358B (en) | 2020-10-21 |
| US20190019741A1 (en) | 2019-01-17 |
| TW201909370A (en) | 2019-03-01 |
| US20200105647A1 (en) | 2020-04-02 |
| US11081427B2 (en) | 2021-08-03 |
| US10546801B2 (en) | 2020-01-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11081427B2 (en) | Semiconductor device with through silicon via structure | |
| US11705449B2 (en) | Through silicon via design for stacking integrated circuits | |
| US11978758B2 (en) | Methods and apparatus for via last through-vias | |
| US10867969B2 (en) | Multi-wafer stacking structure and fabrication method thereof | |
| US7898073B2 (en) | Semiconductor device and semiconductor module employing thereof | |
| CN101752270B (en) | Method for forming semiconductor dies of stacked integrated circuits | |
| US20200075550A1 (en) | Multi-wafer bonding structure and bonding method | |
| US11302662B2 (en) | Semiconductor package with air gap and manufacturing method thereof | |
| US11664312B2 (en) | Semiconductor device and semiconductor package including the same | |
| TW202310365A (en) | Three-dimensional device structure and forming method thereof | |
| US12356639B2 (en) | Double-sided stacked DTC structure | |
| US20110260297A1 (en) | Through-substrate via and fabrication method thereof | |
| US11309249B2 (en) | Semiconductor package with air gap and manufacturing method thereof | |
| US12278211B2 (en) | Manufacturing method of semiconductor device | |
| US20250006676A1 (en) | Semiconductor package and method of manufacturing the semiconductor package | |
| US20210057359A1 (en) | First wafer, fabricating method thereof and wafer stack | |
| US20250226355A1 (en) | Semiconductor device and manufacturing method thereof | |
| TWI895531B (en) | Interposer structure and method for manufacturing thereof | |
| US20140264833A1 (en) | Semiconductor package and method for fabricating the same | |
| CN114446961A (en) | Interposer structure and method of manufacturing the same | |
| CN120784171A (en) | Semiconductor die package and method of forming the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNITED MICROELECTRONICS CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, ZHAO-BING;ZHANG, JU-BAO;REN, CHI;REEL/FRAME:051156/0127 Effective date: 20170803 |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |