US10738581B2 - Fracturing treatments in subterranean formations using electrically controlled propellants - Google Patents
Fracturing treatments in subterranean formations using electrically controlled propellants Download PDFInfo
- Publication number
- US10738581B2 US10738581B2 US16/472,782 US201716472782A US10738581B2 US 10738581 B2 US10738581 B2 US 10738581B2 US 201716472782 A US201716472782 A US 201716472782A US 10738581 B2 US10738581 B2 US 10738581B2
- Authority
- US
- United States
- Prior art keywords
- electrically controlled
- subterranean formation
- controlled propellant
- primary fracture
- well bore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 118
- 239000003380 propellant Substances 0.000 title claims abstract description 105
- 238000011282 treatment Methods 0.000 title claims abstract description 47
- 238000005755 formation reaction Methods 0.000 title description 91
- 239000012530 fluid Substances 0.000 claims abstract description 133
- 206010017076 Fracture Diseases 0.000 claims abstract description 116
- 208000010392 Bone Fractures Diseases 0.000 claims abstract description 86
- 238000000034 method Methods 0.000 claims abstract description 57
- 239000002245 particle Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 15
- 229910002651 NO3 Inorganic materials 0.000 claims description 10
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 6
- 239000003431 cross linking reagent Substances 0.000 claims description 6
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- 229920002873 Polyethylenimine Polymers 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- NILJXUMQIIUAFY-UHFFFAOYSA-N hydroxylamine;nitric acid Chemical compound ON.O[N+]([O-])=O NILJXUMQIIUAFY-UHFFFAOYSA-N 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 11
- 230000002708 enhancing effect Effects 0.000 abstract description 4
- 239000003795 chemical substances by application Substances 0.000 description 22
- 239000000654 additive Substances 0.000 description 12
- 230000008901 benefit Effects 0.000 description 12
- 238000005086 pumping Methods 0.000 description 11
- 239000011435 rock Substances 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- -1 poly(ethylene oxide) Polymers 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000003949 liquefied natural gas Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229940114072 12-hydroxystearic acid Drugs 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 208000013201 Stress fracture Diseases 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- FONBHTQCMAUYEF-UHFFFAOYSA-N ethane-1,2-diamine;nitric acid Chemical compound NCCN.O[N+]([O-])=O.O[N+]([O-])=O FONBHTQCMAUYEF-UHFFFAOYSA-N 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- ZTLTVVXZUBCMMT-UHFFFAOYSA-N (3-oxo-3-phenylprop-1-enyl) acetate Chemical compound CC(=O)OC=CC(=O)C1=CC=CC=C1 ZTLTVVXZUBCMMT-UHFFFAOYSA-N 0.000 description 1
- OVQQQQUJAGEBHH-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl prop-2-enoate Chemical compound FC(F)(F)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(=O)C=C OVQQQQUJAGEBHH-UHFFFAOYSA-N 0.000 description 1
- LESUBZNRBDUXOH-UHFFFAOYSA-N 1-butylpyridin-1-ium;nitrate Chemical compound [O-][N+]([O-])=O.CCCC[N+]1=CC=CC=C1 LESUBZNRBDUXOH-UHFFFAOYSA-N 0.000 description 1
- ULRPISSMEBPJLN-UHFFFAOYSA-N 2h-tetrazol-5-amine Chemical compound NC1=NN=NN1 ULRPISSMEBPJLN-UHFFFAOYSA-N 0.000 description 1
- FLCAEMBIQVZWIF-UHFFFAOYSA-N 6-(dimethylamino)-2-methylhex-2-enamide Chemical compound CN(C)CCCC=C(C)C(N)=O FLCAEMBIQVZWIF-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 208000002565 Open Fractures Diseases 0.000 description 1
- 229940123973 Oxygen scavenger Drugs 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000361 Poly(styrene)-block-poly(ethylene glycol) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- KZTZJUQNSSLNAG-UHFFFAOYSA-N aminoethyl nitrate Chemical compound NCCO[N+]([O-])=O KZTZJUQNSSLNAG-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- FGUJTDLODZCJIO-UHFFFAOYSA-L bis(2-ethylhexanoyloxy)aluminum;hydrate Chemical compound O.CCCCC(CC)C(=O)O[Al]OC(=O)C(CC)CCCC FGUJTDLODZCJIO-UHFFFAOYSA-L 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000011329 calcined coke Substances 0.000 description 1
- USOPFYZPGZGBEB-UHFFFAOYSA-N calcium lithium Chemical compound [Li].[Ca] USOPFYZPGZGBEB-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- VAROLYSFQDGFMV-UHFFFAOYSA-K di(octanoyloxy)alumanyl octanoate Chemical compound [Al+3].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O.CCCCCCCC([O-])=O VAROLYSFQDGFMV-UHFFFAOYSA-K 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-L disulfate(2-) Chemical compound [O-]S(=O)(=O)OS([O-])(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-L 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229940035423 ethyl ether Drugs 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- ZYMKZMDQUPCXRP-UHFFFAOYSA-N fluoro prop-2-enoate Chemical compound FOC(=O)C=C ZYMKZMDQUPCXRP-UHFFFAOYSA-N 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NSPJNIDYTSSIIY-UHFFFAOYSA-N methoxy(methoxymethoxy)methane Chemical compound COCOCOC NSPJNIDYTSSIIY-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- YHJXPVYNNYIEDO-UHFFFAOYSA-N oxetan-3-yl acetate Chemical compound CC(=O)OC1COC1 YHJXPVYNNYIEDO-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000414 polyfuran Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002455 scale inhibitor Substances 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical group O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/66—Compositions based on water or polar solvents
- C09K8/665—Compositions based on water or polar solvents containing inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/86—Compositions based on water or polar solvents containing organic compounds
- C09K8/88—Compositions based on water or polar solvents containing organic compounds macromolecular compounds
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/17—Interconnecting two or more wells by fracturing or otherwise attacking the formation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2405—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/263—Methods for stimulating production by forming crevices or fractures using explosives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/66—Compositions based on water or polar solvents
- C09K8/68—Compositions based on water or polar solvents containing organic compounds
- C09K8/685—Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/267—Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
Definitions
- the present disclosure relates to systems and methods for fracturing in subterranean formations.
- fracturing treatments a viscous fracturing fluid, which also functions as a carrier fluid, is pumped into a producing zone at a sufficiently high rate and/or pressure such that one or more fractures are formed in the zone.
- These fractures provide conductive channels through which fluids in the formation such as oil and gas may flow to a well bore for production.
- proppant particulates suspended in a portion of the fracturing fluid are also deposited in the fractures when the fracturing fluid is converted to a thin fluid to be returned to the surface. These proppant particulates serve to prevent the fractures from fully closing so that conductive channels are formed through which produced hydrocarbons can flow.
- FIG. 1 is a diagram illustrating an example of a fracturing system that may be used in accordance with certain embodiments of the present disclosure.
- FIG. 2 is a diagram illustrating an example of a subterranean formation in which a fracturing operation may be performed in accordance with certain embodiments of the present disclosure.
- FIG. 3 is a diagram illustrating a portion of a subterranean formation during a treatment in accordance with certain embodiments of the present disclosure.
- FIG. 4 is a diagram illustrating the portion of a subterranean formation from FIG. 3 after the ignition of electrically controlled propellant therein in accordance with certain embodiments of the present disclosure.
- the present disclosure relates to systems and methods for fracturing treatments in subterranean formations. More particularly, the present disclosure relates to systems and methods for forming and/or enhancing fractures in a subterranean formation using electrically controlled propellant materials.
- a primary fracture is provided, created, or enhanced in at least a portion of a subterranean formation, typically by introducing a fracturing fluid or pad fluid at a pressure sufficient to create the primary fracture.
- the primary fracture may be a preexisting fracture in the formation (e.g., a fracture formed in a prior hydraulic fracturing treatment), or may be newly generated during a method of the present disclosure.
- An electrically controlled propellant is introduced into the primary fracture (or is provided in a fluid that is introduced at sufficient pressure to create the primary fracture) and allowed to penetrate one or more areas of the subterranean formation proximate to the primary fracture, such as bedding planes or spaces between layers in a shale formation along the primary fracture or secondary fractures in that area of the formation.
- the electrically controlled propellant may be provided as a component of the same fracturing fluid used to create or enhance the primary fracture, or may be provided in a separate fluid introduced into the primary fracture.
- a plurality of electrically conductive particles may be placed into the primary fracture to facilitate transmission of the electrical current to the propellant.
- the combustion of the electrically controlled propellant may rupture areas of the formation proximate to the primary fracture, forming secondary or tertiary fractures (e.g., cracks or fissures) therein.
- secondary or tertiary fractures may enhance the connective surface areas in the rock formation, which may stimulate the production of hydrocarbons therefrom and/or increase the fluid permeability of those regions of the formation.
- the methods, compositions, and systems of the present disclosure may help optimize fracturing treatments in a number of ways.
- the methods of the present disclosure may minimize or eliminate the use of large volumes of fluids (e.g., water) and/or sand used in conventional fracturing treatments, and/or reduce the amount of pumping horsepower required to create complex fracturing geometries in subterranean formations. Reducing pumping horsepower can, among other benefits, significantly lower fuel usage and atmospheric emissions during pumping operations.
- Reducing the amount of water used in fracturing operations may, among other benefits, reduce flowback volume and/or costs of disposing flowback water. Reducing or eliminating the amount of fracturing sand or other proppants used in fracturing operations may, among other benefits, simplify the composition of fracturing fluids that no longer need to suspend proppant particulates, reduce proppant settling issues, and/or may decrease the abrasion to well site equipment from pumping proppant slurries into the formation.
- the ignition of the electrically controlled propellants used in the methods and systems of the present disclosure may be more effectively controlled as compared to other types of explosives or downhole energy sources.
- these electrically controlled propellants may be less likely to spontaneously ignite, particularly at elevated pressure and/or temperature conditions experienced downhole.
- the methods and systems of the present disclosure may present fewer or smaller safety risks in their transportation, handling, and use than other methods and systems using other energy sources.
- it may be possible to cease the ignition of an electrically controlled propellant e.g., by discontinuing the flow of electrical current therethrough), and then re-ignite the remaining portion of propellant at a subsequent time by re-applying electrical current to that same area. Consequently, in some embodiments, the methods and systems of the present disclosure may provide ways of fracturing or otherwise stimulating subterranean formations that can be used or actuated repeatedly without repeated interventions in the same well or placement of additional treatment fluids therein.
- the electrically controlled propellants of the present disclosure may comprise any substance known in the art that can be ignited by passing an electrical current through the propellant.
- the electrically controlled propellant may be provided as a liquid, or as a solid or semi-solid (e.g., powders, pellets, etc.) dissolved, dispersed, or suspended in a carrier liquid.
- a liquid form may be particularly suited to penetrating smaller cracks, microfractures, and/or bedding planes in a formation, among other reasons, to more effectively place the electrically controlled propellant in those areas.
- electrically-controlled propellants provided in solid form may be used in lieu of or in combination with other proppant materials to prop open small cracks, fractures, or bedding planes in the formation (e.g., in the far well bore region of the formation) when the fracturing fluid pressure is released.
- the electrically controlled propellant may be provided in a composition that comprises a mixture of one or more electrically controlled propellants and other materials, including but not limited to inert materials such as sand, cement, fiberglass, ceramic materials, carbon fibers, polymeric materials, sand, clay, acid soluble materials, degradable materials (e.g., polylactic acid), and the like.
- the electrically controlled propellant may comprise a binder (e.g., polyvinyl alcohol, polyvinylamine nitrate, polyethanolaminobutyne nitrate, polyethyleneimine nitrate, copolymers thereof, and mixtures thereof), an oxidizer (e.g., ammonium nitrate, hydroxylamine nitrate, and mixtures thereof), and a crosslinking agent (e.g., boric acid).
- a binder e.g., polyvinyl alcohol, polyvinylamine nitrate, polyethanolaminobutyne nitrate, polyethyleneimine nitrate, copolymers thereof, and mixtures thereof
- an oxidizer e.g., ammonium nitrate, hydroxylamine nitrate, and mixtures thereof
- a crosslinking agent e.g., boric acid
- Such propellant compositions may further comprise additional optional additives, including but not limited to stability enhancing or combustion
- the electrically controlled propellant may comprise a polyalkylammonium binder, an oxidizer, and an eutectic material that maintains the oxidizer in a liquid form at the process temperature (e.g., energetic materials such as ethanolamine nitrate (ETAN), ethylene diamine dinitrate (EDDN), or other alkylamines or alkoxylamine nitrates, or mixtures thereof).
- Such propellants may further comprise a mobile phase comprising at least one ionic liquid (e.g., an organic liquid such as N,n-butylpyridinium nitrate).
- ionic liquid e.g., an organic liquid such as N,n-butylpyridinium nitrate.
- the electrically controlled propellants may be provided and/or placed in the subterranean formation in any amount sufficient to provide the amount of energy required to create or enlarge the desired fracture geometries in the formation when ignited.
- the amount of energy needed to create or enlarge the desired connective stimulated reservoir volumes may be approximated as a function of the equivalent amount of energy created by pumping a fluid into the formation at a specific injection rate and hydraulic horsepower that creates the bottomhole treating pressure required in conventional hydraulic fracturing treatments.
- the amount of propellant needed to create that amount of energy may be calculated.
- a fracturing fluid may be able to create and hold open a fracture in a subterranean formation when pumped at an injection rate of 15 barrels per minute (bpm) and a BHTP of 10,000 pounds per square inch (psi), requiring only 3,675 HP of hydraulic horsepower to maintain the injection rate and initiate and extend a primary fracture into the formation.
- the fracturing fluid would need to be injected at a higher rate or higher hydraulic horsepower.
- placing and igniting 77,311 lbs of an ammonium nitrate-based electrically controlled propellant in the formation may provide an amount of energy equivalent to that provided in a conventional hydraulic fracturing treatment in which the fluid is injected at a rate of 80 bpm and a BHTP of 10,000 psi for 60 minutes.
- the treatment fluids used in the methods and systems of the present disclosure may comprise any base fluid known in the art, including aqueous base fluids, non-aqueous base fluids, and any combinations thereof.
- base fluid refers to the major component of the fluid (as opposed to components dissolved and/or suspended therein), and does not indicate any particular condition or property of that fluids such as its mass, amount, pH, etc.
- Aqueous fluids that may be suitable for use in the methods and systems of the present disclosure may comprise water from any source.
- Such aqueous fluids may comprise fresh water, salt water (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated salt water), seawater, or any combination thereof.
- the density of the aqueous fluid can be adjusted, among other purposes, to provide additional particulate transport and suspension in the compositions of the present disclosure.
- the pH of the aqueous fluid may be adjusted (e.g., by a buffer or other pH adjusting agent) to a specific level, which may depend on, among other factors, the types of viscosifying agents, acids, and other additives included in the fluid.
- a buffer or other pH adjusting agent e.g., a buffer or other pH adjusting agent
- certain brine-based fluids may be exhibit certain electrical conductivity properties, which may facilitate ignition of the electrically controlled propellant once placed in the subterranean formation.
- non-aqueous fluids liquids or gases
- examples of non-aqueous fluids include, but are not limited to, oils, hydrocarbons (e.g., liquefied natural gas (LNG), compressed natural gas (CNG) methane, etc.), organic liquids, carbon dioxide, nitrogen, and the like.
- the fracturing fluids may comprise a mixture of one or more fluids and/or gases, including but not limited to emulsions, foams, and the like.
- the fracturing fluids and/or other treatment fluids used may be substantially “waterless” in that they do not comprise a significant amount of water (e.g., less than 5%, 1%, or 0.1% by volume), or alternatively, any amount of water.
- the viscosity of the treatment fluid(s) used during different portions of the methods of the present disclosure optionally may be varied, among other reasons, to provide different amounts of fluid loss control and/or leakoff that may be useful during those different steps.
- the fracturing fluid or pad fluid introduced at or above a pressure sufficient to create or enhance the primary fracture may be relatively viscous (e.g., about 250 cP or higher, up to about 5,000 cP), among other reasons, to minimize fluid leakoff and maintain a high bottomhole treating pressure in the formation.
- the fluid comprising the electrically controlled propellant may have a relatively low viscosity (e.g., about 50 cP or lower, or 5 cP or lower), among other reasons, to facilitate leakoff and penetration of the propellant into bedding planes, microfractures, or other areas of the formation proximate to the primary fracture.
- the fluid comprising the electrically controlled propellant may be followed by another relatively viscous fluid introduced into the formation, among other reasons, to displace the fluid comprising the propellant into the far well bore region of the formation with less loss or leakoff of that fluid.
- the higher viscosity of this fluid also may facilitate suspension of electrically conductive particulates and/or proppant particulates to be deposited in the near well bore portion of the primary fracture.
- any compatible, known viscosifying agents as well as any compatible, known crosslinking agents e.g., metal carboxylate crosslinkers
- any compatible, known crosslinking agents e.g., metal carboxylate crosslinkers
- metal carboxylate crosslinkers capable of crosslinking the molecules of a polymeric viscosifying agent
- treatment fluids comprising liquid methane, liquefied natural gas, liquid gas hydrocarbon can be viscosified by admixing a quantity of a viscosifying agent comprising a copolymer of N,N-dimethylacrylamide and dimethylaminopropyl methacrylamide, an emulsion of an ethylene-propylene elastomer grafted with a dicarboxylic acid anhydride, a block copolymer of polystyrene and poly(ethylene oxide), with an aluminum carboxylate crosslinker selected from the group consisting of aluminum 2-ethylhexanoate, hydroxyaluminum bis(2-ethylhexanoate), and any combination thereof.
- a viscosifying agent comprising a copolymer of N,N-dimethylacrylamide and dimethylaminopropyl methacrylamide
- treatment fluids comprising liquid carbon dioxide or nitrogen can be viscosified with a viscosifying agent selected from the group consisting of: poly(methyl oxirane); polydimethylsiloxane (PDMS); poly(1-,1-,dihydroperfluorooctyl acrylate) (PFOA); fluoroacrylate monomers such as 1-,1-,2-,2-tetrahydro heptadecafluorodecylacrylate and styrene (fluoroacrylate-styrene) copolymer (polyFAST); fluorinated polyurethane disulfate; polyvinyl acetate (PVAc); poly [(1-O-(vinyloxy)ethyl1-2,3,4,6-tetra-O-acetyl- ⁇ -D-glucopyranoside)] (PAcGIcVE); 3-acetoxy oxetane; polyvinyl ethylether (P
- the treatment fluids used in the methods and systems of the present disclosure optionally may comprise any number of additional additives.
- additional additives include, but are not limited to, salts, surfactants, acids, proppant particulates (e.g., frac sand), diverting agents, fluid loss control additives, gas, nitrogen, carbon dioxide, surface modifying agents, tackifying agents, foamers, corrosion inhibitors, scale inhibitors, catalysts, clay control agents, biocides, friction reducers, antifoam agents, bridging agents, flocculants, H 2 S scavengers, CO 2 scavengers, oxygen scavengers, lubricants, viscosifiers, crosslinking agents, breakers, weighting agents, relative permeability modifiers, resins, wetting agents, coating enhancement agents, filter cake removal agents, antifreeze agents (e.g., ethylene glycol), and the like.
- additional additives include, but are not limited to, salts, surfactants, acids, proppant part
- one or more of these additional additives may be added to the treatment fluid and/or activated after the viscosifying agent has been at least partially hydrated in the fluid.
- additional additives e.g., a crosslinking agent
- the treatment fluids of the present disclosure may be prepared using any suitable method and/or equipment (e.g., blenders, mixers, stirrers, etc.) known in the art at any time prior to their use.
- the treatment fluids may be prepared at least in part at a well site or at an offsite location.
- the electrically controlled propellant and/or other components of the treatment fluid may be metered directly into a base treatment fluid to form a treatment fluid.
- the base fluid may be mixed with the electrically controlled propellant and/or other components of the treatment fluid at a well site where the operation or treatment is conducted, either by batch mixing or continuous (“on-the-fly”) mixing.
- on-the-fly is used herein to include methods of combining two or more components wherein a flowing stream of one element is continuously introduced into a flowing stream of another component so that the streams are combined and mixed while continuing to flow as a single stream as part of the on-going treatment. Such mixing can also be described as “real-time” mixing.
- the treatment fluids of the present disclosure may be prepared, either in whole or in part, at an offsite location and transported to the site where the treatment or operation is conducted.
- the components of the treatment fluid may be mixed together at the surface and introduced into the formation together, or one or more components may be introduced into the formation at the surface separately from other components such that the components mix or intermingle in a portion of the formation to form a treatment fluid.
- the treatment fluid is deemed to be introduced into at least a portion of the subterranean formation for purposes of the present disclosure.
- an electrical current must be applied to the electrically controlled propellant to ignite it in the methods of the present disclosure. That electrical current may be transmitted or otherwise provided to the electrically controlled propellant in the formation using any means known in the art.
- electrical current is provided from a direct current (DC) source, although electrical power from alternating current (AC) sources can be used as well.
- the source of electrical current may be provided at the surface, and the current may be transferred via a conductive wire, cable, and/or tubing into the subterranean formation to the electrically controlled propellant and/or another electrically conductive material in contact with the propellant.
- the electrical current may pass through any number of secondary relays, switches, conduits (e.g., wires or cables), electrodes, equipment made of conductive material (e.g., metal casings, liners, etc.) or other electrically conductive structures.
- the electrical current also may be provided by some other downhole energy source (such as downhole charges, hydraulic power generators, batteries, or the like), and then applied to the electrically controlled propellant in the formation.
- the amount of electrical current applied to ignite the electrically controlled propellant may range from about 1 milliamp to about 100 milliamps.
- the electrical current applied to ignite the electrically controlled propellant may have a corresponding voltage of from about 100V to about 600V.
- the electrically controlled propellant may be ignited at any time, and the application of electrical current to the propellant may be triggered in any known way.
- the current may be applied in response to manual input by an operator, either at the surface of the well site or from a remote location.
- the current may be applied automatically in response to the detection of certain conditions in the formation using one or more downhole sensors. Examples of downhole sensors that may be used in this way include, but are not limited to, pressure sensors, temperature sensors, water sensors, motion sensors, chemical sensors, and the like.
- particles of electrically conductive materials optionally may be placed in various regions of the formation, among other reasons, to help transmit electrical current to facilitate ignition and removal of the electrically controlled propellant when the current is applied, even in far-field regions of a subterranean formation.
- electrically conductive particles may be mixed in the same fluid with the electrically controlled propellants, among other reason, to facilitate placement of those particles proximate to and/or in contact with the propellants.
- the electrically conductive materials may comprise micro- and/or nano-sized particles.
- Examples of electrically conductive materials that may be suitable in certain embodiments of the present disclosure include but are not limited to metal powders, metal shavings, steel shot, graphite, calcined coke, metal coated particles, particles coated with electrically conductive polymer, and any combinations thereof.
- Examples of conductive metals that may be suitable for use in certain embodiments of the present disclosure include, but are not limited to, graphite, silver, gold, calcium lithium, platinum, titanium, nickel, copper, iron, silver, zinc, brass, tin, aluminum, steel, lead, magnesium, and any alloy or combination thereof.
- the electrically conductive material may comprise an electrically conductive polymer material, such as at least one of a polypyrrole, polyfuran, polythiophene, polyaniline, as well as any copolymers, combinations, and/or derivatives thereof.
- an electrically conductive polymer material such as at least one of a polypyrrole, polyfuran, polythiophene, polyaniline, as well as any copolymers, combinations, and/or derivatives thereof.
- the electrical current may be applied to the electrically controlled propellant substantially continuously until substantially all of the propellant has been ignited or the desired fracture geometries have been created in the formation.
- the electrical current may be applied to the electrically controlled propellant intermittently.
- the intermittent ignition of the propellant may generate a series of shorter pulses of energy and/or pressure in the area of the formation proximate to the primary fracture.
- the cracks and fractures in the formation may be permitted to relax or constrict between these intermittent pulses, which may facilitate the creation of more complex fracture geometries.
- FIGS. 3 and 4 An example of a fracture network created and/or enhanced according to the methods of the present disclosure is illustrated in FIGS. 3 and 4 .
- a well bore 313 is shown penetrating a portion of a subterranean formation 310 .
- the subterranean formation 310 may comprise a near well bore region 310 a and a far well bore region 310 b .
- the distances from the well bore 313 at which these regions are delineated are not shown to scale in FIGS. 3 and 4 , and may vary depending on the application of the present disclosure, but would be recognized by a person of skill in the art with the benefit of this disclosure.
- the region within about 10 meters (about 33 feet) of the well bore may be considered the near well bore region 310 a
- the region more than about 10 meters beyond the well bore may be considered the far well bore region 310 b
- a casing string 317 is disposed within the well bore 313 and is held in place by cement 315 placed in an annular area between the well bore 313 and the outer surface of the casing 317 .
- perforations 319 may be created through the casing 313 and cement 317 in selected locations. The portion of the well bore 313 shown in FIGS.
- a primary fracture 325 extends from the well bore 313 to penetrate both the near well bore region 310 a and the far well bore region 310 b of the subterranean formation 310 .
- the primary fracture 325 may have been created by introducing a fracturing fluid (e.g., a fracturing fluid of the present disclosure, or a conventional fracturing fluid) into the subterranean formation at or above a pressure sufficient to create or enlarge the fracture 325 .
- a fracturing fluid e.g., a fracturing fluid of the present disclosure, or a conventional fracturing fluid
- the portion of the well bore 313 adjacent to the fracture 325 may have been isolated (e.g., using packers, plugs, or other isolation tools) before the fracturing fluid was introduced.
- the primary fracture 325 also penetrates a number of bedding planes 335 of the formation 310 .
- Electrically controlled propellant 340 has been placed in the bedding planes 335 in at least the far well bore region 310 b via the primary fracture 325 .
- electrically controlled propellant may not be placed in bedding planes in the near well bore region 310 a , among other reasons, to prevent damage to that region and/or the well bore.
- a plurality of proppant particulates 345 also have been placed in the near well bore portion of the primary fracture 325 , among other reasons, to maintain the conductivity of the primary fracture and to protect the well bore.
- FIG. 3 shows the portion of the formation 310 prior to ignition of the electrically controlled propellant according to the methods of the present disclosure.
- the same formation 310 as shown in FIG. 3 is shown after ignition of at least a portion of the electrically controlled propellant 340 in the bedding planes 335 .
- the ignition of the propellant has ruptured the rock in the far well bore region 310 b to form secondary fractures 355 therein.
- the near well bore region 310 a remains substantially undisrupted because electrically controlled propellant was not placed or ignited in bedding planes in the near well bore region 310 a .
- the combination of the secondary fractures 355 , bedding planes 335 , and primary fracture 325 form a conductive fracture network 360 through which fluids such as oil, gas, and/or water may flow from the formation 310 into the well bore 313 for production.
- the aforementioned features of the portion of the subterranean formation 310 and fracture network 350 shown above the well bore 313 also may exist and/or be created below the well bore 313 (e.g., as in a “bi-wing” fracture configuration, similar to that illustrated as fracture 116 in FIG. 2 ) in the methods of the present disclosure.
- the ignition of the electrically controlled propellant may, in addition to the formation of secondary or tertiary fractures, rupture the nearby rock formation to form rock particulates in the secondary or tertiary fractures.
- these rock particulates may act as an in-situ proppant material to prop open the secondary or tertiary fractures and maintain their conductivity after the fracturing treatment is completed.
- a treatment fluid comprising a consolidating agent such as a curable resin optionally may be introduced into the primary fracture and allowed to penetrate the secondary and/or tertiary fractures created by the combustion of the electrically controlled propellant.
- the consolidating agent may, among other benefits, treat the fracture faces in the primary, secondary, or tertiary fractures in the formation, and lock in place any formation fines and/or loose rock particulates (e.g., rock particulates generated when the electrically controlled propellant was ignited).
- Any consolidating agent known in the art, including resins, tackifiers, and the like, may be used in accordance with the methods of the present disclosure.
- preflush and/or afterflush fluids may be introduced into the formation before and/or after the consolidating agent is introduced, among other reasons, to prepare the rock surfaces for treatment and/or to displace excess consolidating agent from pore spaces in the formation.
- Certain embodiments of the methods and compositions disclosed herein may directly or indirectly affect one or more components or pieces of equipment associated with the preparation, delivery, recapture, recycling, reuse, and/or disposal of the disclosed compositions.
- the disclosed methods and compositions may directly or indirectly affect one or more components or pieces of equipment associated with an exemplary fracturing system 10 , according to one or more embodiments.
- the system 10 includes a fracturing fluid producing apparatus 20 , a fluid source 30 , a proppant source 40 , and a pump and blender system 50 and resides at the surface at a well site where a well 60 is located.
- the fracturing fluid producing apparatus 20 combines a gel pre-cursor with fluid (e.g., liquid or substantially liquid) from fluid source 30 , to produce a hydrated fracturing fluid that is used to fracture the formation.
- the hydrated fracturing fluid can be a fluid for ready use in a fracture stimulation treatment of the well 60 or a concentrate to which additional fluid is added prior to use in a fracture stimulation of the well 60 .
- the fracturing fluid producing apparatus 20 can be omitted and the fracturing fluid sourced directly from the fluid source 30 .
- the fracturing fluid may comprise water, a hydrocarbon fluid, a polymer gel, foam, air, wet gases and/or other fluids.
- the proppant source 40 can include a proppant for combination with the fracturing fluid.
- the system may also include additive source 70 that may provide electrically controlled propellant and/or one or more additives (e.g., gelling agents, weighting agents, and/or other optional additives) to alter the properties of the fracturing fluid.
- additives e.g., gelling agents, weighting agents, and/or other optional additives
- the other additives 70 can be included to reduce pumping friction, to reduce or eliminate the fluid's reaction to the geological formation in which the well is formed, to operate as surfactants, and/or to serve other functions.
- the pump and blender system 50 receives the fracturing fluid and combines it with other components, including proppant from the proppant source 40 and/or additional fluid from the additives 70 .
- the resulting mixture may be pumped down the well 60 under a pressure sufficient to create or enhance one or more fractures in a subterranean zone, for example, to stimulate production of fluids from the zone.
- the fracturing fluid producing apparatus 20 , fluid source 30 , and/or proppant source 40 may be equipped with one or more metering devices (not shown) to control the flow of fluids, proppants, and/or other compositions to the pumping and blender system 50 .
- Such metering devices may permit the pumping and blender system 50 can source from one, some or all of the different sources at a given time, and may facilitate the preparation of fracturing fluids in accordance with the present disclosure using continuous mixing or “on-the-fly” methods.
- the pumping and blender system 50 can provide just fracturing fluid into the well at some times, just proppants at other times, and combinations of those components at yet other times.
- FIG. 2 shows the well 60 during a fracturing operation in a portion of a subterranean formation of interest 102 surrounding a well bore 104 .
- the well bore 104 extends from the surface 106 , and the fracturing fluid 108 is applied to a portion of the subterranean formation 102 surrounding the horizontal portion of the well bore.
- the well bore 104 may include horizontal, vertical, slant, curved, and other types of well bore geometries and orientations, and the fracturing treatment may be applied to a subterranean zone surrounding any portion of the well bore.
- the well bore 104 can include a casing 110 that is cemented or otherwise secured to the well bore wall.
- the well bore 104 can be uncased or include uncased sections. Perforations can be formed in the casing 110 to allow fracturing fluids and/or other materials to flow into the subterranean formation 102 . In cased wells, perforations can be formed using shape charges, a perforating gun, hydro-jetting and/or other tools.
- the portion of the well bore 104 proximate to the portion of the subterranean formation 102 to be fractured also may be isolated using any known method of zonal isolation, including but not limited to packers, plugs, gels, valves, and the like.
- the well is shown with a work string 112 depending from the surface 106 into the well bore 104 .
- the pump and blender system 50 is coupled a work string 112 to pump the fracturing fluid 108 into the well bore 104 .
- the working string 112 may include coiled tubing, jointed pipe, and/or other structures that allow fluid to flow into the well bore 104 .
- the working string 112 can include flow control devices, bypass valves, ports, and or other tools or well devices that control a flow of fluid from the interior of the working string 112 into the subterranean zone 102 .
- the working string 112 may include ports adjacent the well bore wall to communicate the fracturing fluid 108 directly into the subterranean formation 102 , and/or the working string 112 may include ports that are spaced apart from the well bore wall to communicate the fracturing fluid 108 into an annulus in the well bore between the working string 112 and the well bore wall.
- the working string 112 and/or the well bore 104 may include one or more sets of packers 114 that seal the annulus between the working string 112 and well bore 104 to define an interval of the well bore 104 into which the fracturing fluid 108 will be pumped.
- FIG. 2 shows two packers 114 , one defining an uphole boundary of the interval and one defining the downhole end of the interval.
- the fracturing fluid 108 is introduced into well bore 104 (e.g., in FIG. 2 , the area of the well bore 104 between packers 114 ) at a sufficient hydraulic pressure, one or more fractures 116 may be created in the subterranean zone 102 .
- the disclosed methods and compositions may also directly or indirectly affect any transport or delivery equipment used to convey the compositions to the fracturing system 10 such as, for example, any transport vessels, conduits, pipelines, trucks, tubulars, and/or pipes used to fluidically move the compositions from one location to another, any pumps, compressors, or motors used to drive the compositions into motion, any valves or related joints used to regulate the pressure or flow rate of the compositions, and any sensors (i.e., pressure and temperature), gauges, and/or combinations thereof, and the like.
- any transport or delivery equipment used to convey the compositions to the fracturing system 10 such as, for example, any transport vessels, conduits, pipelines, trucks, tubulars, and/or pipes used to fluidically move the compositions from one location to another, any pumps, compressors, or motors used to drive the compositions into motion, any valves or related joints used to regulate the pressure or flow rate of the compositions, and any sensors (i.e., pressure and temperature), gauges, and/or combinations thereof,
- An embodiment of the present disclosure is a method comprising: introducing a fracturing fluid into at least a portion of a subterranean formation at or above a pressure sufficient to create or enhance at least one primary fracture in the subterranean formation; introducing an electrically controlled propellant and a plurality of electrically conductive particles into the primary fracture; placing the electrically controlled propellant and the plurality of electrically conductive particles in one or more areas of the subterranean formation proximate to the primary fracture; and applying an electrical current to at least a portion of the electrically controlled propellant to ignite the portion of the electrically controlled propellant in the one or more areas of the subterranean formation proximate to the primary fracture to form one or more secondary or tertiary fractures in the subterranean formation.
- Another embodiment of the present disclosure is a method comprising: introducing a treatment fluid comprising an electrically controlled propellant and a plurality of electrically conductive particles in at least one primary fracture in a portion of a subterranean formation; placing the plurality of electrically conductive particles in at least the primary fracture; placing the electrically controlled propellant in one or more areas of the subterranean formation proximate to the primary fracture; and applying an electrical current to at least a portion of the electrically controlled propellant to ignite the portion of the electrically controlled propellant in the one or more areas of the subterranean formation proximate to the primary fracture to form one or more secondary or tertiary fractures in the subterranean formation.
- a fracture network in a subterranean formation comprising: a well bore penetrating at least a portion of the subterranean formation; a primary fracture in the subterranean formation in fluid communication with the well bore, wherein a plurality of electrically conductive particles are located within the primary fracture, and a plurality of proppant particulates are located within a portion of the primary fracture in a near well bore area of the subterranean formation; and one or more secondary or tertiary fractures in the subterranean formation in fluid communication with the primary fracture formed at least in part by ignition of an electrically controlled propellant in a far well bore area of the subterranean formation proximate to the primary fracture.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
Description
TABLE 1 | ||||||
Equivalent | ||||||
Weight of | ||||||
Injection | Pump | Downhole | Downhole | Ammonimum | ||
BHTP | Rate | time | Energy | Energy | Nitrate | |
(psi) | (bpm) | (min) | HHP | (KW-hour) | (kJ) | (lbs) |
5,000 | 80 | 60 | 9,800 | 7,308 | 26,308,296 | 38,656 |
6,000 | 80 | 60 | 11,760 | 8,769 | 31,569,955 | 46,387 |
7,000 | 80 | 60 | 13,720 | 10,231 | 36,831,614 | 54,118 |
8,000 | 80 | 60 | 15,680 | 11,693 | 42,093,274 | 61,849 |
9,000 | 80 | 60 | 17,640 | 13,154 | 47,354,933 | 69,580 |
10,000 | 80 | 60 | 19,600 | 14,616 | 52,616,592 | 77,311 |
11,000 | 80 | 60 | 21,560 | 16,077 | 57,878,251 | 85,042 |
12,000 | 80 | 60 | 23,520 | 17,539 | 63,139,910 | 92,774 |
13,000 | 80 | 60 | 25,480 | 19,000 | 68,401,570 | 100,505 |
14,000 | 80 | 60 | 27,440 | 20,462 | 73,663,229 | 108,236 |
15,000 | 80 | 60 | 29,400 | 21,924 | 78,924,888 | 115,967 |
10,000 | 15 | 60 | 3,675 | 2,740 | 9,865,611 | 14,496 |
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/014547 WO2018136095A1 (en) | 2017-01-23 | 2017-01-23 | Fracturing treatments in subterranean formations using electrically controlled propellants |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190368328A1 US20190368328A1 (en) | 2019-12-05 |
US10738581B2 true US10738581B2 (en) | 2020-08-11 |
Family
ID=62909227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/472,782 Expired - Fee Related US10738581B2 (en) | 2017-01-23 | 2017-01-23 | Fracturing treatments in subterranean formations using electrically controlled propellants |
Country Status (3)
Country | Link |
---|---|
US (1) | US10738581B2 (en) |
CA (1) | CA3046918C (en) |
WO (1) | WO2018136095A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220074295A1 (en) * | 2020-09-10 | 2022-03-10 | Exxonmobil Upstream Research Company | Methods and Systems of Creating Fractures in a Subsurface Formation |
US11828151B2 (en) | 2020-07-02 | 2023-11-28 | Barry Kent Holder | Device and method to stimulate a geologic formation with electrically controllable liquid propellant-waterless fracturing |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11428087B2 (en) | 2016-10-27 | 2022-08-30 | Halliburton Energy Services, Inc. | Electrically controlled propellant materials for subterranean zonal isolation and diversion |
CA3046917C (en) | 2017-01-23 | 2021-03-30 | Halliburton Energy Services, Inc. | Enhancing complex fracture networks in subterranean formations |
US10738582B2 (en) * | 2017-01-23 | 2020-08-11 | Halliburton Energy Services, Inc. | Fracturing treatments in subterranean formation using inorganic cements and electrically controlled propellants |
WO2020197607A1 (en) | 2019-03-27 | 2020-10-01 | Halliburton Energy Services, Inc. | Enhancing treatment fluid placement in a subterranean formation |
CN112761598B (en) * | 2021-02-05 | 2022-04-01 | 西南石油大学 | Method and device for calculating dynamic filtration of carbon dioxide fracturing fracture |
Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3842910A (en) | 1973-10-04 | 1974-10-22 | Dow Chemical Co | Well fracturing method using liquefied gas as fracturing fluid |
US4448926A (en) | 1982-09-13 | 1984-05-15 | Exxon Research And Engineering Co. | Viscosification of hydrocarbon fluids |
US4530396A (en) | 1983-04-08 | 1985-07-23 | Mohaupt Henry H | Device for stimulating a subterranean formation |
US4662451A (en) | 1985-06-07 | 1987-05-05 | Phillips Petroleum Company | Method of fracturing subsurface formations |
US4780221A (en) | 1987-06-15 | 1988-10-25 | Halliburton Company | Method and composition for viscosifying hydrocarbons |
US4798244A (en) | 1987-07-16 | 1989-01-17 | Trost Stephen A | Tool and process for stimulating a subterranean formation |
US5295545A (en) | 1992-04-14 | 1994-03-22 | University Of Colorado Foundation Inc. | Method of fracturing wells using propellants |
US5346015A (en) | 1993-05-24 | 1994-09-13 | Halliburton Company | Method of stimulation of a subterranean formation |
US5831203A (en) * | 1997-03-07 | 1998-11-03 | The Ensign-Bickford Company | High impedance semiconductor bridge detonator |
US6098516A (en) | 1997-02-25 | 2000-08-08 | The United States Of America As Represented By The Secretary Of The Army | Liquid gun propellant stimulation |
US6169134B1 (en) | 1997-12-12 | 2001-01-02 | Nalco/Exxon Energy Chemicals, L.P. | Viscosifying hydrocarbon liquids |
US6938692B2 (en) | 2002-12-17 | 2005-09-06 | Halliburton Energy Services, Inc. | Permeable cement composition and method for preparing the same |
US20050205258A1 (en) | 2004-03-17 | 2005-09-22 | Reddy B R | Cement compositions containing degradable materials and methods of cementing in subterranean formations |
US20060011276A1 (en) | 2002-04-24 | 2006-01-19 | Charles Grix | Electrically controlled solid propellant |
US20060065400A1 (en) | 2004-09-30 | 2006-03-30 | Smith David R | Method and apparatus for stimulating a subterranean formation using liquefied natural gas |
US7032663B2 (en) | 2003-06-27 | 2006-04-25 | Halliburton Energy Services, Inc. | Permeable cement and sand control methods utilizing permeable cement in subterranean well bores |
US7044224B2 (en) | 2003-06-27 | 2006-05-16 | Halliburton Energy Services, Inc. | Permeable cement and methods of fracturing utilizing permeable cement in subterranean well bores |
US7073581B2 (en) | 2004-06-15 | 2006-07-11 | Halliburton Energy Services, Inc. | Electroconductive proppant compositions and related methods |
US20060185898A1 (en) | 2005-02-23 | 2006-08-24 | Dale Seekford | Method and apparatus for stimulating wells with propellants |
US7216708B1 (en) | 2003-09-12 | 2007-05-15 | Bond Lesley O | Reactive stimulation of oil and gas wells |
US7331385B2 (en) | 2003-06-24 | 2008-02-19 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US7431075B2 (en) | 2004-10-05 | 2008-10-07 | Schlumberger Technology Corporation | Propellant fracturing of wells |
US20090305914A1 (en) | 2008-05-07 | 2009-12-10 | Leiming Li | Phosphorus-Free Gelled Hydrocarbon Compositions and Method for Use Thereof |
US7631691B2 (en) | 2003-06-24 | 2009-12-15 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
WO2010039290A1 (en) | 2008-05-16 | 2010-04-08 | Digital Solid State Propulsion, Llc | Family of modifiable high performance electrically controlled propellants and explosives |
US7730951B2 (en) | 2008-05-15 | 2010-06-08 | Halliburton Energy Services, Inc. | Methods of initiating intersecting fractures using explosive and cryogenic means |
US7794537B2 (en) | 2006-08-07 | 2010-09-14 | Schlumberger Technology Corporation | Geopolymer composition and application in oilfield industry |
WO2011115723A1 (en) | 2010-03-19 | 2011-09-22 | Exxonmobil Upstream Research Company | System and method for fracturing rock in tight reservoirs |
US20120037368A1 (en) | 2010-08-12 | 2012-02-16 | Conocophillips Company | Controlled release proppant |
US8317952B2 (en) | 2006-04-13 | 2012-11-27 | Digital Solid State Propulsion, Llc | High performance electrically controlled solution solid propellant |
US20120328377A1 (en) | 2005-09-09 | 2012-12-27 | Halliburton Energy Services, Inc. | Resin-Based Sealant Compositions Comprising Cement Kiln Dust and Methods of Use |
US20130327529A1 (en) | 2012-06-08 | 2013-12-12 | Kenneth M. Sprouse | Far field fracturing of subterranean formations |
US8607704B2 (en) | 2008-04-01 | 2013-12-17 | Bae Systems Bofors Ab | Method for electrical flashover ignition and combustion of propellent charge, as well as propellent charge and ammunition shot in accordance therewith |
US20130341029A1 (en) | 2012-06-26 | 2013-12-26 | Lawrence Livermore National Security, Llc | High strain rate method of producing optimized fracture networks in reservoirs |
US8689876B2 (en) | 2006-03-03 | 2014-04-08 | Gasfrac Energy Services Inc. | Liquified petroleum gas fracturing system |
US20140138090A1 (en) | 2012-09-13 | 2014-05-22 | Jim T. Hill | System and method for safely conducting explosive operations in a formation |
US20140144635A1 (en) | 2012-11-28 | 2014-05-29 | Halliburton Energy Services, Inc. | Methods of Enhancing Fracture Conductivity of Subterranean Formations Propped with Cement Pillars |
US20140144633A1 (en) | 2012-11-28 | 2014-05-29 | Halliburton Energy Services, Inc. | Methods of Enhancing Fracture Conductivity of Subterranean Formations Propped with Cement Packs |
US20140190686A1 (en) * | 2013-01-04 | 2014-07-10 | Sandia Corporation | Electrically Conductive Proppant and Methods for Detecting, Locating and Characterizing the Electrically Conductive Proppant |
US20140251623A1 (en) | 2013-03-07 | 2014-09-11 | Prostim Labs, Llc | Fracturing systems and methods for a wellbore |
US20140318786A1 (en) | 2011-12-19 | 2014-10-30 | Schlumberger Technology Corporation | Compositions and methods for servicing subterranean wells |
US20150021023A1 (en) | 2013-07-17 | 2015-01-22 | Lawrence Livermore National Security, Llc | Encapsulated microenergetic material |
WO2015030908A2 (en) | 2013-08-30 | 2015-03-05 | Praxair Technology, Inc. | Control system and apparatus for delivery of a non-aqueous fracturing fluid |
US20150060065A1 (en) | 2013-08-30 | 2015-03-05 | William Scharmach | Control system and apparatus for delivery of a non-aqueous fracturing fluid |
US9027641B2 (en) | 2011-08-05 | 2015-05-12 | Schlumberger Technology Corporation | Method of fracturing multiple zones within a well using propellant pre-fracturing |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
WO2015126365A1 (en) | 2014-02-18 | 2015-08-27 | Halliburton Energy Services, Inc. | Methods for obtaining data from a subterranean formation |
WO2015126408A1 (en) | 2014-02-21 | 2015-08-27 | Halliburton Energy Services Inc. | Cementing compositions and methods |
US9182207B2 (en) | 2012-10-24 | 2015-11-10 | Digital Solid State Propulsion, Inc. | Liquid electrically initiated and controlled gas generator composition |
US20160003022A1 (en) | 2014-07-01 | 2016-01-07 | Research Triangle Institute | Cementitious fracture fluid and methods of use thereof |
US9243182B2 (en) | 2012-08-21 | 2016-01-26 | American Air Liquide Inc. | Hydraulic fracturing with improved viscosity liquefied industrial gas based solution |
WO2016036343A1 (en) | 2014-09-02 | 2016-03-10 | Halliburton Energy Services, Inc. | Enhancing complex fracture networks in subterranean formations |
US20160153274A1 (en) | 2014-12-01 | 2016-06-02 | Aramco Services Company | Fracturing fluid for subterranean formations |
US20160153271A1 (en) | 2013-07-15 | 2016-06-02 | Los Alamos National Security, Llc | Multi-stage geologic fracturing |
US20160186046A1 (en) | 2014-12-31 | 2016-06-30 | Arkema France | Fluid composition for stimulation in the field of oil and gas production |
US20160186501A1 (en) | 2014-12-15 | 2016-06-30 | Baker Hughes Incorporated | Systems and Methods for Operating Electrically-Actuated Coiled Tubing Tools and Sensors |
US20160245061A1 (en) | 2015-02-20 | 2016-08-25 | Halliburton Energy Services, Inc. | Fracturing tight subterranean formations with a cement composition |
US20170016703A1 (en) | 2012-01-13 | 2017-01-19 | Los Alamos National Security, Llc | Detonation control |
WO2018136093A1 (en) | 2017-01-23 | 2018-07-26 | Halliburton Energy Services, Inc. | Enhancing complex fracture networks in subterranean formations |
WO2018136100A1 (en) | 2017-01-23 | 2018-07-26 | Halliburton Energy Services, Inc. | Fracturing treatments in subterranean formations using inorganic cements and electrically controlled propellants |
-
2017
- 2017-01-23 WO PCT/US2017/014547 patent/WO2018136095A1/en active Application Filing
- 2017-01-23 US US16/472,782 patent/US10738581B2/en not_active Expired - Fee Related
- 2017-01-23 CA CA3046918A patent/CA3046918C/en active Active
Patent Citations (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3842910A (en) | 1973-10-04 | 1974-10-22 | Dow Chemical Co | Well fracturing method using liquefied gas as fracturing fluid |
US4448926A (en) | 1982-09-13 | 1984-05-15 | Exxon Research And Engineering Co. | Viscosification of hydrocarbon fluids |
US4530396A (en) | 1983-04-08 | 1985-07-23 | Mohaupt Henry H | Device for stimulating a subterranean formation |
US4662451A (en) | 1985-06-07 | 1987-05-05 | Phillips Petroleum Company | Method of fracturing subsurface formations |
US4780221A (en) | 1987-06-15 | 1988-10-25 | Halliburton Company | Method and composition for viscosifying hydrocarbons |
US4798244A (en) | 1987-07-16 | 1989-01-17 | Trost Stephen A | Tool and process for stimulating a subterranean formation |
US5295545A (en) | 1992-04-14 | 1994-03-22 | University Of Colorado Foundation Inc. | Method of fracturing wells using propellants |
US5346015A (en) | 1993-05-24 | 1994-09-13 | Halliburton Company | Method of stimulation of a subterranean formation |
US6098516A (en) | 1997-02-25 | 2000-08-08 | The United States Of America As Represented By The Secretary Of The Army | Liquid gun propellant stimulation |
US5831203A (en) * | 1997-03-07 | 1998-11-03 | The Ensign-Bickford Company | High impedance semiconductor bridge detonator |
US6169134B1 (en) | 1997-12-12 | 2001-01-02 | Nalco/Exxon Energy Chemicals, L.P. | Viscosifying hydrocarbon liquids |
US20060011276A1 (en) | 2002-04-24 | 2006-01-19 | Charles Grix | Electrically controlled solid propellant |
US6938692B2 (en) | 2002-12-17 | 2005-09-06 | Halliburton Energy Services, Inc. | Permeable cement composition and method for preparing the same |
US7040405B2 (en) | 2002-12-17 | 2006-05-09 | Halliburton Energy Services, Inc. | Permeable cement composition and method for preparing the same |
US7052543B2 (en) | 2002-12-17 | 2006-05-30 | Halliburton Energy Services, Inc. | Permeable cement composition and method for preparing the same |
US7631691B2 (en) | 2003-06-24 | 2009-12-15 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US7331385B2 (en) | 2003-06-24 | 2008-02-19 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US7032663B2 (en) | 2003-06-27 | 2006-04-25 | Halliburton Energy Services, Inc. | Permeable cement and sand control methods utilizing permeable cement in subterranean well bores |
US7044224B2 (en) | 2003-06-27 | 2006-05-16 | Halliburton Energy Services, Inc. | Permeable cement and methods of fracturing utilizing permeable cement in subterranean well bores |
US7216708B1 (en) | 2003-09-12 | 2007-05-15 | Bond Lesley O | Reactive stimulation of oil and gas wells |
US7172022B2 (en) | 2004-03-17 | 2007-02-06 | Halliburton Energy Services, Inc. | Cement compositions containing degradable materials and methods of cementing in subterranean formations |
US20050205258A1 (en) | 2004-03-17 | 2005-09-22 | Reddy B R | Cement compositions containing degradable materials and methods of cementing in subterranean formations |
US7073581B2 (en) | 2004-06-15 | 2006-07-11 | Halliburton Energy Services, Inc. | Electroconductive proppant compositions and related methods |
US20060065400A1 (en) | 2004-09-30 | 2006-03-30 | Smith David R | Method and apparatus for stimulating a subterranean formation using liquefied natural gas |
US7431075B2 (en) | 2004-10-05 | 2008-10-07 | Schlumberger Technology Corporation | Propellant fracturing of wells |
US20060185898A1 (en) | 2005-02-23 | 2006-08-24 | Dale Seekford | Method and apparatus for stimulating wells with propellants |
US20120328377A1 (en) | 2005-09-09 | 2012-12-27 | Halliburton Energy Services, Inc. | Resin-Based Sealant Compositions Comprising Cement Kiln Dust and Methods of Use |
US8689876B2 (en) | 2006-03-03 | 2014-04-08 | Gasfrac Energy Services Inc. | Liquified petroleum gas fracturing system |
US8317952B2 (en) | 2006-04-13 | 2012-11-27 | Digital Solid State Propulsion, Llc | High performance electrically controlled solution solid propellant |
US8617327B1 (en) | 2006-04-13 | 2013-12-31 | Digital Solid State Propulsion Llc | Method for controlling a high performance electrically controlled solution solid propellant |
US7794537B2 (en) | 2006-08-07 | 2010-09-14 | Schlumberger Technology Corporation | Geopolymer composition and application in oilfield industry |
US8607704B2 (en) | 2008-04-01 | 2013-12-17 | Bae Systems Bofors Ab | Method for electrical flashover ignition and combustion of propellent charge, as well as propellent charge and ammunition shot in accordance therewith |
US20090305914A1 (en) | 2008-05-07 | 2009-12-10 | Leiming Li | Phosphorus-Free Gelled Hydrocarbon Compositions and Method for Use Thereof |
US7730951B2 (en) | 2008-05-15 | 2010-06-08 | Halliburton Energy Services, Inc. | Methods of initiating intersecting fractures using explosive and cryogenic means |
US20110067789A1 (en) | 2008-05-16 | 2011-03-24 | Digital Solid State Propulsion, Llc | Family of Modifiable High Performance Electrically Controlled Propellants and Explosives |
US8888935B2 (en) | 2008-05-16 | 2014-11-18 | Digital Solid State Propulsion, Llc | Family of modifiable high performance electrically controlled propellants and explosives |
WO2010039290A1 (en) | 2008-05-16 | 2010-04-08 | Digital Solid State Propulsion, Llc | Family of modifiable high performance electrically controlled propellants and explosives |
WO2011115723A1 (en) | 2010-03-19 | 2011-09-22 | Exxonmobil Upstream Research Company | System and method for fracturing rock in tight reservoirs |
US9057261B2 (en) | 2010-03-19 | 2015-06-16 | Exxonmobil Upstream Research Company | System and method for fracturing rock in tight reservoirs |
US20120037368A1 (en) | 2010-08-12 | 2012-02-16 | Conocophillips Company | Controlled release proppant |
US9027641B2 (en) | 2011-08-05 | 2015-05-12 | Schlumberger Technology Corporation | Method of fracturing multiple zones within a well using propellant pre-fracturing |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
US20140318786A1 (en) | 2011-12-19 | 2014-10-30 | Schlumberger Technology Corporation | Compositions and methods for servicing subterranean wells |
US20170016703A1 (en) | 2012-01-13 | 2017-01-19 | Los Alamos National Security, Llc | Detonation control |
US20130327529A1 (en) | 2012-06-08 | 2013-12-12 | Kenneth M. Sprouse | Far field fracturing of subterranean formations |
US20130341029A1 (en) | 2012-06-26 | 2013-12-26 | Lawrence Livermore National Security, Llc | High strain rate method of producing optimized fracture networks in reservoirs |
US9243182B2 (en) | 2012-08-21 | 2016-01-26 | American Air Liquide Inc. | Hydraulic fracturing with improved viscosity liquefied industrial gas based solution |
US20140138090A1 (en) | 2012-09-13 | 2014-05-22 | Jim T. Hill | System and method for safely conducting explosive operations in a formation |
US9328034B2 (en) | 2012-10-24 | 2016-05-03 | Digital Solid State Propulsion Llc | Liquid electrically initiated and controlled gas generator composition |
US9182207B2 (en) | 2012-10-24 | 2015-11-10 | Digital Solid State Propulsion, Inc. | Liquid electrically initiated and controlled gas generator composition |
US20140144635A1 (en) | 2012-11-28 | 2014-05-29 | Halliburton Energy Services, Inc. | Methods of Enhancing Fracture Conductivity of Subterranean Formations Propped with Cement Pillars |
US20140144633A1 (en) | 2012-11-28 | 2014-05-29 | Halliburton Energy Services, Inc. | Methods of Enhancing Fracture Conductivity of Subterranean Formations Propped with Cement Packs |
US8931553B2 (en) | 2013-01-04 | 2015-01-13 | Carbo Ceramics Inc. | Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant |
US20140190686A1 (en) * | 2013-01-04 | 2014-07-10 | Sandia Corporation | Electrically Conductive Proppant and Methods for Detecting, Locating and Characterizing the Electrically Conductive Proppant |
US20140251623A1 (en) | 2013-03-07 | 2014-09-11 | Prostim Labs, Llc | Fracturing systems and methods for a wellbore |
US20160153271A1 (en) | 2013-07-15 | 2016-06-02 | Los Alamos National Security, Llc | Multi-stage geologic fracturing |
US20150021023A1 (en) | 2013-07-17 | 2015-01-22 | Lawrence Livermore National Security, Llc | Encapsulated microenergetic material |
WO2015030908A2 (en) | 2013-08-30 | 2015-03-05 | Praxair Technology, Inc. | Control system and apparatus for delivery of a non-aqueous fracturing fluid |
US20150060065A1 (en) | 2013-08-30 | 2015-03-05 | William Scharmach | Control system and apparatus for delivery of a non-aqueous fracturing fluid |
WO2015126365A1 (en) | 2014-02-18 | 2015-08-27 | Halliburton Energy Services, Inc. | Methods for obtaining data from a subterranean formation |
WO2015126408A1 (en) | 2014-02-21 | 2015-08-27 | Halliburton Energy Services Inc. | Cementing compositions and methods |
US20160003022A1 (en) | 2014-07-01 | 2016-01-07 | Research Triangle Institute | Cementitious fracture fluid and methods of use thereof |
WO2016036343A1 (en) | 2014-09-02 | 2016-03-10 | Halliburton Energy Services, Inc. | Enhancing complex fracture networks in subterranean formations |
US20160153274A1 (en) | 2014-12-01 | 2016-06-02 | Aramco Services Company | Fracturing fluid for subterranean formations |
US20160186501A1 (en) | 2014-12-15 | 2016-06-30 | Baker Hughes Incorporated | Systems and Methods for Operating Electrically-Actuated Coiled Tubing Tools and Sensors |
US20160186046A1 (en) | 2014-12-31 | 2016-06-30 | Arkema France | Fluid composition for stimulation in the field of oil and gas production |
US20160245061A1 (en) | 2015-02-20 | 2016-08-25 | Halliburton Energy Services, Inc. | Fracturing tight subterranean formations with a cement composition |
WO2018136093A1 (en) | 2017-01-23 | 2018-07-26 | Halliburton Energy Services, Inc. | Enhancing complex fracture networks in subterranean formations |
WO2018136100A1 (en) | 2017-01-23 | 2018-07-26 | Halliburton Energy Services, Inc. | Fracturing treatments in subterranean formations using inorganic cements and electrically controlled propellants |
US20190368327A1 (en) * | 2017-01-23 | 2019-12-05 | Halliburton Energy Services, Inc. | Fracturing treatments in subterranean formation using inorganic cements and electrically controlled propellants |
Non-Patent Citations (3)
Title |
---|
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2017/014518 dated Oct. 23, 2017, 9 pages. |
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2017/014547 dated Oct. 18, 2017, 19 pages. |
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2017/014574 dated Oct. 24, 2017, 17 pages. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11828151B2 (en) | 2020-07-02 | 2023-11-28 | Barry Kent Holder | Device and method to stimulate a geologic formation with electrically controllable liquid propellant-waterless fracturing |
US20220074295A1 (en) * | 2020-09-10 | 2022-03-10 | Exxonmobil Upstream Research Company | Methods and Systems of Creating Fractures in a Subsurface Formation |
US11773707B2 (en) * | 2020-09-10 | 2023-10-03 | ExxonMobil Technology and Engineering Company | Methods and systems of creating fractures in a subsurface formation |
Also Published As
Publication number | Publication date |
---|---|
WO2018136095A1 (en) | 2018-07-26 |
CA3046918A1 (en) | 2018-07-26 |
CA3046918C (en) | 2021-06-08 |
US20190368328A1 (en) | 2019-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10738581B2 (en) | Fracturing treatments in subterranean formations using electrically controlled propellants | |
US11326434B2 (en) | Methods for enhancing hydrocarbon production from subterranean formations using electrically controlled propellant | |
US9790774B2 (en) | Generating and maintaining conductivity of microfractures in tight formations by generating gas and heat | |
AU2014212849B2 (en) | Low-temperature breaker for well fluid viscosified with a polyacrylamide | |
US20240151130A1 (en) | Methods of strengthening and consolidating subterranean formations with silicate-aluminum geopolymers | |
AU2014376378B2 (en) | Re-fracturing a fracture stimulated subterranean formation | |
CA3037299C (en) | Electrically controlled propellant materials for subterranean zonal isolation and diversion | |
WO2016048349A1 (en) | Chemical suspensions for precise control of hydrocarbon reservoir treatment fluids | |
US10738582B2 (en) | Fracturing treatments in subterranean formation using inorganic cements and electrically controlled propellants | |
US10570709B2 (en) | Remedial treatment of wells with voids behind casing | |
US20230303911A1 (en) | Sand Consolidation Compositions And Methods Of Use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NGUYEN, PHILIP D.;DUSTERHOFT, RONALD GLEN;REEL/FRAME:049555/0747 Effective date: 20170119 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240811 |