US10744957B2 - Photographing apparatus for vehicle and heating device - Google Patents

Photographing apparatus for vehicle and heating device Download PDF

Info

Publication number
US10744957B2
US10744957B2 US16/177,498 US201816177498A US10744957B2 US 10744957 B2 US10744957 B2 US 10744957B2 US 201816177498 A US201816177498 A US 201816177498A US 10744957 B2 US10744957 B2 US 10744957B2
Authority
US
United States
Prior art keywords
vehicle
temperature
heater
air temperature
photographing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/177,498
Other versions
US20190193647A1 (en
Inventor
Yoshitaka Oikawa
Yasuyoshi Seto
Ryuuichi SHINKAI
Hideyuki Murasato
Hirotaka HATAKEYAMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HATAKEYAMA, Hirotaka, MURASATO, HIDEYUKI, SETO, YASUYOSHI, SHINKAI, RYUUICHI, OIKAWA, YOSHITAKA
Publication of US20190193647A1 publication Critical patent/US20190193647A1/en
Application granted granted Critical
Publication of US10744957B2 publication Critical patent/US10744957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/023Cleaning windscreens, windows or optical devices including defroster or demisting means
    • B60S1/026Cleaning windscreens, windows or optical devices including defroster or demisting means using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • H04N5/22521
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/007Details of energy supply or management

Definitions

  • the present invention relates to a photographing apparatus for vehicle and a heating device which are, for example, provided behind a front window of a vehicle.
  • a camera may be provided behind a front window of a vehicle.
  • the camera converts reflected light (object image) reflected by an object (for example, a vehicle) positioned in front of the vehicle into imaging data (electric signal) by an image pickup device, and transmits the imaging data to a control device of the vehicle.
  • an imaging data produced by the image pickup device of the camera may be data indicating a blurred object image, or the image pickup device may fail to capture an object in front of the vehicle.
  • a heater being a heating wire and a heated portion, which the heater is fixed to and gives heat received from the heater to the front window as radiation heat, are provided behind the front window of the vehicle (i.e., provided inside the vehicle) disclosed in Japanese Unexamined Patent Application Publication No. 2017-185896.
  • This heater is connected to an electric power source of the vehicle via electrical supply lines.
  • the heater When the electric power of the electric power source is supplied to the heater, the heater generates heat.
  • the heated portion is heated by the heat generated by the heater, and the radiation heat generated by the heated portion is given to the front window.
  • the temperature of the heater becomes a value within a predetermined temperature range, the temperature of the front window becomes equal to or higher than the dew point temperature. As a result, the dew condensation occurring on the front window disappears. Furthermore, ice and frost adhering to the outside surface of the front window disappear.
  • the risk that the image pickup device captures a blurred object image or fails to capture an object image can be reduced.
  • the heat generation amount of the heater for causing the temperature of the heater to be a value within the predetermined temperature range can be calculated based on, for example, an outside air temperature and a vehicle speed which are detected before electricity is supplied to the heater.
  • the temperature of the heater is affected by factors other than the outside air temperature and the vehicle speed in addition to the outside air temperature and the vehicle speed. That is, since the heater is located close to the camera, the heater receives heat generated by the camera, and thus the temperature of the heater rises due to this heat. Therefore, if the heat generation amount to be generated by the heater is calculated without considering the heat generated by the camera, there is a possibility that a component located in the vicinity of the heater may be deformed.
  • the present invention has been made in order to cope with the above-mentioned problem. That is, the present invention has an object to provide a photographing apparatus for vehicle and a heating device which can cause heating means to generate heat considering heat given to the heating means from a photographing apparatus.
  • the photographing apparatus for vehicle comprises:
  • a photographing apparatus ( 30 ) that is disposed inside a vehicle so as to face a window ( 85 ) of the vehicle and is configured to receive photographing light passing through the window;
  • heating means 41 a , 43 b ) that is disposed inside the vehicle so as to face the window and generates heat when receiving electricity;
  • an outside air temperature detector ( 101 ) that detects outside air temperature which is air temperature outside of the vehicle
  • a control device 100 that calculates an amount (Etc) corresponding to a target value of electric energy to be supplied to the heating means for a predetermined period of time (T) based on the outside air temperature detected by the outside air temperature detector and temperature of the photographing apparatus, the control device supplying electric energy corresponding to the target value to the heating means.
  • the heating device ( 95 ) which is disposed inside a vehicle so as to face a window of the vehicle together with a photographing apparatus, the heating device comprises:
  • heating means that generates heat when receiving electricity
  • control device that calculates an amount corresponding to a target value of electric energy to be supplied to the heating means for a predetermined period of time based on outside air temperature which is air temperature outside of the vehicle and temperature of the photographing apparatus, the control device supplying electric energy corresponding to the target value to the heating means.
  • the temperature of the heating means has a correlation with heat generation amount for a predetermined period of time.
  • the temperature of the heating means is affected not only by the outside air temperature but also by the temperature of the photographing apparatus. That is, the temperature of the heating means rises due to the heat generated by the photographing apparatus. Therefore, when the control device reduces the heat generation amount to be generated by the heating means by an amount corresponding to the temperature of the photographing apparatus and supplies electricity to the heating means so that the heating means generates this reduced heat generation amount, a possibility of the heating means generating an excessive heat becomes small.
  • the heating means comprises:
  • a heater ( 43 b ), being a heating wire, generating heat when receiving electricity;
  • a heated portion ( 41 a ) to which the heater is fixed, the heated portion releasing radiation heat to the window when receiving heat from the heater.
  • the heating means having a simple structure can be obtained.
  • the photographing apparatus for vehicle further comprises:
  • an interior air temperature detector ( 103 ) that detects interior air temperature which is air temperature inside of the vehicle.
  • control device that supplies electric energy, whose amount corresponding to the target value is increased by an amount ( ⁇ Ti) corresponding to the interior air temperature, to the heating means.
  • the photographing apparatus for vehicle further comprises:
  • an air conditioner operating condition detector ( 104 ) that detects operating condition of an air conditioner provided in the vehicle
  • control device that supplies electric energy, whose amount corresponding to the target value is increased by an amount ( ⁇ Sc) corresponding to the operating condition, to the heating means.
  • the temperature (heat generation amount) of the heating means is also affected by the interior air temperature and the operating condition of the air conditioner. More specifically, the temperature (heat generation amount) of the heating means is lowered due to the influence of the interior air temperature and/or the operating condition of the air conditioner. Therefore, when the control device supplies electric energy, whose amount corresponding to the target value is increased by an amount corresponding to the interior air temperature and/or the operating condition of the air conditioner, to the heating means, the possibility of the heating means generating an excessive heat becomes smaller.
  • FIG. 1 is a perspective view of a photographing apparatus for vehicle and a front window according to an embodiment of the present invention as viewed from the front.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1 .
  • FIG. 3 is a perspective view of the photographing apparatus for vehicle as viewed from the above.
  • FIG. 4 is an exploded perspective view of the photographing apparatus for vehicle as viewed from the above.
  • FIG. 5 is an exploded perspective view of a light shielding and heating unit as viewed from the below.
  • FIG. 6 is a perspective view of the light shielding and heating unit as viewed from the below.
  • FIG. 7 is a schematic view of a heated portion, a heater module, a fuse module, and a cable module as viewed from the below.
  • FIG. 8 a is a cross-sectional view of the light shielding and heating unit when being cut at a position passing through the fuse.
  • FIG. 8 b is a cross-sectional view of the light shielding and heating unit when being cut at a position passing through a sealant.
  • FIG. 9 is a schematic view of an electrical circuit.
  • FIG. 10 is a routine showing processing executed by a control device.
  • FIG. 11 is a graph showing a duty ratio when electricity is supplied to a heater.
  • FIG. 12 is a routine showing processing executed by the control device according to a modified embodiment of the present invention.
  • a photographing apparatus for vehicle 10 (hereinafter referred to as a “photographing apparatus 10 ”) according to the embodiment is provided behind a front window 85 of a vehicle (i.e., provided inside the vehicle).
  • the front window 85 is made from translucent glass.
  • the front window 85 may be made from a material (for example, resin) other than glass as long as it has translucency.
  • the front window 85 is inclined with respect to the vehicle body in such a manner that the front window 85 gradually heads toward the front of the vehicle as approaching the lower end thereof from the upper end thereof.
  • a light shielding sheet 86 having a substantially T-shape in its entire shape is attached to an upper edge portion and its vicinity of the rear surface (that is, a surface on the vehicle interior side) of the front window 85 .
  • a forward extending portion 86 a extending forward and obliquely downward is formed.
  • a light transmission hole 86 b having a substantially trapezoidal shape is formed in the vicinity of the front end of the forward extending portion 86 a .
  • a portion of the front window 85 which faces the light transmission hole 86 b is a light transmission portion 85 a .
  • the photographing apparatus 10 is provided behind the front window 85 (i.e., inside the vehicle) so as to face the light transmission portion 85 a.
  • the photographing apparatus 10 includes a bracket 20 , a camera unit 30 , a light shielding and heating unit 40 , and a cover 50 as main components.
  • the bracket 20 is made from a hard resin.
  • a support portion 21 which is substantially trapezoidal through hole, is formed in the bracket 20 . Further, a plurality of adhesive surfaces 22 are formed on the upper surface of the bracket 20 .
  • the camera unit 30 includes a housing 31 and an image pickup unit 32 .
  • the housing 31 is an integrally molded product made from resin and constitutes the outer shape of the camera unit 30 .
  • a hood mounting recess 31 a having a substantially trapezoid shape in a plan view is formed on the upper surface of the housing 31 .
  • the image pickup unit 32 is fixed to the rear end surface of the hood mounting recess 31 a .
  • the image pickup unit 32 includes a lens 32 a and an image pickup device 32 b positioned immediately behind the lens 32 a .
  • the image pickup device 32 b is a compound eye type device.
  • the image pickup device 32 b receives reflected light (photographing light), which is reflected backward by an obstacle located in front of the camera unit 30 and passes through the lens 32 a .
  • the upper portion of the camera unit 30 is engaged with the bracket 20 and is supported by the bracket 20 .
  • a thermistor 30 a (see FIG. 9 ), which can detect the temperature Tc of the camera unit 30 , is provided inside the camera unit 30 .
  • the light shielding and heating unit 40 shown in FIGS. 4 to 8 (particularly, FIG. 5 ) is provided with a light shielding hood 41 , a double-faced adhesive tape 42 , a heater module 43 , a fuse module 44 , a heat insulator 45 and a cable module 46 as main components.
  • the light shielding hood 41 is an integrally molded product made from a hard resin.
  • the light shielding hood 41 includes a heated portion 41 a and side wall portions 41 b .
  • the heated portion 41 a is a plate having an equilateral triangular shape (that is, the heated portion 41 a has an equilateral triangular shape in the front view).
  • the heated portion 41 a is bilaterally symmetrical with respect to the center line L 1 extending in the front-rear direction.
  • the side wall portions 41 b are a pair of flange portions extending upward from left and right side edge portions of the heated portion 41 a , respectively.
  • the height of each side wall portion 41 b gradually increases from the front end thereof to the rear end thereof.
  • the heater module 43 includes a PET sheet 43 a and a heater 43 b.
  • the PET sheet 43 a is made from PET (polyethylene terephthalate).
  • the outer shape of the PET sheet 43 a is substantially the same shape as that of the heated portion 41 a . That is, the PET sheet 43 a is an equilateral triangle bilaterally symmetrical with respect to the center line L 1 .
  • the PET sheet 43 a has good insulating property.
  • the heater 43 b is a heating wire made from a metal (for example, brass) that generates heat when receiving electricity.
  • the heater 43 b is formed on substantially the entire upper surface of the PET sheet 43 a by printing in a zig-zag manner. Both end portions of the heater 43 b are constituted by a pair of lands 43 c and 43 d having larger area than the other portions of the heater 43 b .
  • the lands 43 c , 43 d are exposed on the upper and lower surfaces of the PET sheet 43 a .
  • the land 43 c is provided in the vicinity of the rear corner of the PET sheet 43 a
  • the land 43 d is provided in the vicinity of front right corner of the PET sheet 43 a.
  • the lower surface of the double-faced adhesive tape 42 is attached to the upper surface of the PET sheet 43 a so as to cover the heater 43 b .
  • the double-faced adhesive tape 42 has substantially the same shape as the heated portion 41 a and the PET sheet 43 a .
  • the upper surface of the double-faced adhesive tape 42 is attached to the lower surface of the heated portion 41 a .
  • the heater module 43 is fixed to the light shielding hood 41 .
  • the double-faced adhesive tape 42 has good thermal conductivity.
  • the peripheral edge portion of the PET sheet 43 a overlaps the peripheral edge portions of the double-faced adhesive tape 42 and the heated portion 41 a.
  • the fuse module 44 is integrally provided with a double-faced adhesive tape 44 a , a fuse 44 b and two lead wires 44 c , 44 d.
  • the double-faced adhesive tape 44 a is a sheet-like member having a shape shown in FIG. 5 , and both surfaces of the double-faced adhesive tape 44 a are adhesive surfaces.
  • the thermal conductivity of the double-faced adhesive tape 44 a is lower than those of the light shielding hood 41 , the double-faced adhesive tape 42 , and the PET sheet 43 a.
  • the fuse 44 b is a current limiting element, and includes a cylindrical insulating case and a soluble metal which has conductivity.
  • the soluble metal is provided inside the insulating case and is fixed to the insulating case.
  • the insulating case of the fuse 44 b is attached to the substantially central portion of the upper surface of the double-faced adhesive tape 44 a.
  • the two lead wires 44 c , 44 d are attached to the upper surface of the double-faced adhesive tape 44 a in the illustrated manner.
  • One end of each of the two lead wires 44 c , 44 d is located in the insulating case of the fuse 44 b .
  • the one end of the lead wire 44 c is connected to one end of the soluble metal, and the one end of the lead wire 44 d is connected to the other end of the soluble metal.
  • connecting ends 44 c 1 , 44 d 1 which are the other ends of the two lead wires 44 c , 44 d , are both located on the outer peripheral side with respect to the double-faced adhesive tape 44 a.
  • the upper surface of the double-faced adhesive tape 44 a is attached to the lower surface of the PET sheet 43 a .
  • the fuse module 44 is fixed to the heater module 43 .
  • the entire fuse module 44 is located on the inner peripheral side with respect to the outer peripheral edge portion of the PET sheet 43 a .
  • the pair of the lands 43 c , 43 d of the heater module 43 are located on the outer peripheral side with respect to the double-faced adhesive tape 44 a .
  • the fuse 44 b of the fuse module 44 is located at a position overlapping the position of the center of gravity G of the heated portion 41 a in the thickness direction of the heated portion 41 a . That is, the fuse 44 b is arranged on a straight line, which extends in the thickness direction of the heated portion 41 a and passes through the center of gravity G.
  • the fuse 44 b and the lead wires 44 c , 44 d are in contact with the lower surface of the PET sheet 43 a . That is, the fuse 44 b and the lead wires 44 c , 44 d (except for the connecting ends 44 c 1 , 44 d 1 ) and the portion of the heater 43 b excluding the lands 43 c , 43 d are insulated from each other by the PET sheet 43 a positioned therebetween. Further, the connecting end 44 d 1 of the lead wire 44 d is soldered to the lower surface of the land 43 d of the PET sheet 43 a (not shown).
  • the heat insulator 45 is made from an insulating material, and has substantially the same shape as the heated portion 41 a . That is, the heat insulator 45 is an equilateral triangular sheet-like member. A pair of through-holes 45 a , 45 b are formed in the vicinity of the rear end corner of the heat insulator 45 .
  • the thermal conductivity of the heat insulator 45 is lower than those of the light shielding hood 41 , the double-faced adhesive tape 42 , the PET sheet 43 a , and the double-faced adhesive tape 44 a.
  • the upper surface of the heat insulator 45 is attached to the lower surface of the double-faced adhesive tape 44 a .
  • a portion of the upper surface of the heat insulator 45 which does not face the double-faced adhesive tape 44 a , is in contact with the lower surface of the PET sheet 43 a .
  • the peripheral portion of the heat insulator 45 is in contact with a portion of the light shielding hood 41 which is positioned on the outer peripheral side with respect to the peripheral portions of the heated portion 41 a and the PET sheet 43 a .
  • the through-holes 45 a , 45 b of the heat insulator 45 are located on the center line L 1 when viewed in the thickness direction of the heated portion 41 a .
  • the through-hole 45 a is located immediately below the land 43 c of the PET sheet 43 a and the through-hole 45 b is located immediately below the connecting end 44 c 1 of the lead wire 44 c.
  • the cable module 46 is provided with a first electric cable 60 , a second electric cable 63 , a connector 66 (see FIGS. 4 and 9 ) connected to one end of the first electric cable 60 and one end of the second electric cable 63 , and a banding tube 67 .
  • the first electric cable 60 includes an electric wire 61 made of a metal wire having good conductivity and a covering tube 62 covering the outer peripheral surface of the electric wire 61 excluding the outer peripheral surface of both end portions thereof.
  • the second electric cable 63 includes an electric wire 64 made of a metal wire having good conductivity and a covering tube 65 covering the outer peripheral surface of the electric wire 64 excluding the outer peripheral surface of both end portions thereof.
  • Two metallic contacts are provided inside the connector 66 .
  • One of the two contacts is an anode and the other of the two contacts is a cathode.
  • One end of the first electric cable 60 and one end of the second electric cable 63 are connected to the connector 66 .
  • One end of the electric wire 61 is connected to one contact which is the anode and one end of the electric wire 64 is connected to the other contact which is the cathode.
  • portions of the covering tube 62 and the covering tube 65 which are different from the front and rear end portions thereof, are inserted into the single banding tube 67 . That is, the banding tube 67 bundles the covering tube 62 and the covering tube 65 so as not to separate from each other.
  • the other end of the electric wire 61 of the first electric cable 60 is inserted into the through-hole 45 a of the heat insulator 45 , and the other end of the electric wire 61 is connected to the lower surface of the land 43 c by a solder 70 .
  • the other end of the electric wire 64 of the second electric cable 63 is inserted into the through-hole 45 b of the heat insulator 45 .
  • the other end of the electric wire 64 and the connecting end 44 c 1 of the lead wire 44 c are soldered to each other.
  • a sealant 71 having electrical insulation property is fixed to the lower surface of the heat insulator 45 and a fixed portion 62 a (shown in FIGS. 5 and 8B ) that is the vicinity of the through-hole 45 a side end of the covering tube 62 of the first electric cable 60 .
  • the through-hole 45 a is covered with this sealant 71 .
  • a sealant 72 having electrical insulation property is fixed to the lower surface of the heat insulator 45 and a fixed portion 65 a (shown in FIG. 5 ) that is the vicinity of the through-hole 45 b side end of the covering tube 65 of the second electric cable 63 .
  • the through-hole 45 b is covered with this sealant 72 .
  • the light shielding hood 41 of the light shielding and heating unit 40 is fitted into the hood mounting recess 31 a of the camera unit 30 , and the front portion of the image pickup unit 32 is located directly above the rear end portion of the heated portion 41 a through a gap between the rear end portions of the left and right side wall portions 41 b .
  • the light shielding hood 41 of the light shielding and heating unit 40 is fitted into the support portion 21 of the bracket 20 , and the upper surface of the cover 50 is fixed to the bracket 20 so as to cover the camera unit 30 and the light shielding and heating unit 40 .
  • the connector 66 of the cable module 46 is drawn backward of the cover 50 through the rear end opening of the cover 50 .
  • the photographing apparatus 10 which is integrated in this way, is fixed to the vehicle interior side surface of the forward extending portion 86 a of the light shielding sheet 86 by using adhesive (not shown) applied to each adhesive surface 22 of the bracket 20 . Then, the support portion 21 of the bracket 20 , the heated portion 41 a of the light shielding and heating unit 40 , and the image pickup unit 32 of the camera unit 30 are positioned at positions facing the light transmission hole 86 b of the light shielding sheet 86 .
  • photographing light which is directed from the front side of the front window 85 to the rear side of the front window 85 and passes through the light transmission portion 85 a and the light transmission hole 86 b of the light shielding sheet 86 backward, is received by the image pickup device 32 b after passing through the lens 32 a of the image pickup unit 32 .
  • control device 100 is an ECU.
  • ECU is an abbreviation of Electric Control Unit, and is provided with a microcomputer including a CPU and a storage device such as a ROM and a RAM.
  • the CPU implements various functions by executing instructions (programs) stored in the ROM.
  • a “low speed duty ratio calculation map (MapLo)”, a “high speed duty ratio calculation map (MapHi)”, and a “duty ratio correction map (MapD)” are stored in the storage device (ROM) of the control device 100 .
  • the vehicle is provided with an outside air temperature sensor 101 for measuring a temperature Tair outside of the vehicle.
  • the outside air temperature sensor 101 is provided in a front grill of the vehicle.
  • the vehicle is provided with a vehicle speed sensor 102 , an interior air temperature sensor 103 , and an air conditioner operating condition detection device 104 .
  • the outside air temperature sensor 101 , the vehicle speed sensor 102 , the interior air temperature sensor 103 , and the air conditioner operating condition detection device 104 are connected to the control device 100 .
  • the air conditioner operating condition detection device 104 generates an operating condition value Sc (described later) which is a value indicating the operation condition of an air conditioner (not shown) of the vehicle.
  • the connector 66 of the light shielding and heating unit 40 is connected to a vehicle body side connector 66 a provided in the vehicle body.
  • the connector 66 and the vehicle body side connector 66 a are integrated members.
  • the connector 66 and the vehicle body side connector 66 a are drawn in a manner that the connector 66 and the vehicle body side connector 66 a are divided into two pieces in order to be easy to understand the connection relation.
  • the first electric cable 60 is connected to an anode of a vehicle installation electric power source (i.e., an IG electric power source or battery) via the connector 66 , the vehicle body side connector 66 a , an electrical supply line EL 1 , and an ignition switch (IG-SW).
  • a cathode of the IG electric power source is grounded.
  • the second electric cable 63 is connected to one end of a switch element 89 via the connector 66 and the vehicle body side connector 66 a .
  • the other end of the switch element 89 is grounded.
  • the state of the switch element 89 is switched between an ON state (i.e., conduction state or connection state) and an OFF state (i.e., non-conduction state or disconnection state) by the control device 100 .
  • the switch element 89 is a semiconductor switch element, however, the switch element 89 may be a relay type switch.
  • an electrical supply line EL 2 is connected to the ignition switch (IG-SW).
  • the other end of the electrical supply line EL 2 is connected to a power supply line (not shown) of a camera control ECU 106 .
  • An earth line (not shown) of the camera control ECU 106 is grounded.
  • the camera control ECU 106 is supplied with electricity from the IG electric power source.
  • a power supply line (not shown) of the camera unit 30 is connected to the electrical supply line EL 2 , and an earth line (not shown) of the camera unit 30 is grounded.
  • the IG electric power source supplies the camera unit 30 with electricity.
  • the camera control ECU 106 and the camera unit 30 are connected to each other so as to transmit and receive various signals therebetween.
  • control device 100 is also connected to the IG electric power source via the IG-SW, and receive electricity from the IG electric power source. Further, the control device 100 and the camera control ECU 106 are configured to be capable of transmitting and receiving information therebetween via a CAN (not shown).
  • the camera control ECU 106 detects the voltage Vh (the potential of the electrical supply line EL 2 ) of electricity supplied to the camera control ECU 106 .
  • This voltage Vh is substantially equal to the voltage Vp of the IG electric power source.
  • the voltage Vh detected by the camera control ECU 106 is used as the voltage (heater voltage) Vh of electricity supplied to the heater 43 b.
  • the light shielding and heating unit 40 and the control device 100 described above are components of the heating device 95 .
  • the operations of the vehicle and the photographing apparatus 10 will be described.
  • the ignition switch (IG-SW) is closed and thus the anode of the IG electric power source is made to be connected to the electrical supply line EL 1 , the electrical supply line EL 2 , and the control device 100 .
  • the camera control ECU 106 causes the camera unit 30 to start imaging.
  • the camera unit 30 acquires imaging data using the image pickup unit 32 each time a predetermined period of time elapses.
  • the image pickup device 32 b of the image pickup unit 32 captures reflected light, which is reflected backward by an object (for example, another vehicle) positioned in front of the vehicle having the photographing apparatus 10 and passes through the light transmission portion 85 a of the front window 85 , the light transmission hole 86 b of the light shielding sheet 86 , and the lens 32 a , to generate imaging data.
  • the camera unit 30 transmits the imaging data to the camera control ECU 106 .
  • the camera control ECU 106 processes the imaging data received from the camera unit 30 , and transmits it to the control device 100 each time a predetermined period of time elapses.
  • the control device 100 acquires information (forward information) on an object (other vehicle, obstacle, etc.) existing in front of the vehicle, and controls the vehicle based on the forward information.
  • the control device 100 executes “automatic brake control, lane keeping assist control (i.e., lane tracing assist control), adaptive high beam control” and the like, executes automatic operation, and issues an alarm.
  • lane keeping assist control i.e., lane tracing assist control
  • adaptive high beam control a control based on forward information
  • driving support control such a control based on forward information is referred to as driving support control.
  • the outside air temperature i.e., air temperature outside of the vehicle
  • dew condensation may occur on the light transmission portion 85 a of the front window 85 .
  • Dew condensation is easy to occur when an air heating device is used in the passenger compartment.
  • ice and/or frost may adhere to the light transmission portion 85 a .
  • the imaging data generated by the image pickup device 32 b may be data representing a blurred object image, and/or the image pickup unit 32 may fail to image an object in front of the vehicle.
  • the control device 100 may fail to accurately perform the above-described driving support control using imaging data.
  • control device 100 prevents such a situation from occurring by executing the processing (routine) shown by the flowchart of FIG. 10 . It should be noted that the control device 100 sets the switch element 89 to the OFF state immediately after the ignition key switch is changed from an OFF position to an ON position.
  • the CPU of the control device 100 (hereinafter simply referred to as “CPU”) starts the processing of the routine shown in FIG. 10 from Step 1000 every time a predetermined period of time T (see FIG. 11 . It is set to 3 minutes in the present embodiment.) elapses. Thereafter, the CPU proceeds to Step 1001 to determine whether or not the outside air temperature Tair detected by the outside air temperature sensor 101 at a predetermined time immediately before the start of the processing of this routine is lower than a predetermined outside air temperature threshold Tath.
  • the CPU determines “No” in Step 1001 , and proceeds to Step 1007 to set the switch element 89 to the OFF state (i.e., to stop supplying electricity to the heater 43 b ). Thereafter, the CPU directly proceeds to Step 1095 and temporarily ends this routine. As a result, the state of the switch element 89 is maintained in the OFF state, so that the heater 43 b does not generate heat.
  • Step 1001 determines “Yes” in Step 1001 , and proceeds to Step 1002 to determine whether or not a vehicle speed SPD detected by the vehicle speed sensor 102 at the predetermined time immediately before the start of the processing of this routine is equal to or higher than a predetermined speed threshold SPDth.
  • the control device 100 executes the driving support control based on the imaging data generated by the camera unit 30 when the vehicle speed SPD is equal to or higher than the speed threshold SPDth. Therefore, when the vehicle speed SPD is less than the speed threshold SPDth, the imaging data is not used, so it is not necessary to energize the heater 43 b .
  • Step 1002 determines “No” in Step 1002 , and directly proceeds to Step 1095 via Step 1007 .
  • the switch element 89 is maintained in the OFF state, so that the heater 43 b does not generate heat.
  • Step 1003 the CPU determines “Yes” in Step 1002 and proceeds to Step 1003 .
  • Step 1002 can be omitted.
  • the speed threshold SPDth can be “0 km/h”.
  • the CPU inevitably proceeds to Step 1003 regardless of the vehicle speed SPD.
  • Step 1003 the CPU determines whether or not the temperature Tc of the camera unit 30 detected by the thermistor 30 a at the predetermined time immediately before the start of the processing of this routine is within a predetermined normal temperature range (i.e., a temperature range in which the operation of the camera unit 30 is guaranteed).
  • Step 1003 the CPU determines “No” in Step 1003 , and proceeds directly to Step 1095 via Step 1007 .
  • the switch element 89 since the switch element 89 is maintained in the OFF state, the heater 43 b does not generate heat.
  • Step 1003 when the temperature Tc of the camera unit 30 is within the normal temperature range, the CPU determines “Yes” in Step 1003 , and proceeds to Step 1095 to temporarily end this routine after executing the processing of Steps 1004 to 1006 described below in that order.
  • Step 1095 When the CPU determines “Yes” in all of Steps 1001 to 1003 , a predetermined control start condition is satisfied.
  • Step 1004 First, the CPU determines whether the vehicle speed SPD detected by the vehicle speed sensor 102 at the predetermined time is included in a predetermined low speed area or in a predetermined high speed area.
  • the range of the low speed area can be set to 0 km/h or more and less than 50 km/h
  • the range of the high speed area can be set to 50 km/h or more.
  • the duty ratio is a ratio (%) expressed by the following formula.
  • Ton the period of time (voltage application time) during which the switch element 89 is in the ON state
  • Toff the period of time (voltage application stop time) during which the switch element 89 is in the OFF state.
  • Ton+Toff one cycle ⁇ T
  • Duty ratio [ T on/( T on+ T off)] ⁇ 100(%)
  • a target heat generation amount (the target value of the heat generation amount) can be calculated based on the outside air temperature Tair and the vehicle speed SPD, and the duty ratio can be calculated based on the target heat generation amount and the voltage Vh.
  • an appropriate temperature range a predetermined temperature range
  • the temperature of the light transmission portion 85 a can be maintained at “temperature within the predetermined range which is equal to or higher than the dew point temperature”. It is assumed that this is the reason why the occurrence of dew condensation and the adherence of ice and frost can be avoided.
  • the temperature of the heater 43 b has a strong correlation with the heat generation amount generated by the heater 43 b and the amount of heat escaping from the heater 43 b for a predetermined period of time (i.e., the predetermined period of time T of this embodiment). Furthermore, the amount of heat escaping from the heater 43 b has a strong correlation with a heat radiation amount of the light transmission portion 85 a .
  • the heat radiation amount of the light transmission portion 85 a for a predetermined period of time has a strong correlation with “the outside air temperature Tair and the vehicle speed SPD”. Therefore, the heater voltage Vh at the predetermined time, the outside air temperature Tair at the predetermined time and the vehicle speed SPD at the predetermined time are used as arguments of the low speed duty ratio calculation map (MapLo) and the high speed duty ratio calculation map (MapHi).
  • the low speed duty ratio calculation map (MapLo) and the high speed duty ratio calculation map (MapHi) may be integrated into one duty ratio calculation map (MapCo (Vh, Tair, SPD)).
  • MapCo Vh, Tair, SPD
  • a duty ratio calculated in accordance with the duty ratio calculation map is a value corresponding to a target value of “the heat generation amount (supplied electric energy) of the heater 43 b for the predetermined period of time T” which is necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range.
  • the duty ratio calculation map is obtained (made) based on a relationship between the three factors (i.e., the heater voltage Vh, the outside air temperature Tair, the vehicle speed SPD) and the duty ratio necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range, and is stored in the ROM. This relationship is obtained in advance by an experiment.
  • the duty ratio becomes smaller as the heater voltage Vh becomes higher, regardless of whether the low speed duty ratio calculation map (MapLo) or the high speed duty ratio calculation map (MapHi) is used.
  • the duty ratio becomes smaller as the outside air temperature Tair becomes higher, regardless of whether the low speed duty ratio calculation map (MapLo) or the high speed duty ratio calculation map (MapHi) is used.
  • the duty ratio obtained by the high speed duty ratio calculation map (MapHi) is larger than the duty ratio obtained by the low speed duty ratio calculation map (MapLo). Furthermore, the duty ratio becomes larger as the vehicle speed SPD becomes higher, regardless of whether the low speed duty ratio calculation map (MapLo) or the high speed duty ratio calculation map (MapHi) is used.
  • Step 1005 The CPU applies the temperature Tc of the camera unit 30 at the predetermined time and the duty ratio calculated in Step 1004 to the duty ratio correction map (MapD), thereby calculating a corrected duty ratio which is a corrected value of the duty ratio (see the following formula).
  • the duty ratio correction map MapD is obtained (made) based on a relationship between the two factors (i.e., the duty ratio and the temperature Tc of the camera unit 30 ) and the corrected duty ratio necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range, and is stored in the ROM. This relationship is obtained in advance by an experiment.
  • Step 1006 The CPU executes energization control (heat generation amount control) of the heater 43 b over the predetermined period of time T according to the corrected duty ratio. That is, as shown in FIG. 11 , the CPU repeats a switching operation three times (see the times t0 to t6). In each of the switching operations, the CPU sets the switch element 89 to the OFF state over the voltage application stop time Toff defined by the corrected duty ratio, and then sets the switch element 89 to the ON state over the voltage application time Ton defined by the corrected duty ratio. Thereafter, when the predetermined period of time T elapses from the time at which the processing of Step 1001 is started, the CPU restarts this routine from Step 1000 .
  • energization control heat generation amount control
  • the temperature of the heater 43 b may become higher than the appropriate temperature range.
  • One factor causing this phenomenon is the heat generated by the camera unit 30 .
  • the heat generated by the camera unit 30 reaches the heater 43 b via the heated portion 41 a and the double-faced adhesive tape 42 . Therefore, the temperature of the heater 43 b is affected by the amount of heat transmitted from the camera unit 30 to the heater 43 b . In other words, the temperature of the heater 43 b has a strong correlation with the temperature Tc of the camera unit 30 . Therefore, in order to maintain the temperature of the heater 43 b within the appropriate temperature range, “the amount of heat transmitted from the camera unit 30 to the heater 43 b ” represented by the temperature Tc of the camera unit 30 has to be considered.
  • Step 1005 the CPU corrects the duty ratio based on the temperature Tc of the camera unit 30 at the predetermined time to calculate the corrected duty ratio which is actually used for the energization control, and executes the energization control of the heater 43 b using the corrected duty ratio.
  • the photographing apparatus for vehicle can maintain the temperature of the heater 43 b within the appropriate temperature range regardless of the degree of the amount of the heat generated by the camera unit 30 .
  • the photographing apparatus for vehicle can reduce the possibility of “the occurrence of dew condensation on the light transmission portion 85 a and the adherence of ice and frost etc to the light transmission portion 85 a ”, and can reduce the possibility that the temperature of the heater 43 b becomes excessively high temperature which considerably exceeds the appropriate temperature range. Therefore, it is possible to reduce the possibility of thermal deformation of a component (for example, the PET sheet 43 a ) located in the vicinity of the heater 43 b.
  • a component for example, the PET sheet 43 a
  • the photographing apparatus 10 of the present embodiment is provided with the fuse 44 b provided on the electrical circuit.
  • the soluble metal of the fuse 44 b is heated by the heat transmitted from the heater 43 b via the lead wires 44 c , 44 d and the heat transmitted from the heated portion 41 a.
  • the heater 43 b and the heated portion 41 a become high temperature. Then, the temperature of the fuse 44 b becomes a temperature equal to or more than a predetermined value, and thus the fuse 44 b is blown (melted). Then, since the electricity of the IG electric power source fails to be supplied to the heater 43 b , the heater 43 b , the heated portion 41 a , and the peripheral portion thereof are prevented from becoming excessively hot.
  • the CPU of the control device 100 may execute the routine shown by the flowchart of FIG. 12 every time the predetermined period of time T elapses instead of the flowchart of FIG. 10 .
  • Steps 1201 , 1202 , and 1203 of this flowchart are the same as Steps 1001 , 1002 , and 1003 , respectively. Therefore, descriptions about these steps will be omitted.
  • Step 1203 When the CPU determines “Yes” in Step 1203 , the CPU executes the processing in Step 1204 described below.
  • Step 1204 As shown in the following formula, the CPU applies the outside air temperature Tair and the vehicle speed SPD at the predetermined time as arguments to a target heat generation amount calculation map (look-up table) MaPEt stored in the ROM of the control device 100 to calculate a target heat generation amount Et.
  • the target heat generation amount Et is a target value of “the heat generation amount of the heater 43 b (i.e., supplied electric energy) for the predetermined period of time T” which is necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range.
  • Target heat generation amount Et MaP Et ( T air, SPD )
  • the temperature of the heater 43 b is affected by the temperature Tc of the camera unit 30 .
  • the target heat generation amount calculation map (MaPEt) is made without considering the temperature Tc of the camera unit 30 (i.e., the amount of heat exerts on the heater 43 b from the camera unit 30 ). Therefore, the CPU sequentially executes the processing of Step 1205 and Step 1206 described below, and proceeds to Step 1295 to temporarily end this routine.
  • Step 1205 The CPU applies the temperature Tc of the camera unit 30 at the predetermined time and the target heat generation amount Et calculated in Step 1204 to a target heat generation amount correction map (MaPEtc) to calculate a corrected target heat generation amount Etc which is a corrected value of the target heat generation amount Et (see the following formula).
  • the target heat generation amount correction map (MaPEtc) is obtained (made) based on a relationship between the two factors (i.e., the target heat generation amount Et and the temperature Tc of the camera unit 30 ) and the corrected target heat generation amount Etc necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range, and is stored in the ROM. This relationship is obtained in advance by an experiment.
  • the target heat generation amount Et is corrected so as to become smaller as the temperature Tc of the camera unit 30 becomes higher, and the corrected value is calculated as the corrected target heat generation amount Etc.
  • Corrected target heat generation amount Etc Map Etc ( Et,Tc )
  • Step 1206 The CPU executes energization control (heat generation amount control) of the heater 43 b according to the corrected target heat generation amount Etc. More specifically, the CPU changes the switch element 89 from the OFF state to the ON state, thereby supplying electricity of the IG electric power source to the heater 43 b to cause the heater 43 b to generate heat. Further, the CPU calculates an actual heat generation amount (total heat amount, integrated value of heat amount) E(t) generated actually by the heater 43 b from the time at which the switch element 89 is changed to the ON state based on the following formula (1). Noted that, “t” is time, “R” is the resistance value of the heater 43 b , and “V” is the voltage of the heater 43 b . The above-mentioned heater voltage Vh is used as “V”.
  • Step 1206 the CPU monitors whether or not the actual heat generation amount E(t) calculated based on the formula (1) reaches (i.e., becomes equal to or higher than) the corrected target heat generation amount Etc, and changes the switch element 89 from the ON state to the OFF state when the actual heat generation amount E(t) reaches the corrected target heat generation amount Etc. Thereafter, when the predetermined period of time T elapses from the time at which the processing of Step 1201 is started, the CPU restarts this routine from Step 1200 .
  • the temperature Tc of the camera unit 30 has a correlation with the heat generation amount generated by the camera unit 30 and an amount of solar radiation of natural light applied to the camera unit 30 via the light transmission portion 85 a . Therefore, the camera control ECU 106 may calculate the temperature Tc of the camera unit 30 based on a heat generation amount generated by the camera unit 30 , which is estimated by the thermistor 30 a , and an amount of natural light transmitting through the lens 32 a (i.e., an amount of solar radiation), which is detected by a light amount detection sensor provided inside the camera unit 30 .
  • the temperature of the heater 43 b is affected by an interior air temperature Ti of the vehicle in addition to the temperature Tc of the camera unit 30 . Therefore, the energization control of the heater 43 b is preferably executed in consideration of the interior air temperature Ti of the vehicle.
  • the target heat generation amount Et of the heater 43 b has to be increased by an amount corresponding to this predetermined amount.
  • the reference temperature TO in this case is the interior air temperature at the time of obtaining the data as the basis of the target heat generation amount calculation map MaPEt and the target heat generation amount correction map MaPEtc.
  • the CPU calculates the corrected target heat generation amount Etc according to the following formula and executes the energization control of the heater 43 b based on the corrected target heat generation amount Etc.
  • Corrected target heat generation amount Etc corrected target heat generation amount Etc calculated in Step 1205 + ⁇ Ti
  • the temperature of the heater 43 b is also affected by the operating condition value Sc which is a value indicating an operation condition of the air conditioner. Therefore, the energization control of the heater 43 b is preferably executed in consideration of the operating condition value Sc.
  • the operating condition value Sc is a value set in accordance with at least one of a set temperature, an air volume, and a direction of the wind of the air conditioner, and becomes larger as their influence degrees of lowering the temperature of the heater 43 b become larger. For example, the operating condition value Sc becomes larger as the set temperature becomes lower. For example, the operating condition value Sc becomes larger as the air volume becomes larger. For example, when the wind flows to the heater 43 b , the operating condition value Sc becomes larger compared with the case where the wind flows away from the heater 43 b.
  • the target heat generation amount Et of the heater 43 b has to be increased by this predetermined amount.
  • the duty ratio, the corrected duty ratio, the target heat generation amount Et, and the corrected target heat generation amount Etc may be calculated by using formulas having the arguments of the look-up tables as variables.
  • the CPU of the above embodiment may directly calculate the corrected duty ratio by using any one of the following lookup tables MaP1 to MaP4 instead of executing the processing of Step 1004 and Step 1005 .
  • Corrected duty ratio MaP1( Vh,T air, SPD,Tc )
  • Corrected duty ratio MaP2( Vh,T air, SPD,Tc,Ti )
  • Corrected duty ratio MaP3( Vh,T air, SPD,Tc,Sc )
  • Corrected duty ratio MaP4( Vh,T air, SPD,Tc,Ti,Sc )
  • the CPU of the modified embodiment described above may directly calculate the corrected target heat generation amount Etc by using any one of the following lookup tables MaP5 to MaP8 instead of executing the processing of Step 1204 and Step 1205 .
  • Corrected target heat generation amount Etc MaP5( Vh,T air, SPD,Tc )
  • Corrected target heat generation amount Etc MaP6( Vh,T air, SPD,Tc,Ti )
  • Corrected target heat generation amount Etc MaP7( Vh,T air, SPD,Tc,Sc )
  • Corrected target heat generation amount Etc MaP8( Vh,T air, SPD,Tc,Ti,Sc )
  • the predetermined time may be a time at which the switch element 89 is switched from the OFF state to the ON state.
  • the voltage Vp of the IG electric power source is equal to the voltage Vh of the heater 43 b.
  • the photographing apparatus for the vehicle may be mounted to a window different from a front window.
  • a photographing apparatus for vehicle may be mounted to a back window of a vehicle so that an obstacle located behind the vehicle can be detected by this photographing apparatus for vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

A photographing apparatus for vehicle includes a photographing apparatus, heating means, an outside air temperature detector, and a control device. The photographing apparatus is disposed inside a vehicle so as to face a window of the vehicle and is configured to receive photographing light passing through the window. The heating means is disposed inside the vehicle so as to face the window and generates heat when receiving electricity. The outside air temperature detector detects outside air temperature which is air temperature outside of the vehicle. The control device calculates an amount corresponding to a target value of electric energy to be supplied to the heating means for a predetermined period of time based on the outside air temperature detected by the outside air temperature detector and temperature of the photographing apparatus, the control device supplying electric energy corresponding to the target value to the heating means.

Description

BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a photographing apparatus for vehicle and a heating device which are, for example, provided behind a front window of a vehicle.
2. Description of the Related Art
A camera may be provided behind a front window of a vehicle. The camera converts reflected light (object image) reflected by an object (for example, a vehicle) positioned in front of the vehicle into imaging data (electric signal) by an image pickup device, and transmits the imaging data to a control device of the vehicle.
Incidentally, at low outside air temperature (i.e., temperature outside of the vehicle), when an air heating device is used inside the vehicle, dew condensation may be generated on the front window. Further, when the outside air temperature is low, ice and/or frost may adhere to the outer surface of the front window. When such a phenomenon occurs on the front window, an imaging data produced by the image pickup device of the camera may be data indicating a blurred object image, or the image pickup device may fail to capture an object in front of the vehicle.
Thus, a heater being a heating wire and a heated portion, which the heater is fixed to and gives heat received from the heater to the front window as radiation heat, are provided behind the front window of the vehicle (i.e., provided inside the vehicle) disclosed in Japanese Unexamined Patent Application Publication No. 2017-185896.
This heater is connected to an electric power source of the vehicle via electrical supply lines. When the electric power of the electric power source is supplied to the heater, the heater generates heat. The heated portion is heated by the heat generated by the heater, and the radiation heat generated by the heated portion is given to the front window. When the temperature of the heater becomes a value within a predetermined temperature range, the temperature of the front window becomes equal to or higher than the dew point temperature. As a result, the dew condensation occurring on the front window disappears. Furthermore, ice and frost adhering to the outside surface of the front window disappear.
Therefore, when the front window is heated by the heater and the heated portion, the risk that the image pickup device captures a blurred object image or fails to capture an object image can be reduced.
SUMMARY OF THE INVENTION
Outside air temperature and vehicle speed have a correlation with the temperature of the front window which is heated by the heater. Therefore, the heat generation amount of the heater for causing the temperature of the heater to be a value within the predetermined temperature range can be calculated based on, for example, an outside air temperature and a vehicle speed which are detected before electricity is supplied to the heater.
However, the temperature of the heater is affected by factors other than the outside air temperature and the vehicle speed in addition to the outside air temperature and the vehicle speed. That is, since the heater is located close to the camera, the heater receives heat generated by the camera, and thus the temperature of the heater rises due to this heat. Therefore, if the heat generation amount to be generated by the heater is calculated without considering the heat generated by the camera, there is a possibility that a component located in the vicinity of the heater may be deformed.
The present invention has been made in order to cope with the above-mentioned problem. That is, the present invention has an object to provide a photographing apparatus for vehicle and a heating device which can cause heating means to generate heat considering heat given to the heating means from a photographing apparatus.
In order to achieve the object, the photographing apparatus for vehicle according to the present invention comprises:
a photographing apparatus (30) that is disposed inside a vehicle so as to face a window (85) of the vehicle and is configured to receive photographing light passing through the window;
heating means (41 a, 43 b) that is disposed inside the vehicle so as to face the window and generates heat when receiving electricity;
an outside air temperature detector (101) that detects outside air temperature which is air temperature outside of the vehicle; and
a control device (100) that calculates an amount (Etc) corresponding to a target value of electric energy to be supplied to the heating means for a predetermined period of time (T) based on the outside air temperature detected by the outside air temperature detector and temperature of the photographing apparatus, the control device supplying electric energy corresponding to the target value to the heating means.
In order to achieve the object, the heating device (95) according to the present invention, which is disposed inside a vehicle so as to face a window of the vehicle together with a photographing apparatus, the heating device comprises:
heating means that generates heat when receiving electricity; and
a control device that calculates an amount corresponding to a target value of electric energy to be supplied to the heating means for a predetermined period of time based on outside air temperature which is air temperature outside of the vehicle and temperature of the photographing apparatus, the control device supplying electric energy corresponding to the target value to the heating means.
The temperature of the heating means has a correlation with heat generation amount for a predetermined period of time. The temperature of the heating means is affected not only by the outside air temperature but also by the temperature of the photographing apparatus. That is, the temperature of the heating means rises due to the heat generated by the photographing apparatus. Therefore, when the control device reduces the heat generation amount to be generated by the heating means by an amount corresponding to the temperature of the photographing apparatus and supplies electricity to the heating means so that the heating means generates this reduced heat generation amount, a possibility of the heating means generating an excessive heat becomes small.
In one of aspects of the present invention, the heating means comprises:
a heater (43 b), being a heating wire, generating heat when receiving electricity; and
a heated portion (41 a) to which the heater is fixed, the heated portion releasing radiation heat to the window when receiving heat from the heater.
According to this aspect, the heating means having a simple structure can be obtained.
In one of aspects of the present invention, the photographing apparatus for vehicle further comprises:
an interior air temperature detector (103) that detects interior air temperature which is air temperature inside of the vehicle; and
the control device that supplies electric energy, whose amount corresponding to the target value is increased by an amount (ΔTi) corresponding to the interior air temperature, to the heating means.
In one of aspects of the present invention, the photographing apparatus for vehicle further comprises:
an air conditioner operating condition detector (104) that detects operating condition of an air conditioner provided in the vehicle; and
the control device that supplies electric energy, whose amount corresponding to the target value is increased by an amount (ΔSc) corresponding to the operating condition, to the heating means.
The temperature (heat generation amount) of the heating means is also affected by the interior air temperature and the operating condition of the air conditioner. More specifically, the temperature (heat generation amount) of the heating means is lowered due to the influence of the interior air temperature and/or the operating condition of the air conditioner. Therefore, when the control device supplies electric energy, whose amount corresponding to the target value is increased by an amount corresponding to the interior air temperature and/or the operating condition of the air conditioner, to the heating means, the possibility of the heating means generating an excessive heat becomes smaller.
In the above description, names and references used in the following descriptions regarding embodiments are added with parentheses to the elements of the present invention, in order to understand the invention. However, those names and references should not be used to limit the scope of the present invention. Other objects, other features, and accompanying advantages of the present invention are easily understood from the description of embodiments of the present invention to be given referring to the following drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a photographing apparatus for vehicle and a front window according to an embodiment of the present invention as viewed from the front.
FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1.
FIG. 3 is a perspective view of the photographing apparatus for vehicle as viewed from the above.
FIG. 4 is an exploded perspective view of the photographing apparatus for vehicle as viewed from the above.
FIG. 5 is an exploded perspective view of a light shielding and heating unit as viewed from the below.
FIG. 6 is a perspective view of the light shielding and heating unit as viewed from the below.
FIG. 7 is a schematic view of a heated portion, a heater module, a fuse module, and a cable module as viewed from the below.
FIG. 8a is a cross-sectional view of the light shielding and heating unit when being cut at a position passing through the fuse.
FIG. 8b is a cross-sectional view of the light shielding and heating unit when being cut at a position passing through a sealant.
FIG. 9 is a schematic view of an electrical circuit.
FIG. 10 is a routine showing processing executed by a control device.
FIG. 11 is a graph showing a duty ratio when electricity is supplied to a heater.
FIG. 12 is a routine showing processing executed by the control device according to a modified embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, a photographing apparatus for vehicle (including a heating device) according to an embodiment of the present invention will be described with reference to the accompanying drawings.
(Configuration)
As shown in FIG. 1, a photographing apparatus for vehicle 10 (hereinafter referred to as a “photographing apparatus 10”) according to the embodiment is provided behind a front window 85 of a vehicle (i.e., provided inside the vehicle). The front window 85 is made from translucent glass. The front window 85 may be made from a material (for example, resin) other than glass as long as it has translucency. As shown in FIG. 2, the front window 85 is inclined with respect to the vehicle body in such a manner that the front window 85 gradually heads toward the front of the vehicle as approaching the lower end thereof from the upper end thereof.
As shown in FIG. 1, a light shielding sheet 86 having a substantially T-shape in its entire shape is attached to an upper edge portion and its vicinity of the rear surface (that is, a surface on the vehicle interior side) of the front window 85. At the central portion of the light shielding sheet 86, a forward extending portion 86 a extending forward and obliquely downward is formed. A light transmission hole 86 b having a substantially trapezoidal shape is formed in the vicinity of the front end of the forward extending portion 86 a. A portion of the front window 85 which faces the light transmission hole 86 b is a light transmission portion 85 a. The photographing apparatus 10 is provided behind the front window 85 (i.e., inside the vehicle) so as to face the light transmission portion 85 a.
As shown in FIGS. 3 and 4, the photographing apparatus 10 includes a bracket 20, a camera unit 30, a light shielding and heating unit 40, and a cover 50 as main components.
The bracket 20 is made from a hard resin. A support portion 21, which is substantially trapezoidal through hole, is formed in the bracket 20. Further, a plurality of adhesive surfaces 22 are formed on the upper surface of the bracket 20.
The camera unit 30 includes a housing 31 and an image pickup unit 32. The housing 31 is an integrally molded product made from resin and constitutes the outer shape of the camera unit 30. A hood mounting recess 31 a having a substantially trapezoid shape in a plan view is formed on the upper surface of the housing 31. The image pickup unit 32 is fixed to the rear end surface of the hood mounting recess 31 a. As shown in FIG. 2, the image pickup unit 32 includes a lens 32 a and an image pickup device 32 b positioned immediately behind the lens 32 a. The image pickup device 32 b is a compound eye type device. The image pickup device 32 b receives reflected light (photographing light), which is reflected backward by an obstacle located in front of the camera unit 30 and passes through the lens 32 a. The upper portion of the camera unit 30 is engaged with the bracket 20 and is supported by the bracket 20. Noted that, a thermistor 30 a (see FIG. 9), which can detect the temperature Tc of the camera unit 30, is provided inside the camera unit 30.
The light shielding and heating unit 40 shown in FIGS. 4 to 8 (particularly, FIG. 5) is provided with a light shielding hood 41, a double-faced adhesive tape 42, a heater module 43, a fuse module 44, a heat insulator 45 and a cable module 46 as main components.
The light shielding hood 41 is an integrally molded product made from a hard resin. The light shielding hood 41 includes a heated portion 41 a and side wall portions 41 b. The heated portion 41 a is a plate having an equilateral triangular shape (that is, the heated portion 41 a has an equilateral triangular shape in the front view). The heated portion 41 a is bilaterally symmetrical with respect to the center line L1 extending in the front-rear direction. The side wall portions 41 b are a pair of flange portions extending upward from left and right side edge portions of the heated portion 41 a, respectively. The height of each side wall portion 41 b gradually increases from the front end thereof to the rear end thereof.
The heater module 43 includes a PET sheet 43 a and a heater 43 b.
The PET sheet 43 a is made from PET (polyethylene terephthalate). The outer shape of the PET sheet 43 a is substantially the same shape as that of the heated portion 41 a. That is, the PET sheet 43 a is an equilateral triangle bilaterally symmetrical with respect to the center line L1. The PET sheet 43 a has good insulating property.
The heater 43 b is a heating wire made from a metal (for example, brass) that generates heat when receiving electricity. The heater 43 b is formed on substantially the entire upper surface of the PET sheet 43 a by printing in a zig-zag manner. Both end portions of the heater 43 b are constituted by a pair of lands 43 c and 43 d having larger area than the other portions of the heater 43 b. The lands 43 c, 43 d are exposed on the upper and lower surfaces of the PET sheet 43 a. The land 43 c is provided in the vicinity of the rear corner of the PET sheet 43 a, and the land 43 d is provided in the vicinity of front right corner of the PET sheet 43 a.
The lower surface of the double-faced adhesive tape 42 is attached to the upper surface of the PET sheet 43 a so as to cover the heater 43 b. The double-faced adhesive tape 42 has substantially the same shape as the heated portion 41 a and the PET sheet 43 a. The upper surface of the double-faced adhesive tape 42 is attached to the lower surface of the heated portion 41 a. As a result, the heater module 43 is fixed to the light shielding hood 41. The double-faced adhesive tape 42 has good thermal conductivity. The peripheral edge portion of the PET sheet 43 a overlaps the peripheral edge portions of the double-faced adhesive tape 42 and the heated portion 41 a.
The fuse module 44 is integrally provided with a double-faced adhesive tape 44 a, a fuse 44 b and two lead wires 44 c, 44 d.
The double-faced adhesive tape 44 a is a sheet-like member having a shape shown in FIG. 5, and both surfaces of the double-faced adhesive tape 44 a are adhesive surfaces. The thermal conductivity of the double-faced adhesive tape 44 a is lower than those of the light shielding hood 41, the double-faced adhesive tape 42, and the PET sheet 43 a.
The fuse 44 b is a current limiting element, and includes a cylindrical insulating case and a soluble metal which has conductivity. The soluble metal is provided inside the insulating case and is fixed to the insulating case. The insulating case of the fuse 44 b is attached to the substantially central portion of the upper surface of the double-faced adhesive tape 44 a.
The two lead wires 44 c, 44 d are attached to the upper surface of the double-faced adhesive tape 44 a in the illustrated manner. One end of each of the two lead wires 44 c, 44 d is located in the insulating case of the fuse 44 b. The one end of the lead wire 44 c is connected to one end of the soluble metal, and the one end of the lead wire 44 d is connected to the other end of the soluble metal. On the other hand, connecting ends 44 c 1, 44 d 1, which are the other ends of the two lead wires 44 c, 44 d, are both located on the outer peripheral side with respect to the double-faced adhesive tape 44 a.
The upper surface of the double-faced adhesive tape 44 a is attached to the lower surface of the PET sheet 43 a. As a result, the fuse module 44 is fixed to the heater module 43. As shown in FIG. 7, the entire fuse module 44 is located on the inner peripheral side with respect to the outer peripheral edge portion of the PET sheet 43 a. The pair of the lands 43 c, 43 d of the heater module 43 are located on the outer peripheral side with respect to the double-faced adhesive tape 44 a. Furthermore, as shown in FIG. 7, the fuse 44 b of the fuse module 44 is located at a position overlapping the position of the center of gravity G of the heated portion 41 a in the thickness direction of the heated portion 41 a. That is, the fuse 44 b is arranged on a straight line, which extends in the thickness direction of the heated portion 41 a and passes through the center of gravity G.
The fuse 44 b and the lead wires 44 c, 44 d (except for the connecting ends 44 c 1, 44 d 1) are in contact with the lower surface of the PET sheet 43 a. That is, the fuse 44 b and the lead wires 44 c, 44 d (except for the connecting ends 44 c 1, 44 d 1) and the portion of the heater 43 b excluding the lands 43 c, 43 d are insulated from each other by the PET sheet 43 a positioned therebetween. Further, the connecting end 44 d 1 of the lead wire 44 d is soldered to the lower surface of the land 43 d of the PET sheet 43 a (not shown).
The heat insulator 45 is made from an insulating material, and has substantially the same shape as the heated portion 41 a. That is, the heat insulator 45 is an equilateral triangular sheet-like member. A pair of through- holes 45 a, 45 b are formed in the vicinity of the rear end corner of the heat insulator 45. The thermal conductivity of the heat insulator 45 is lower than those of the light shielding hood 41, the double-faced adhesive tape 42, the PET sheet 43 a, and the double-faced adhesive tape 44 a.
The upper surface of the heat insulator 45 is attached to the lower surface of the double-faced adhesive tape 44 a. A portion of the upper surface of the heat insulator 45, which does not face the double-faced adhesive tape 44 a, is in contact with the lower surface of the PET sheet 43 a. The peripheral portion of the heat insulator 45 is in contact with a portion of the light shielding hood 41 which is positioned on the outer peripheral side with respect to the peripheral portions of the heated portion 41 a and the PET sheet 43 a. In addition, the through- holes 45 a, 45 b of the heat insulator 45 are located on the center line L1 when viewed in the thickness direction of the heated portion 41 a. When the heat insulator 45 is fixed to the double-faced adhesive tape 44 a, the through-hole 45 a is located immediately below the land 43 c of the PET sheet 43 a and the through-hole 45 b is located immediately below the connecting end 44 c 1 of the lead wire 44 c.
As shown in FIGS. 5 to 9, the cable module 46 is provided with a first electric cable 60, a second electric cable 63, a connector 66 (see FIGS. 4 and 9) connected to one end of the first electric cable 60 and one end of the second electric cable 63, and a banding tube 67.
The first electric cable 60 includes an electric wire 61 made of a metal wire having good conductivity and a covering tube 62 covering the outer peripheral surface of the electric wire 61 excluding the outer peripheral surface of both end portions thereof. Similarly, the second electric cable 63 includes an electric wire 64 made of a metal wire having good conductivity and a covering tube 65 covering the outer peripheral surface of the electric wire 64 excluding the outer peripheral surface of both end portions thereof.
Two metallic contacts (not shown) are provided inside the connector 66. One of the two contacts is an anode and the other of the two contacts is a cathode. One end of the first electric cable 60 and one end of the second electric cable 63 are connected to the connector 66. One end of the electric wire 61 is connected to one contact which is the anode and one end of the electric wire 64 is connected to the other contact which is the cathode.
Further, as shown in FIGS. 4 and 6, portions of the covering tube 62 and the covering tube 65, which are different from the front and rear end portions thereof, are inserted into the single banding tube 67. That is, the banding tube 67 bundles the covering tube 62 and the covering tube 65 so as not to separate from each other.
As shown in FIG. 8B, the other end of the electric wire 61 of the first electric cable 60 is inserted into the through-hole 45 a of the heat insulator 45, and the other end of the electric wire 61 is connected to the lower surface of the land 43 c by a solder 70. Although illustration is omitted, the other end of the electric wire 64 of the second electric cable 63 is inserted into the through-hole 45 b of the heat insulator 45. The other end of the electric wire 64 and the connecting end 44 c 1 of the lead wire 44 c are soldered to each other.
As shown in FIGS. 6, 8A, and 8B, a sealant 71 having electrical insulation property is fixed to the lower surface of the heat insulator 45 and a fixed portion 62 a (shown in FIGS. 5 and 8B) that is the vicinity of the through-hole 45 a side end of the covering tube 62 of the first electric cable 60. The through-hole 45 a is covered with this sealant 71. Similarly, as shown in FIG. 6, a sealant 72 having electrical insulation property is fixed to the lower surface of the heat insulator 45 and a fixed portion 65 a (shown in FIG. 5) that is the vicinity of the through-hole 45 b side end of the covering tube 65 of the second electric cable 63. The through-hole 45 b is covered with this sealant 72.
As shown in FIGS. 3 and 4, the light shielding hood 41 of the light shielding and heating unit 40 is fitted into the hood mounting recess 31 a of the camera unit 30, and the front portion of the image pickup unit 32 is located directly above the rear end portion of the heated portion 41 a through a gap between the rear end portions of the left and right side wall portions 41 b. Further, as shown in FIGS. 2 and 3, the light shielding hood 41 of the light shielding and heating unit 40 is fitted into the support portion 21 of the bracket 20, and the upper surface of the cover 50 is fixed to the bracket 20 so as to cover the camera unit 30 and the light shielding and heating unit 40.
The connector 66 of the cable module 46 is drawn backward of the cover 50 through the rear end opening of the cover 50.
As shown in FIGS. 1 and 2, the photographing apparatus 10, which is integrated in this way, is fixed to the vehicle interior side surface of the forward extending portion 86 a of the light shielding sheet 86 by using adhesive (not shown) applied to each adhesive surface 22 of the bracket 20. Then, the support portion 21 of the bracket 20, the heated portion 41 a of the light shielding and heating unit 40, and the image pickup unit 32 of the camera unit 30 are positioned at positions facing the light transmission hole 86 b of the light shielding sheet 86. Accordingly, photographing light, which is directed from the front side of the front window 85 to the rear side of the front window 85 and passes through the light transmission portion 85 a and the light transmission hole 86 b of the light shielding sheet 86 backward, is received by the image pickup device 32 b after passing through the lens 32 a of the image pickup unit 32.
As shown in FIG. 9, the vehicle is provide with an electric control device (not shown, hereinafter referred to as “control device”) 100. The control device 100 is an ECU. ECU is an abbreviation of Electric Control Unit, and is provided with a microcomputer including a CPU and a storage device such as a ROM and a RAM. The CPU implements various functions by executing instructions (programs) stored in the ROM. A “low speed duty ratio calculation map (MapLo)”, a “high speed duty ratio calculation map (MapHi)”, and a “duty ratio correction map (MapD)” are stored in the storage device (ROM) of the control device 100.
Further, the vehicle is provided with an outside air temperature sensor 101 for measuring a temperature Tair outside of the vehicle. The outside air temperature sensor 101 is provided in a front grill of the vehicle. Further, the vehicle is provided with a vehicle speed sensor 102, an interior air temperature sensor 103, and an air conditioner operating condition detection device 104. The outside air temperature sensor 101, the vehicle speed sensor 102, the interior air temperature sensor 103, and the air conditioner operating condition detection device 104 are connected to the control device 100. The air conditioner operating condition detection device 104 generates an operating condition value Sc (described later) which is a value indicating the operation condition of an air conditioner (not shown) of the vehicle.
As shown in FIG. 9, the connector 66 of the light shielding and heating unit 40 is connected to a vehicle body side connector 66 a provided in the vehicle body. Actually, the connector 66 and the vehicle body side connector 66 a are integrated members. However, in FIG. 9, the connector 66 and the vehicle body side connector 66 a are drawn in a manner that the connector 66 and the vehicle body side connector 66 a are divided into two pieces in order to be easy to understand the connection relation.
More specifically, the first electric cable 60 is connected to an anode of a vehicle installation electric power source (i.e., an IG electric power source or battery) via the connector 66, the vehicle body side connector 66 a, an electrical supply line EL1, and an ignition switch (IG-SW). A cathode of the IG electric power source is grounded. The second electric cable 63 is connected to one end of a switch element 89 via the connector 66 and the vehicle body side connector 66 a. The other end of the switch element 89 is grounded. The state of the switch element 89 is switched between an ON state (i.e., conduction state or connection state) and an OFF state (i.e., non-conduction state or disconnection state) by the control device 100. In this embodiment, the switch element 89 is a semiconductor switch element, however, the switch element 89 may be a relay type switch.
Further, one end of an electrical supply line EL2 is connected to the ignition switch (IG-SW). The other end of the electrical supply line EL2 is connected to a power supply line (not shown) of a camera control ECU 106. An earth line (not shown) of the camera control ECU 106 is grounded. As a result, the camera control ECU 106 is supplied with electricity from the IG electric power source. In addition, a power supply line (not shown) of the camera unit 30 is connected to the electrical supply line EL2, and an earth line (not shown) of the camera unit 30 is grounded. As a result, the IG electric power source supplies the camera unit 30 with electricity. The camera control ECU 106 and the camera unit 30 are connected to each other so as to transmit and receive various signals therebetween. Although not shown, the control device 100 is also connected to the IG electric power source via the IG-SW, and receive electricity from the IG electric power source. Further, the control device 100 and the camera control ECU 106 are configured to be capable of transmitting and receiving information therebetween via a CAN (not shown).
The camera control ECU 106 detects the voltage Vh (the potential of the electrical supply line EL2) of electricity supplied to the camera control ECU 106. This voltage Vh is substantially equal to the voltage Vp of the IG electric power source. Furthermore, when the state of the switch element 89 is in the conduction state, the voltage Vh of electricity supplied to the heater 43 b is substantially equal to the voltage Vp of the IG electric power source. Therefore, the voltage Vh detected by the camera control ECU 106 is used as the voltage (heater voltage) Vh of electricity supplied to the heater 43 b.
The light shielding and heating unit 40 and the control device 100 described above are components of the heating device 95.
(Operation)
Next, the operations of the vehicle and the photographing apparatus 10 will be described. When an ignition key (not shown) is operated, the ignition switch (IG-SW) is closed and thus the anode of the IG electric power source is made to be connected to the electrical supply line EL1, the electrical supply line EL2, and the control device 100. As a result, the camera control ECU 106 causes the camera unit 30 to start imaging. The camera unit 30 acquires imaging data using the image pickup unit 32 each time a predetermined period of time elapses.
More specifically, the image pickup device 32 b of the image pickup unit 32 captures reflected light, which is reflected backward by an object (for example, another vehicle) positioned in front of the vehicle having the photographing apparatus 10 and passes through the light transmission portion 85 a of the front window 85, the light transmission hole 86 b of the light shielding sheet 86, and the lens 32 a, to generate imaging data. The camera unit 30 transmits the imaging data to the camera control ECU 106. The camera control ECU 106 processes the imaging data received from the camera unit 30, and transmits it to the control device 100 each time a predetermined period of time elapses. By analyzing the received imaging data, the control device 100 acquires information (forward information) on an object (other vehicle, obstacle, etc.) existing in front of the vehicle, and controls the vehicle based on the forward information.
For example, based on the forward information, the control device 100 executes “automatic brake control, lane keeping assist control (i.e., lane tracing assist control), adaptive high beam control” and the like, executes automatic operation, and issues an alarm. Hereinafter, such a control based on forward information is referred to as driving support control.
Furthermore, when the ignition switch is closed, during the operation of an engine, operations of the outside air temperature sensor 101, the vehicle speed sensor 102, the interior air temperature sensor 103, and the air conditioner operating condition detection device 104, operation of the thermistor 30 a for detecting the temperature Tc of the camera unit 30, and operation of the camera control ECU 106 for detecting voltage are repeatedly carried out at predetermined time intervals. When the engine is operating, the outside air temperature sensor 101, the vehicle speed sensor 102, the interior air temperature sensor 103, the air conditioner operating condition detection device 104, and the camera control ECU 106 (the thermistor 30 a) continue to output signals relating to detection results to the control device 100.
Meanwhile, when the outside air temperature (i.e., air temperature outside of the vehicle) is low, dew condensation may occur on the light transmission portion 85 a of the front window 85. Dew condensation is easy to occur when an air heating device is used in the passenger compartment. Furthermore, when the outside air temperature is low, ice and/or frost may adhere to the light transmission portion 85 a. If such a phenomenon occurs, the imaging data generated by the image pickup device 32 b may be data representing a blurred object image, and/or the image pickup unit 32 may fail to image an object in front of the vehicle. In such a case, the control device 100 may fail to accurately perform the above-described driving support control using imaging data. Thus, the control device 100 prevents such a situation from occurring by executing the processing (routine) shown by the flowchart of FIG. 10. It should be noted that the control device 100 sets the switch element 89 to the OFF state immediately after the ignition key switch is changed from an OFF position to an ON position.
The CPU of the control device 100 (hereinafter simply referred to as “CPU”) starts the processing of the routine shown in FIG. 10 from Step 1000 every time a predetermined period of time T (see FIG. 11. It is set to 3 minutes in the present embodiment.) elapses. Thereafter, the CPU proceeds to Step 1001 to determine whether or not the outside air temperature Tair detected by the outside air temperature sensor 101 at a predetermined time immediately before the start of the processing of this routine is lower than a predetermined outside air temperature threshold Tath. When the outside air temperature Tair is equal to or higher than the predetermined outside air temperature threshold Tath, “a possibility that dew condensation occurs on the light transmission portion 85 a” and “a possibility that ice and/or frost adhere to the light transmission portion 85 a” are extremely low. Therefore, in this case, the CPU determines “No” in Step 1001, and proceeds to Step 1007 to set the switch element 89 to the OFF state (i.e., to stop supplying electricity to the heater 43 b). Thereafter, the CPU directly proceeds to Step 1095 and temporarily ends this routine. As a result, the state of the switch element 89 is maintained in the OFF state, so that the heater 43 b does not generate heat.
On the other hand, when the outside air temperature Tair is lower than the predetermined outside air temperature threshold Tath, the CPU determines “Yes” in Step 1001, and proceeds to Step 1002 to determine whether or not a vehicle speed SPD detected by the vehicle speed sensor 102 at the predetermined time immediately before the start of the processing of this routine is equal to or higher than a predetermined speed threshold SPDth. The control device 100 executes the driving support control based on the imaging data generated by the camera unit 30 when the vehicle speed SPD is equal to or higher than the speed threshold SPDth. Therefore, when the vehicle speed SPD is less than the speed threshold SPDth, the imaging data is not used, so it is not necessary to energize the heater 43 b. Therefore, when the vehicle speed SPD is less than the speed threshold SPDth, the CPU determines “No” in Step 1002, and directly proceeds to Step 1095 via Step 1007. As a result, the switch element 89 is maintained in the OFF state, so that the heater 43 b does not generate heat.
On the other hand, when the vehicle speed SPD is equal to or higher than the speed threshold SPDth, the CPU determines “Yes” in Step 1002 and proceeds to Step 1003. Noted that, Step 1002 can be omitted. In other words, the speed threshold SPDth can be “0 km/h”. In this case, the CPU inevitably proceeds to Step 1003 regardless of the vehicle speed SPD. In Step 1003, the CPU determines whether or not the temperature Tc of the camera unit 30 detected by the thermistor 30 a at the predetermined time immediately before the start of the processing of this routine is within a predetermined normal temperature range (i.e., a temperature range in which the operation of the camera unit 30 is guaranteed). When the temperature Tc of the camera unit 30 is not within the normal temperature range, the CPU determines “No” in Step 1003, and proceeds directly to Step 1095 via Step 1007. As a result, since the switch element 89 is maintained in the OFF state, the heater 43 b does not generate heat.
On the other hand, when the temperature Tc of the camera unit 30 is within the normal temperature range, the CPU determines “Yes” in Step 1003, and proceeds to Step 1095 to temporarily end this routine after executing the processing of Steps 1004 to 1006 described below in that order. When the CPU determines “Yes” in all of Steps 1001 to 1003, a predetermined control start condition is satisfied.
Step 1004: First, the CPU determines whether the vehicle speed SPD detected by the vehicle speed sensor 102 at the predetermined time is included in a predetermined low speed area or in a predetermined high speed area. For example, the range of the low speed area can be set to 0 km/h or more and less than 50 km/h, and the range of the high speed area can be set to 50 km/h or more.
When the vehicle speed SPD is a vehicle speed included in the low speed area, the CPU selects the low speed duty ratio calculation map (MapLo) as a duty ratio calculation map (lookup table). Then, as shown in the following formula, the CPU calculates the duty ratio by applying the heater voltage Vh, the outside air temperature Tair and the vehicle speed SPD at the predetermined time as arguments to this map.
Duty ratio=MaPLo(Vh,Tair,SPD)
As shown in FIG. 11, the duty ratio is a ratio (%) expressed by the following formula. Here, the period of time (voltage application time) during which the switch element 89 is in the ON state is defined as Ton, and the period of time (voltage application stop time) during which the switch element 89 is in the OFF state is defined as Toff. In this embodiment, assuming Ton+Toff=one cycle ΔT, the predetermined period of time T is set to be three times as long as ΔT (i.e., T=3·ΔT). The larger the duty ratio becomes, the larger electric energy supplied to the heater 43 b (i.e., electric energy consumed by the heater 43 b) for the predetermined period of time T (i.e., total electric energy) becomes, and thus the heat generation amount of the heater 43 b for the predetermined period of time T (i.e., total heat generation amount [J]) becomes larger.
Duty ratio=[Ton/(Ton+Toff)]·100(%)
On the other hand, when the vehicle speed SPD is a vehicle speed included in the high speed area, the CPU selects the high speed duty ratio calculation map (MapHi) as the duty ratio calculation map. Then, as shown in the following formula, the CPU calculates the duty ratio by applying the heater voltage Vh, the outside air temperature Tair and the vehicle speed SPD at the predetermined time as arguments to this map.
Duty ratio=MaPHi(Vh,Tair,SPD)
It should be noted that a target heat generation amount (the target value of the heat generation amount) can be calculated based on the outside air temperature Tair and the vehicle speed SPD, and the duty ratio can be calculated based on the target heat generation amount and the voltage Vh.
According to an experiment, it was found that when the temperature of the heater 43 b is maintained within a predetermined temperature range (hereinafter referred to as “an appropriate temperature range”), “the occurrence of dew condensation on the light transmission portion 85 a and the adherence of ice and frost etc to the light transmission portion 85 a” can be avoided. Noted that when the temperature of the heater 43 b is maintained within the appropriate temperature range, the temperature of the light transmission portion 85 a can be maintained at “temperature within the predetermined range which is equal to or higher than the dew point temperature”. It is assumed that this is the reason why the occurrence of dew condensation and the adherence of ice and frost can be avoided.
On the other hand, the temperature of the heater 43 b has a strong correlation with the heat generation amount generated by the heater 43 b and the amount of heat escaping from the heater 43 b for a predetermined period of time (i.e., the predetermined period of time T of this embodiment). Furthermore, the amount of heat escaping from the heater 43 b has a strong correlation with a heat radiation amount of the light transmission portion 85 a. The heat radiation amount of the light transmission portion 85 a for a predetermined period of time has a strong correlation with “the outside air temperature Tair and the vehicle speed SPD”. Therefore, the heater voltage Vh at the predetermined time, the outside air temperature Tair at the predetermined time and the vehicle speed SPD at the predetermined time are used as arguments of the low speed duty ratio calculation map (MapLo) and the high speed duty ratio calculation map (MapHi).
The low speed duty ratio calculation map (MapLo) and the high speed duty ratio calculation map (MapHi) may be integrated into one duty ratio calculation map (MapCo (Vh, Tair, SPD)). Hereinafter, when there is no need to distinguish the low speed duty ratio calculation map (MapLo) and the high speed duty ratio calculation map (MapHi), these maps are called a duty ratio calculation map. A duty ratio calculated in accordance with the duty ratio calculation map is a value corresponding to a target value of “the heat generation amount (supplied electric energy) of the heater 43 b for the predetermined period of time T” which is necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range. Therefore, the duty ratio calculation map is obtained (made) based on a relationship between the three factors (i.e., the heater voltage Vh, the outside air temperature Tair, the vehicle speed SPD) and the duty ratio necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range, and is stored in the ROM. This relationship is obtained in advance by an experiment.
The duty ratio becomes smaller as the heater voltage Vh becomes higher, regardless of whether the low speed duty ratio calculation map (MapLo) or the high speed duty ratio calculation map (MapHi) is used.
The duty ratio becomes smaller as the outside air temperature Tair becomes higher, regardless of whether the low speed duty ratio calculation map (MapLo) or the high speed duty ratio calculation map (MapHi) is used.
When the heater voltage Vh and the outside air temperature Tair are predetermined constant values respectively, the duty ratio obtained by the high speed duty ratio calculation map (MapHi) is larger than the duty ratio obtained by the low speed duty ratio calculation map (MapLo). Furthermore, the duty ratio becomes larger as the vehicle speed SPD becomes higher, regardless of whether the low speed duty ratio calculation map (MapLo) or the high speed duty ratio calculation map (MapHi) is used.
Step 1005: The CPU applies the temperature Tc of the camera unit 30 at the predetermined time and the duty ratio calculated in Step 1004 to the duty ratio correction map (MapD), thereby calculating a corrected duty ratio which is a corrected value of the duty ratio (see the following formula). The duty ratio correction map MapD is obtained (made) based on a relationship between the two factors (i.e., the duty ratio and the temperature Tc of the camera unit 30) and the corrected duty ratio necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range, and is stored in the ROM. This relationship is obtained in advance by an experiment. By using the duty ratio correction map (MapD), the duty ratio is corrected so as to become smaller as the temperature Tc of the camera unit 30 becomes higher, and the corrected value is calculated as the corrected duty ratio.
Corrected duty ratio=MapD(duty ratio,Tc)
Step 1006: The CPU executes energization control (heat generation amount control) of the heater 43 b over the predetermined period of time T according to the corrected duty ratio. That is, as shown in FIG. 11, the CPU repeats a switching operation three times (see the times t0 to t6). In each of the switching operations, the CPU sets the switch element 89 to the OFF state over the voltage application stop time Toff defined by the corrected duty ratio, and then sets the switch element 89 to the ON state over the voltage application time Ton defined by the corrected duty ratio. Thereafter, when the predetermined period of time T elapses from the time at which the processing of Step 1001 is started, the CPU restarts this routine from Step 1000.
Meanwhile, even when the energization control of the heater 43 b is executed over the predetermined period of time T in accordance with the duty ratio calculated in Step 1004 (i.e., the duty ratio calculated based on the duty ratio calculation map), the temperature of the heater 43 b may become higher than the appropriate temperature range. One factor causing this phenomenon is the heat generated by the camera unit 30.
More specifically, the heat generated by the camera unit 30 reaches the heater 43 b via the heated portion 41 a and the double-faced adhesive tape 42. Therefore, the temperature of the heater 43 b is affected by the amount of heat transmitted from the camera unit 30 to the heater 43 b. In other words, the temperature of the heater 43 b has a strong correlation with the temperature Tc of the camera unit 30. Therefore, in order to maintain the temperature of the heater 43 b within the appropriate temperature range, “the amount of heat transmitted from the camera unit 30 to the heater 43 b” represented by the temperature Tc of the camera unit 30 has to be considered.
Then, as described above, in Step 1005, the CPU corrects the duty ratio based on the temperature Tc of the camera unit 30 at the predetermined time to calculate the corrected duty ratio which is actually used for the energization control, and executes the energization control of the heater 43 b using the corrected duty ratio.
As a result, the photographing apparatus for vehicle according to the present embodiment can maintain the temperature of the heater 43 b within the appropriate temperature range regardless of the degree of the amount of the heat generated by the camera unit 30. As a result, the photographing apparatus for vehicle can reduce the possibility of “the occurrence of dew condensation on the light transmission portion 85 a and the adherence of ice and frost etc to the light transmission portion 85 a”, and can reduce the possibility that the temperature of the heater 43 b becomes excessively high temperature which considerably exceeds the appropriate temperature range. Therefore, it is possible to reduce the possibility of thermal deformation of a component (for example, the PET sheet 43 a) located in the vicinity of the heater 43 b.
In the case where the electrical circuit does not include the fuse 44 b, when a short circuit (ground fault) occurs in the electrical circuit in the “short circuit” manner of FIG. 9, electricity of the IG electric power source is supplied to the heater 43 b even when the control device 100 sets the switch element 89 to the OFF state. That is, in this case, the electricity of the IG electric power source is continuously supplied to the heater 43 b for a long time. Therefore, the heater 43 b, the heated portion 41 a, and the peripheral portion thereof become excessively hot.
However, the photographing apparatus 10 of the present embodiment is provided with the fuse 44 b provided on the electrical circuit. The soluble metal of the fuse 44 b is heated by the heat transmitted from the heater 43 b via the lead wires 44 c, 44 d and the heat transmitted from the heated portion 41 a.
When a short circuit occurs in the electrical circuit in the “short circuit” manner in FIG. 9, the heater 43 b and the heated portion 41 a become high temperature. Then, the temperature of the fuse 44 b becomes a temperature equal to or more than a predetermined value, and thus the fuse 44 b is blown (melted). Then, since the electricity of the IG electric power source fails to be supplied to the heater 43 b, the heater 43 b, the heated portion 41 a, and the peripheral portion thereof are prevented from becoming excessively hot.
Modified Embodiment
For example, the CPU of the control device 100 according to the modified embodiment of the present invention may execute the routine shown by the flowchart of FIG. 12 every time the predetermined period of time T elapses instead of the flowchart of FIG. 10. Steps 1201, 1202, and 1203 of this flowchart are the same as Steps 1001, 1002, and 1003, respectively. Therefore, descriptions about these steps will be omitted.
When the CPU determines “Yes” in Step 1203, the CPU executes the processing in Step 1204 described below.
Step 1204: As shown in the following formula, the CPU applies the outside air temperature Tair and the vehicle speed SPD at the predetermined time as arguments to a target heat generation amount calculation map (look-up table) MaPEt stored in the ROM of the control device 100 to calculate a target heat generation amount Et. The target heat generation amount Et is a target value of “the heat generation amount of the heater 43 b (i.e., supplied electric energy) for the predetermined period of time T” which is necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range.
Target heat generation amount Et=MaPEt(Tair,SPD)
Meanwhile, as described above, the temperature of the heater 43 b is affected by the temperature Tc of the camera unit 30. However, the target heat generation amount calculation map (MaPEt) is made without considering the temperature Tc of the camera unit 30 (i.e., the amount of heat exerts on the heater 43 b from the camera unit 30). Therefore, the CPU sequentially executes the processing of Step 1205 and Step 1206 described below, and proceeds to Step 1295 to temporarily end this routine.
Step 1205: The CPU applies the temperature Tc of the camera unit 30 at the predetermined time and the target heat generation amount Et calculated in Step 1204 to a target heat generation amount correction map (MaPEtc) to calculate a corrected target heat generation amount Etc which is a corrected value of the target heat generation amount Et (see the following formula). The target heat generation amount correction map (MaPEtc) is obtained (made) based on a relationship between the two factors (i.e., the target heat generation amount Et and the temperature Tc of the camera unit 30) and the corrected target heat generation amount Etc necessary for maintaining the temperature of the heater 43 b within the appropriate temperature range, and is stored in the ROM. This relationship is obtained in advance by an experiment. By using the target heat generation amount correction map (MaPEtc), the target heat generation amount Et is corrected so as to become smaller as the temperature Tc of the camera unit 30 becomes higher, and the corrected value is calculated as the corrected target heat generation amount Etc.
Corrected target heat generation amount Etc=MapEtc(Et,Tc)
Step 1206: The CPU executes energization control (heat generation amount control) of the heater 43 b according to the corrected target heat generation amount Etc. More specifically, the CPU changes the switch element 89 from the OFF state to the ON state, thereby supplying electricity of the IG electric power source to the heater 43 b to cause the heater 43 b to generate heat. Further, the CPU calculates an actual heat generation amount (total heat amount, integrated value of heat amount) E(t) generated actually by the heater 43 b from the time at which the switch element 89 is changed to the ON state based on the following formula (1). Noted that, “t” is time, “R” is the resistance value of the heater 43 b, and “V” is the voltage of the heater 43 b. The above-mentioned heater voltage Vh is used as “V”.
E ( t ) = 1 R 0 t V 2 ( t ) dt [ Formula ( 1 ) ]
Further, in Step 1206, the CPU monitors whether or not the actual heat generation amount E(t) calculated based on the formula (1) reaches (i.e., becomes equal to or higher than) the corrected target heat generation amount Etc, and changes the switch element 89 from the ON state to the OFF state when the actual heat generation amount E(t) reaches the corrected target heat generation amount Etc. Thereafter, when the predetermined period of time T elapses from the time at which the processing of Step 1201 is started, the CPU restarts this routine from Step 1200.
Although the present invention has been described based on the embodiment and modified embodiment, the present invention is not limited to the above-described embodiment and modified embodiment, and various modifications can be made without departing from the object of the present invention.
For example, the temperature Tc of the camera unit 30 has a correlation with the heat generation amount generated by the camera unit 30 and an amount of solar radiation of natural light applied to the camera unit 30 via the light transmission portion 85 a. Therefore, the camera control ECU 106 may calculate the temperature Tc of the camera unit 30 based on a heat generation amount generated by the camera unit 30, which is estimated by the thermistor 30 a, and an amount of natural light transmitting through the lens 32 a (i.e., an amount of solar radiation), which is detected by a light amount detection sensor provided inside the camera unit 30.
Further, the temperature of the heater 43 b is affected by an interior air temperature Ti of the vehicle in addition to the temperature Tc of the camera unit 30. Therefore, the energization control of the heater 43 b is preferably executed in consideration of the interior air temperature Ti of the vehicle.
More specifically, when the interior air temperature Ti detected by the interior air temperature sensor 103 is lower than a reference temperature TO by a temperature dT, the temperature of the heater 43 b is lowered by a predetermined amount corresponding to the temperature dT. Therefore, the target heat generation amount Et of the heater 43 b has to be increased by an amount corresponding to this predetermined amount. For example, when a necessary increase of the target heat generation amount Et, which is caused by the interior air temperature Ti, is defined as ΔTi=f(Ti), the final corrected target heat generation amount Etc is calculated by the following formula. The reference temperature TO in this case is the interior air temperature at the time of obtaining the data as the basis of the target heat generation amount calculation map MaPEt and the target heat generation amount correction map MaPEtc. The CPU calculates the corrected target heat generation amount Etc according to the following formula and executes the energization control of the heater 43 b based on the corrected target heat generation amount Etc.
Corrected target heat generation amount Etc=corrected target heat generation amount Etc calculated in Step 1205+ΔTi
Alternatively, the CPU may use the interior air temperature Ti as an argument of the duty ratio correction map (MapD) used in Step 1005. That is, the corrected duty ratio may be obtained by the following formula.
Corrected duty ratio=MapD(duty ratio,Tc,Ti)
Further, the temperature of the heater 43 b is also affected by the operating condition value Sc which is a value indicating an operation condition of the air conditioner. Therefore, the energization control of the heater 43 b is preferably executed in consideration of the operating condition value Sc. The operating condition value Sc is a value set in accordance with at least one of a set temperature, an air volume, and a direction of the wind of the air conditioner, and becomes larger as their influence degrees of lowering the temperature of the heater 43 b become larger. For example, the operating condition value Sc becomes larger as the set temperature becomes lower. For example, the operating condition value Sc becomes larger as the air volume becomes larger. For example, when the wind flows to the heater 43 b, the operating condition value Sc becomes larger compared with the case where the wind flows away from the heater 43 b.
More specifically, when the operating condition value Sc is larger than a predetermined reference operating condition value Sc0 by a predetermined value dSc, the temperature of the heater 43 b is lowered by a predetermined amount corresponding to the predetermined value dSc. Therefore, the target heat generation amount Et of the heater 43 b has to be increased by this predetermined amount. For example, when a necessary increase of the target heat generation amount Et, which is caused by the operating condition value Sc, is defined as ΔSc=g(Sc), the final corrected target heat generation amount Etc is calculated by the following formula. The reference operating condition value Sc0 in this case is the interior air temperature at the time of obtaining the data as the basis of the target heat generation amount calculation map MaPEt and the target heat generation amount correction map MaPEtc.
Corrected target heat generation amount Etc=corrected target heat generation amount Etc calculated in Step 1205+ΔSc
Alternatively, the CPU may use the operating condition value Sc as an argument of the duty ratio correction map (MapD) used in Step 1005. That is, the corrected duty ratio may be obtained by the following formula.
Corrected duty ratio=MapD(duty ratio,Tc,Sc)
Further, the CPU may use the interior air temperature Ti and the operating condition value Sc as arguments of the duty ratio correction map (MapD) used in Step 1005. That is, the corrected duty ratio may be obtained by the following formula.
Corrected duty ratio=MapD(duty ratio,Tc,Ti,Sc)
In this way, when the heater 43 b is energized in consideration of the interior air temperature Ti and/or the operating condition value Sc, the possibility that the heat amount applied to the light transmission portion 85 a by the heater 43 b via the heated portion 41 a becomes excessively small is reduced. Therefore, the possibility that dew condensation, ice, and frost on the light transmission portion 85 a do not disappear is reduced.
Furthermore, in the above-described embodiment and the modified embodiments, instead of using the look-up tables, the duty ratio, the corrected duty ratio, the target heat generation amount Et, and the corrected target heat generation amount Etc may be calculated by using formulas having the arguments of the look-up tables as variables.
Furthermore, the CPU of the above embodiment may directly calculate the corrected duty ratio by using any one of the following lookup tables MaP1 to MaP4 instead of executing the processing of Step 1004 and Step 1005.
Corrected duty ratio=MaP1(Vh,Tair,SPD,Tc)
Corrected duty ratio=MaP2(Vh,Tair,SPD,Tc,Ti)
Corrected duty ratio=MaP3(Vh,Tair,SPD,Tc,Sc)
Corrected duty ratio=MaP4(Vh,Tair,SPD,Tc,Ti,Sc)
Similarly, the CPU of the modified embodiment described above may directly calculate the corrected target heat generation amount Etc by using any one of the following lookup tables MaP5 to MaP8 instead of executing the processing of Step 1204 and Step 1205.
Corrected target heat generation amount Etc=MaP5(Vh,Tair,SPD,Tc)
Corrected target heat generation amount Etc=MaP6(Vh,Tair,SPD,Tc,Ti)
Corrected target heat generation amount Etc=MaP7(Vh,Tair,SPD,Tc,Sc)
Corrected target heat generation amount Etc=MaP8(Vh,Tair,SPD,Tc,Ti,Sc)
The predetermined time may be a time at which the switch element 89 is switched from the OFF state to the ON state. In this case, the voltage Vp of the IG electric power source is equal to the voltage Vh of the heater 43 b.
The photographing apparatus for the vehicle may be mounted to a window different from a front window. For example, a photographing apparatus for vehicle may be mounted to a back window of a vehicle so that an obstacle located behind the vehicle can be detected by this photographing apparatus for vehicle.

Claims (5)

What is claimed is:
1. A photographing apparatus for vehicle comprising;
a photographing apparatus that is disposed inside a vehicle so as to face a window of the vehicle and is configured to receive photographing light passing through a light transmission portion of the window;
heating means that is disposed inside the vehicle so as to face the window and generates heat when receiving electricity;
an outside air temperature detector that detects outside air temperature which is air temperature outside of the vehicle;
a vehicle speed sensor that detects vehicle speed; and
a control device that calculates a target value of electric energy to be supplied to the heating means for a predetermined period of time and supplies electric energy corresponding to the target value to the heating means;
wherein the control device is configured to:
calculate an amount of electric energy to be supplied to the heating means for the predetermined period of time, based on the outside air temperature and the vehicle speed; and
calculate a corrected amount as the target value by correcting the calculated amount, based on a temperature of the photographing apparatus to maintain the temperature of the heating means within a predetermined temperature range to avoid occurrence of dew condensation on the light transmission portion and/or adherence of ice and/or frost to the light transmission portion.
2. The photographing apparatus for vehicle according to claim 1, wherein the heating means comprises:
a heater, being a heating wire, generating heat when receiving electricity; and
a heated portion to which the heater is fixed, the heated portion releasing radiation heat to the window when receiving heat from the heater.
3. The photographing apparatus for vehicle according to claim 1, wherein:
the photographing apparatus comprises an interior air temperature detector that detects interior air temperature which is air temperature inside of the vehicle; and
the control device is configured to increase the target value by an amount corresponding to a temperature which is obtained by subtracting the interior air temperature from a reference temperature.
4. The photographing apparatus for vehicle according to claim 1, wherein:
the photographing apparatus comprises an air conditioner operating condition detector that detects operating condition of an air conditioner provided in the vehicle; and
the control device is configured to change the target value by an amount corresponding to the operating condition of the air conditioner.
5. A heating device disposed inside a vehicle so as to face a light transmission portion of a window of the vehicle together with a photographing apparatus, the heating device comprising:
heating means that generates heat when receiving electricity;
a vehicle speed sensor that detects vehicle speed; and
a control device that calculates a target value of electric energy to be supplied to the heating means for a predetermined period of time and supplies electric energy corresponding to the target value to the heating means;
wherein the control device is configured to:
calculate an amount of the electric energy to be supplied to the heating means for the predetermined period of time, based on the outside air temperature and the vehicle speed; and
calculate a corrected amount as the target value by correcting the calculated amount, based on a temperature of the photographing apparatus to maintain the temperature of the heating means within a predetermined temperature range to avoid occurrence of dew condensation on the light transmission portion and/or adherence of ice and/or frost to the light transmission portion.
US16/177,498 2017-12-27 2018-11-01 Photographing apparatus for vehicle and heating device Active US10744957B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-250526 2017-12-27
JP2017250526A JP6939535B2 (en) 2017-12-27 2017-12-27 Vehicle photography equipment and heating equipment

Publications (2)

Publication Number Publication Date
US20190193647A1 US20190193647A1 (en) 2019-06-27
US10744957B2 true US10744957B2 (en) 2020-08-18

Family

ID=63833824

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/177,498 Active US10744957B2 (en) 2017-12-27 2018-11-01 Photographing apparatus for vehicle and heating device

Country Status (7)

Country Link
US (1) US10744957B2 (en)
EP (1) EP3506618B1 (en)
JP (1) JP6939535B2 (en)
KR (1) KR102160757B1 (en)
CN (1) CN109969137B (en)
BR (1) BR102018077118A2 (en)
RU (1) RU2712360C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285779B2 (en) * 2019-01-23 2022-03-29 Honda Motor Co., Ltd. Moving body control apparatus
US11323624B2 (en) * 2020-09-01 2022-05-03 Lineage Logistics, LLC Image sensing assembly

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125261B2 (en) * 2017-12-12 2022-08-24 小島プレス工業株式会社 camera for vehicle
JP6904242B2 (en) * 2017-12-27 2021-07-14 トヨタ自動車株式会社 Vehicle photography equipment and heating equipment
JP7044692B2 (en) * 2018-12-20 2022-03-30 本田技研工業株式会社 Shooting system for mobile objects
JP6877604B1 (en) * 2020-02-20 2021-05-26 三菱電機株式会社 In-vehicle camera device and in-vehicle camera component temperature estimation method
JP7523197B2 (en) 2021-09-22 2024-07-26 本田技研工業株式会社 Anti-fog system
CN114745817A (en) * 2022-02-08 2022-07-12 武汉路特斯汽车有限公司 Control method, device and equipment of heating equipment and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130219742A1 (en) * 2012-02-23 2013-08-29 Michael Field Method And Apparatus For Removing And Preventing Lens Surface Contamination On A Vehicle Lens
JP2014101004A (en) * 2012-11-20 2014-06-05 Toyota Motor Corp Mounting structure of vehicular sensor and system cooperation method
US20160231527A1 (en) * 2015-02-06 2016-08-11 Flir Systems, Inc. Lens heater to maintain thermal equilibrium in an infrared imaging system
US20170113512A1 (en) * 2016-01-07 2017-04-27 Lg Electronics Inc. Air circulation control device for vehicle
JP2017144937A (en) 2016-02-19 2017-08-24 トヨタ自動車株式会社 Imaging System
JP2017185896A (en) 2016-04-06 2017-10-12 トヨタ自動車株式会社 Photographing device for vehicle
US20170334364A1 (en) 2016-05-18 2017-11-23 Toyota Jidosha Kabushiki Kaisha Photographing apparatus for vehicle
US20180056942A1 (en) * 2016-08-29 2018-03-01 Toyota Jidosha Kabushiki Kaisha Window glass heating device
US20180149827A1 (en) * 2016-11-29 2018-05-31 Conti Temic Microelectronic Gmbh Camera system in or for a motor vehicle and driver assistance system
US20190193684A1 (en) * 2017-12-27 2019-06-27 Toyota Jidosha Kabushiki Kaisha Photographing apparatus for vehicle and heating device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132625B2 (en) * 2002-10-03 2006-11-07 Ppg Industries Ohio, Inc. Heatable article having a configured heating member
US9301343B2 (en) * 2008-02-19 2016-03-29 Fuji Jukogyo Kabushiki Kaisha Window-glass heating device
MX349562B (en) * 2011-12-09 2017-08-02 Pasteur Institut Multiplex immuno screening assay.
JP6274049B2 (en) * 2014-08-06 2018-02-07 トヨタ自動車株式会社 Vehicle imaging device
JP6439471B2 (en) * 2015-02-05 2018-12-19 株式会社デンソー Anti-fogging deicing device for vehicles

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130219742A1 (en) * 2012-02-23 2013-08-29 Michael Field Method And Apparatus For Removing And Preventing Lens Surface Contamination On A Vehicle Lens
JP2014101004A (en) * 2012-11-20 2014-06-05 Toyota Motor Corp Mounting structure of vehicular sensor and system cooperation method
US20160231527A1 (en) * 2015-02-06 2016-08-11 Flir Systems, Inc. Lens heater to maintain thermal equilibrium in an infrared imaging system
US10232680B2 (en) * 2016-01-07 2019-03-19 Lg Electronics Inc. Air circulation control device for vehicle
US20170113512A1 (en) * 2016-01-07 2017-04-27 Lg Electronics Inc. Air circulation control device for vehicle
JP2017144937A (en) 2016-02-19 2017-08-24 トヨタ自動車株式会社 Imaging System
US20170240138A1 (en) 2016-02-19 2017-08-24 Toyota Jidosha Kabushiki Kaisha Imaging system
JP2017185896A (en) 2016-04-06 2017-10-12 トヨタ自動車株式会社 Photographing device for vehicle
US20170295610A1 (en) 2016-04-06 2017-10-12 Toyota Jidosha Kabushiki Kaisha Photographing Device for Vehicle
US20170334364A1 (en) 2016-05-18 2017-11-23 Toyota Jidosha Kabushiki Kaisha Photographing apparatus for vehicle
JP2017206098A (en) 2016-05-18 2017-11-24 トヨタ自動車株式会社 Vehicular imaging apparatus
US20180056942A1 (en) * 2016-08-29 2018-03-01 Toyota Jidosha Kabushiki Kaisha Window glass heating device
US20180149827A1 (en) * 2016-11-29 2018-05-31 Conti Temic Microelectronic Gmbh Camera system in or for a motor vehicle and driver assistance system
US20190193684A1 (en) * 2017-12-27 2019-06-27 Toyota Jidosha Kabushiki Kaisha Photographing apparatus for vehicle and heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285779B2 (en) * 2019-01-23 2022-03-29 Honda Motor Co., Ltd. Moving body control apparatus
US11323624B2 (en) * 2020-09-01 2022-05-03 Lineage Logistics, LLC Image sensing assembly
US11601594B2 (en) 2020-09-01 2023-03-07 Lineage Logistics, LLC Image sensing assembly

Also Published As

Publication number Publication date
CN109969137A (en) 2019-07-05
EP3506618A1 (en) 2019-07-03
KR20190079556A (en) 2019-07-05
KR102160757B1 (en) 2020-09-28
JP2019116146A (en) 2019-07-18
CN109969137B (en) 2022-06-03
EP3506618B1 (en) 2020-07-15
JP6939535B2 (en) 2021-09-22
BR102018077118A2 (en) 2019-07-16
US20190193647A1 (en) 2019-06-27
RU2712360C1 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
US10744957B2 (en) Photographing apparatus for vehicle and heating device
US10953853B2 (en) Photographing apparatus for vehicle and heating device
US10688966B2 (en) Photographing apparatus for vehicle and heating device
US10397982B2 (en) Photographing device for vehicle
US10351073B2 (en) Photographing apparatus for vehicle
US10912152B2 (en) Photographing apparatus for vehicle and heating device
JP6583651B2 (en) Heating device
US11575809B2 (en) Heating device, camera system, external rear view device, motor vehicles and heating device
WO2020262542A1 (en) Ranging device
JP6958415B2 (en) Vehicle photography equipment
US20230171851A1 (en) Heating device, camera system, external rear view device, motor vehicle and heating method

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OIKAWA, YOSHITAKA;SETO, YASUYOSHI;SHINKAI, RYUUICHI;AND OTHERS;SIGNING DATES FROM 20180904 TO 20180905;REEL/FRAME:047382/0528

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4