US10713398B2 - Iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments - Google Patents

Iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments Download PDF

Info

Publication number
US10713398B2
US10713398B2 US15/162,205 US201615162205A US10713398B2 US 10713398 B2 US10713398 B2 US 10713398B2 US 201615162205 A US201615162205 A US 201615162205A US 10713398 B2 US10713398 B2 US 10713398B2
Authority
US
United States
Prior art keywords
model simulation
simulation process
objective function
modeling
workflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/162,205
Other languages
English (en)
Other versions
US20170337302A1 (en
Inventor
Mokhles Mustapha Mezghani
Nazih F. Najjar
Mahdi AbuAli
Rainer Zuhlke
Sedat Inan
Conrad K. Allen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Priority to US15/162,205 priority Critical patent/US10713398B2/en
Assigned to SAUDI ARABIAN OIL COMPANY reassignment SAUDI ARABIAN OIL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INAN, Sedat, ZUHLKE, RAINER, ALLEN, CONRAD K., MEZGHANI, MOKHLES MUSTAPHA, ABUALI, Mahdi, NAJJAR, NAZIH F.
Priority to CN201780041194.1A priority patent/CN109478208B/zh
Priority to EP17712315.5A priority patent/EP3465488A1/en
Priority to CA3024411A priority patent/CA3024411C/en
Priority to PCT/US2017/020858 priority patent/WO2017204879A1/en
Publication of US20170337302A1 publication Critical patent/US20170337302A1/en
Priority to SA518400444A priority patent/SA518400444B1/ar
Publication of US10713398B2 publication Critical patent/US10713398B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V20/00Geomodelling in general
    • G01V99/005
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/614Synthetically generated data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6163Electromagnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6167Nuclear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6169Data from specific type of measurement using well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/624Reservoir parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/66Subsurface modeling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • Numerical models of several processes are frequently used in the oil and gas industry to optimize petroleum exploration and production activities. These numerical models are frequently used to identify and screen new prospects, to optimize recovery mechanisms, and to design optimal surface facilities, hence improving net present values (NPV).
  • NVM net present values
  • the challenge of optimizing exploration and production activities using numerical modeling is in having accurate model predictions with acceptable uncertainty tolerance for use in the decision making process.
  • predictions from current process-based numerical models include major uncertainties; meaning any decision-making process is inherently risky and often results in increased petroleum exploration and production costs.
  • the present disclosure describes methods and systems, including computer-implemented methods, computer-program products, and computer systems for optimization of petroleum exploration and production activities using numerical modeling.
  • a global objective function is initialized to an initial value.
  • a particular model simulation process is executed using prepared input data.
  • a mismatch value is computed by using a local function to compare an output of the particular model simulation process to corresponding input data for the particular model simulation process.
  • Model objects associated with the particular model simulation process are sent to another model simulation process.
  • An optimization process is executed to predict new values for input data to reduce the computed mismatch value.
  • the new workflow will link important modeling approaches for predictive a) source/reservoir/seal analysis; b) maturation/migration/charging/trapping analysis; and c) production engineering d) recovery processes.
  • integrated predictive approaches can decrease exploration and production risks and increase resources and production.
  • global objective function based on incremental uncertainties from each modeling approach provides improved predictions; allowing improved calibration and verification of input parameter sets to each modeling approach.
  • the workflow provides a hydrocarbon (HC) exploration and production community shared model in contrast to isolated numerical models of individual and inconsistent elements of the HC system.
  • HC hydrocarbon
  • the results of individual process, overall workflow, or a combination of both individual processes and the workflow can have the following positive impacts: 1) improved well operations in terms of well placement and real-time geo-steering; 2) highly predictive 3D numerical reservoir models; efficient dynamic flow simulation with minimal changes to model parameters during the production history matching process; and enhanced reservoir and field performance predictions 3) optimal recovery processes.
  • uncertainties can be reduced on the models prediction used in both exploration and production to increase discovery and enhance recovery.
  • the prediction accuracy of generated models can be compared to current models to determine, among other things, model efficiency and to allow substitution of old models with current models.
  • FIGS. 1A & 1B illustrate a block diagram of an example workflow for optimization of petroleum exploration and production activities using numerical modeling according to an implementation.
  • FIG. 2 illustrates a relationship between particular modeling approaches and associated hardware/data and software according to an implementation.
  • FIG. 3 represents a block diagram of a method for optimization of petroleum exploration and production activities using numerical modeling according to an implementation
  • FIG. 4 is a block diagram of an exemplary computer system used to provide computational functionalities associated with described algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure, according to an implementation.
  • This disclosure describes integrating all processes leading to successful discoveries of, or of enhanced recoveries from, hydrocarbon accumulations; enabling integration of multi-disciplinary and multi-lateral work toward one single aim. This integration results in savings of time and effort of professionals and researchers and benefitting a user (for example, a petroleum company).
  • close collaboration is envisioned between, but not limited to, reservoir geologists, structural geologists, paleontologists, stratigraphers, seismic data processing experts, seismic interpreters, reservoir geophysicists, geochemists, formation evaluation experts, petrophysicists, reservoir simulation experts, and other experts consistent with the disclosure and described subject matter.
  • This disclosure proposes a new data-driven workflow where various processes involved in, for example, rock formation, petroleum generation, migration, charging, and production are consistently connected to each other, accounting for their relative dependency. As such, each considered process is characterized by its inputs and outputs.
  • a standard unified input/output format can be defined to be used for some or all of the processes and associated software tools used in the workflow.
  • a converter can be used to convert an output format from one process to an input format needed by a following process(es).
  • a set of input parameters to be optimized are specified. While running the workflow, typically only specified parameters are changed and outputs change accordingly as a result of running a processes simulation with the specified parameters.
  • One iteration of the workflow starts by setting a new set of parameters/inputs provided by an optimizer.
  • each process in the data-driven workflow provides the above-mentioned local objective function that measures a mismatch between a simulation process prediction and observed data.
  • all the local objective functions can be added together to form a global objective function that will be minimized (for example, according to a certain weight in some implementations).
  • a general formulation for the global objective function can be:
  • weighting factor w i must be normalized between zero and one.
  • a general formulation for the local objective function can be based on the Euclidian Norm:
  • a particular formulation of the local objective function is called the least square formulation using the L 2 Norm:
  • the global objective function is minimized through an automated loop to generate lowest uncertainty models that can explain available data without adversely impacting consistency in the models.
  • One of the challenges faced in global objective function minimization is a choice and implementation of a global optimization technique to obtain a “best” model.
  • Both standard/known and custom optimizers can be used in various implementations.
  • Optimizers can be benchmarked in ways known to those of ordinary skill in the art to determine which optimizer provides a “best” global objective function minimization. It is expected that a gradient-based optimizer will generally produce the best results, but in some implementations, variations in data, functions, etc. can impact optimizer function.
  • threshold values can be used to compare values generated by local/global objective functions to determine whether the global objective function is minimized and generates lowest uncertainty models that can explain available data without adversely impacting consistency in the models.
  • FIGS. 1A & 1B illustrate a block diagram of an example workflow 100 for optimization of petroleum exploration and production activities using numerical modeling according to an implementation. Illustrated are various workflow processes 102 , inputs 104 , outputs 106 , optimization loop 108 , and data 110 related to the example workflow 100 .
  • the workflow 100 is typically based on inverse problem theory: uncertain inputs involved in describing an observable system (using numerical modeling) are optimized to minimize mismatches between model simulation results and system observation results.
  • Any inverse problem typically includes two components:
  • Forward (composite) modeling is typically quite complex and formed by a succession of fundamental modeling components (for example, processes 102 ) connected to each other to form a composite modeling step.
  • Each modeling component is characterized by its inputs and outputs.
  • inputs can be of two classes:
  • Outputs of a fundamental modeling component are used as inputs for other fundamental modeling component(s) when it is possible to preserve consistency between models.
  • the outputs represent an observable quantity that can be measured, any mismatch between the output and the observation must be added to the global objective function.
  • upscaling and downscaling techniques might be needed to fill a gap between the model scales and observation scales.
  • optimization loop 108 uses an optimizer to identify best parameters/inputs that minimize any computed mismatch between process prediction and measured data 110 . Because of the non-linearity, several optimization iterations are typically needed to converge to an acceptable solution. As will be appreciated by those of ordinary skill in the art, a number of iterations can vary depending on, for example, data, functions, or other parameters. At each iteration, the optimizer will estimate a new parameters/inputs set guided by the gradients values of the global objective function.
  • Evaluated parameters/inputs will depend on a particular process 102 of the workflow 100 .
  • the illustrated parameters in FIGS. 1A and 1B are for example purposes only. For example, considering geology for a field/basin, different parameters may be used/needed.
  • a sensitivity analysis is conducted prior to running a particular workflow to decide on appropriate parameters for the workflow. The sensitivity analysis is the study and determination of how a change in a given input parameter influences the output in the model.
  • parameters/inputs for each process 102 can include:
  • any new process 102 can be integrated in an existing workflow 100 by clearly specifying its inputs/outputs and connecting the new process 102 (or software) to the existing workflow 100 .
  • model dependency is accounted for by sharing, when applicable, similar objects (for example, with similar inputs and outputs) between various models. Therefore consistency is preserved since the inputs for any of these models, when applicable, are computed and deducted from the outputs of other models within the same workflow (dependency).
  • data utilization is maximized to constrain, as much as possible, a models' outputs to available data to reduce uncertainties while using these models for prediction.
  • fundamental modeling components as well as dependencies (for example, with particular inputs and outputs) to form a composite model are as follows:
  • the objective of structural modeling is to define the syndepositional deformation which has a major influence on reservoir quality & heterogeneity as well as post-depositional deformation which controls entrapment.
  • the structural modeling component of the workflow 100 involves the construction of a robust three dimensional (3D) structural framework through the integration of several data types. Some of the input data include geological markers, horizon grids, faults, and fractures. Seismic and microstructural data (core, logs) are used as input to structural modeling. Major geological zones are defined in the structural framework for subsequent detailed stratigraphic modeling at a finer layering scale.
  • Stratigraphic modeling covers process-based depositional and diagenetic modeling. Major controls on reservoir quality like sediment transport, erosion/reworking and fluid-driven overprint during burial are modelled in 3D and in time. Process-based modelling differs from geostatistical modeling which is based on the interpolation between known data points (wells). Stratigraphic modeling defines source rock distribution, migration pathways and reservoir parameters (rock properties, architecture, and heterogeneity) based on the development of depositional environments.
  • Petroleum systems analysis has become an integral discipline in assessing the hydrocarbon potential of a given basin.
  • the main components of a petroleum system are source, reservoir, trap, seal, migration, and timing, all of which have to be evaluated individually and collectively.
  • Petroleum systems modeling though focused on the source rock component of the petroleum system, aims at providing a calibrated earth model tying all the data and predicting the final output which is the composition and phase of the hydrocarbon product found at the trap.
  • Non-source petroleum system components are equally looked at and evaluated in order to describe and model the petroleum migration journey from source to trap with the objective of quantifying hydrocarbon types, migration directions and timing.
  • Petroleum systems modeling can no longer be considered as a complementary tool in petroleum exploration; as it is the only available exploratory tool to accurately describe the real earth model. Addressing fluid movements, maturity, temperature and pressure variations in the subsurface can only be assessed in a 3-Dimensional domain.
  • the source-component is evaluated by the quantity and quality of the source rock presence and organic richness, thickness, aerial coverage, thermal maturity and temperature, and pressure history of the geologic strata.
  • the non-source components are evaluated for reservoir, seal and trap integrity utilizing existing well and seismic data that are peculiar to the basin under evaluation.
  • a real earth model is then constructed in three dimensions (3D) utilizing the input data for all the petroleum system components.
  • structural and lithological facies maps representing each component are stratigraphically stacked, taking into considerations episodes of unconformities, burial/erosion/non-deposition, faulting/structural deformation, depositional environments and hydrocarbon generation, expulsion and migration throughout the geologic history of the basin.
  • the 3D model is subsequently forward-modeled using numerical methods to predict the burial and thermal history of the stratigraphic layers. Finally, the output is validated by the present-day hydrocarbon composition and thermal maturity of the discovered and produced hydrocarbons. Additionally, the reservoir, seal and trap properties (for example, viscosity, column height, Gas Oil Ratio (GOR) and phase) are also validated with the obtained data from the newly drilled wells (for example, test, log, core and seismic data).
  • GOR Gas Oil Ratio
  • Petroleum System Modeling involves critical elements of a petroleum system that is the source, carrier, reservoir, trap and seal.
  • the time dependence of these processes/elements in basin history are very important for successful petroleum exploration and production. For instance, oil generation and migration post-dating trap formation will most likely lead to finding oil/gas accumulations if migration route is suitable and if the structural closure is preserved by a seal.
  • thermal maturity is a more powerful calibration parameter as it (thermal maturity) has recorded in its memory the time-temperature exposure of the hydrocarbon source rock throughout the burial history. Thermal maturity can be decomposed into time and burial depth (which determines burial temperatures). So, good correlation (for example, an acceptable match) between a measured and modeled thermal maturity will most of the time lead to very good calibration of the model.
  • Each input parameter in the Petroleum System Modeling module can be a single, independent data point (for example, kerogen type or sediment water temperature) or variable data points that can be represented as a map such as Total Organic Carbon Content (TOC) given in weight % of the rock, Hydrogen Index (HI) as 100*the ratio of pyrolyzable HCs to TOC, or heat flow.
  • the output parameters can be validated and optimized with measured data such as temperature, organic maturity, or American Petroleum Institute gravity. If a match between the modeled and measured data is weak, input parameters are modified accordingly until the match is reasonable.
  • the same workflow is adjusted once again when the overall petroleum system output models do not tie with the other output parameters from other modules such as the stratigraphic, structural, and fluid flow. Therefore, the adjustment is dynamic and multi-directional as it is calibrated from within but, at the same time, it is also modified when external model parameters are revised.
  • the objective of fluid flow modeling is to simulate the fluid movement within the pore system once we start reservoirs production. Communicating reservoirs must be simulated within the same model to account for this communication. Otherwise, one numerical model per reservoir is needed to avoid the fluid flow simulation in non-flowing zones, which will minimize required CPU time of the simulation).
  • Petro-elastic modeling represents a vital step in the workflow 100 to calculate elastic properties from the rock properties defined in the 3D geocellular model.
  • the main objective of PEM is to simulate and quantify a synthetic seismic response based on a pre-defined rock physics model and reservoir fluid properties.
  • the rock physics model which is calibrated to logs, cores, and measurements done in laboratories, provides the link between the elastic parameters and reservoir rock and fluid properties.
  • the PEM which is geologically consistent with input data and geological concepts used to construct the 3D geological model, becomes the foundation for seismic amplitude modeling and eventually the translation of seismic inversion elastic properties to rock properties.
  • the petro-elastic model simulates the seismic response of the saturated medium from rock and fluid properties while iteratively drawing from subcomponent models such as are the Geological Model, Petrophysics Model, Reservoir Simulation, Rock and Fluid Physics Model, and Time-lapse rock-fluid physics templates.
  • the petro-elastic model uses conventional existing rock physics models calibrated to well log data measurements.
  • the petro-elastic model simulates the elastic parameters which govern wave propagation, rock and fluid properties which govern fluid flow. Conventional simulation properties such as pressure, fluid density, fluid saturations and effective porosity, are used to calculate the effective acoustic response of the fluids.
  • the rock physics model is often composed of empirical laws calibrated to laboratory measurements and analytical formulas. Fluid substitutions performed are based on modified Gassmann equations.
  • Forward seismic modeling is used to model and predict the seismic response based on a known 3D geological model.
  • a reflectivity series is computed based on the AI contrast at geological interfaces. Then a synthetic seismic trace is generated by convolving the reflection coefficients with a zero-phase wavelet extracted from the acquired 3D seismic survey.
  • the purpose of forward seismic modeling is to correctly image the structure in time and depth and, second, to correctly characterize the amplitudes of the reflections. Assuming that the amplitudes are accurately rendered, a range of additional features can be derived and used in interpretation, most commonly referred to as seismic attributes. Attributes can be obtained from typical post-stack seismic data volumes, and these are the most common types, while additional information can be obtained from attributes of the individual seismic traces prior to stacking, in a pre-stack analysis. The most common of these is the variation of amplitude versus offset (AVO) it means amplitude versus offset, which is often used as an indicator of fluid type. The interpretation of any attribute is non-unique, and calibration to well data is required to minimize the ambiguities present. Pre-stack analysis of acquired seismic data is carried out to identify seismic amplitude anomaly regions and correlate them to rock properties and fluid type stored in the 3D geological model.
  • AVO amplitude versus offset
  • an objective function must be defined as described above to measure a mismatch between simulation results and observations.
  • a challenge faced in solving inverse problems is the choice and the implementation of a global optimization technique to minimize the objective function.
  • global optimization algorithms can be broadly classified into two categories: 1) stochastic and 2) deterministic approaches. The following sections provide a brief review of some of the existing global optimization algorithms.
  • Stochastic optimization techniques have been successfully applied to a wide variety of problems in science and engineering. These techniques have been widely used and may help in the cases when enumerative methods can be expensive or when the optimization problems involve too many variables. Many real world problems often involve uncertainty with respect to some of the parameters and may not have accurate problem data. Stochastic techniques can be of great help when optimization problems involve some uncertainty or randomness, or when the problem does not have an algebraic formulation.
  • Stochastic global optimization methods randomly search for a global optimum over a domain of interest. These methods typically rely on statistics to prove convergence to a global solution. According to the stochastic techniques, the more time spent searching for the global optimum, the greater the probability that the global optimum has been reached. The advantage of these methods is that they do not need a specific structure for a problem being solved. One disadvantage is that they often cannot handle highly constrained optimization problems. These methods offer no bounds on a solution. Some methods include: Simulated annealing, Tableau search, Pursuit search and Genetic algorithms. While other stochastic algorithms exist, only selected stochastic optimization methods are discussed here.
  • Simulated annealing makes a comparison between the process of physical annealing and solving combinational optimization problems.
  • the current solution is randomly changed to create an alternate solution in the neighborhood of the current solution.
  • the current solution is replaced with the new solution if the objective function value for the new solution is better than the current solution.
  • the current solution is replaced by the new solution based on some probability function if the objective function value for the new solution is worse than the current solution.
  • the reason behind moving to an inferior solution is to prevent the search from being trapped in a local solution. At the beginning of the search, there is a correspondingly higher chance of uphill moves which reduces significantly later on in the search process as the probability reduces to zero.
  • Genetic algorithms are particular classes of evolutionary algorithms which deal with the techniques those are analogous to concepts of evolutionary biology such as mutation, inheritance, and recombination. Genetic algorithms represent a popular stochastic optimization approach in determining global solutions to optimization problems. The main difference between genetic algorithms and various other random search techniques is that these algorithms work with a population of possible candidate solutions to the problem as opposed to one solution.
  • the algorithm iterates by simultaneously moving multiple candidate solutions from the current population towards a global solution. Starting from a totally random population of individuals, the algorithm iterates by selecting potential candidates from the current population for modification (mutation) and are combined (cross-mated) to form a new population.
  • the above-described algorithms use some fitness functions to determine the quality of any proposed solution, thereby rejecting those solutions with low fitness value.
  • deterministic global optimization methods can guarantee optimal solutions within a specified tolerance, where this tolerance is the difference between the objective function value of the true global optimum point and that of the solution obtained.
  • Deterministic global optimization techniques can explicitly handle constrained optimization problems, and therefore are often favorable compared to stochastic techniques.
  • Deterministic methods are based on a theoretically-grounded exploration of the feasible space which in turn guarantees identification of global solution. These algorithms proceed by rigorously reducing the feasible space until the global solution has been found with prescribed accuracy. Converging sequences of valid upper and lower bounds are generated which approach the global solution from above and below. The rigorous generation of bounds on the optimal solution is a significant pan of deterministic global optimization and this usually requires generation of convex function relaxations to non-convex expressions. Branch-and-Bound and Outer Approximation methods are some of the most commonly used deterministic global optimization algorithms for solving non-convex non-linear programming problems.
  • a general process flow consistent with FIGS. 1A & 1B, 2, 3 (see additional detail below), and 4 can include:
  • FIG. 2 illustrates a relationship between particular modeling approaches 202 (fundamental modeling component(s) 102 ) and associated hardware & data 204 and software examples 206 according to an implementation.
  • process stratigraphic modeling 112 b is associated with hardware & data 204 (for example, well log core, seismic 2D/3D, etc.) and software examples, SEDSIM (CSIRO), FSM (Schlumberger), DIONISOS (Beicip-Franlab), as described below.
  • hardware & data 204 used for the various fundamental modeling component(s) 102 can include one or more of the following:
  • software 206 used for the various fundamental modeling component(s) 102 can include one or more of the following:
  • Both the objective and optimization functions can include either proprietary or commercially available functions (or a combination of both) to account for workflow complexity.
  • FIG. 3 represents a block diagram of a method 300 for optimization of petroleum exploration and production activities using numerical modeling according to an implementation.
  • the description that follows generally describes method 300 in the context of FIGS. 1A, 1B, 2, and 4 .
  • method 300 may be performed, for example, by any other suitable system, environment, software, and hardware, or a combination of systems, environments, software, and hardware as appropriate.
  • various steps of method 300 can be run in parallel, in combination, in loops, or in any order.
  • the following description of method 300 is consistent with the general process flow described in FIGS. 1A & 1B .
  • a global objective function value is initialized to an initial value (for example, zero or some other value) to indicate that no current mismatch exists between model simulation processes and parameter/input data. From 302 , method 300 proceeds to 304 .
  • model parameters/inputs are prepared for a particular model simulation process.
  • the input data is generally obtained from interpretation of raw data measured in the field or from outputs of other model simulation processes to be used as inputs (for example, seismic data, geological field work, outcrop modeling, core description, log interpretation, and the like).
  • An example of inputs used for executing a structural modeling simulation process can include, among others, structural controls, fault throw, fault position, and the like. From 304 , method 300 proceeds to 306 .
  • the particular model simulation process is executed.
  • One or more outputs can be obtained from the execution of the particular model simulation process.
  • external basin geometry (2D maps), internal basin horizons (2D maps), and the like can be generated by the process' execution. From 306 , method 300 proceeds to 308 .
  • simulation outputs are compared to corresponding data used by the particular model simulation process to compute a mismatch value (if present) between the particular model simulation process and the measured data.
  • a local objective function associated with the structural modeling simulation process is used to measure a mismatch value (if any) between the model outputs (here, the structural modeling simulation process) and the measured input data.
  • the best model corresponds to a minimum of the objective function (for example, theoretically the model outputs would be equal to the measured input data).
  • upscaling/downscaling steps are usually required.
  • model outputs in this case are given by 2D maps but the measured data could be 2D (for example, seismic data) and 1D (for example, log and core data). From 308 , method 300 proceeds to 310 .
  • the global objective function is updated by adding any model mismatch computed by the local objective function to the global objective function value. From 310 , method 300 proceeds to 312 .
  • method 300 proceeds to 314 .
  • model objects for example, parameters/inputs and outputs
  • the model objects can be transmitted to a data structure associated with another model simulation process, stored in a database, or stored in another data structure, etc. as long as a particular model simulation process has access to the model objects if necessary.
  • the model objects can be sent to other model simulation processes involved in the workflow to be used as inputs.
  • basin external geometry data is sent the stratigraphic modeling process to compute an accommodation map input (refer to FIG. 1A , data 110 for structural modeling 112 a and inputs 104 for stratigraphic modeling 112 b ). From 314 , method 300 proceeds to 316 .
  • an optimization process is executed to predict (according to the model simulation process results already performed) new values for the workflow parameters/inputs that reduces any mismatch between the model outputs and the measured data.
  • an optimal parameter set corresponds to the workflow with minimal local/global objective function values (the smallest overall mismatch values).
  • method 300 returns back to 302 to set the global objective function value to zero to indicate no current mismatch between model simulation processes and data to rerun the above-described process loop. Looping through the workflow (for example, the workflow described with respect to FIGS. 1A & 1B ) continues until an acceptable mismatch between the data and the simulation results is obtained (for example, based on a threshold (pre-set or dynamic) or other value).
  • FIG. 4 is a block diagram of an exemplary computer system 400 used to provide computational functionalities associated with described algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure, according to an implementation.
  • the illustrated computer 402 is intended to encompass any computing device such as a server, desktop computer, laptop/notebook computer, wireless data port, smart phone, personal data assistant (PDA), tablet computing device, one or more processors within these devices, or any other suitable processing device, including both physical or virtual instances (or both) of the computing device.
  • PDA personal data assistant
  • the computer 402 may comprise a computer that includes an input device, such as a keypad, keyboard, touch screen, or other device that can accept user information, and an output device that conveys information associated with the operation of the computer 402 , including digital data, visual, or audio information (or a combination of information), or a GUI.
  • an input device such as a keypad, keyboard, touch screen, or other device that can accept user information
  • an output device that conveys information associated with the operation of the computer 402 , including digital data, visual, or audio information (or a combination of information), or a GUI.
  • the computer 402 can serve in a role as a client, network component, a server, a database or other persistency, or any other component (or a combination of roles) of a computer system for performing the subject matter described in the instant disclosure.
  • the illustrated computer 402 is communicably coupled with a network 430 .
  • one or more components of the computer 402 may be configured to operate within environments, including cloud-computing-based, local, global, or other environment (or a combination of environments).
  • the computer 402 is an electronic computing device operable to receive, transmit, process, store, or manage data and information associated with the described subject matter. According to some implementations, the computer 402 may also include or be communicably coupled with an application server, e-mail server, web server, caching server, streaming data server, business intelligence (BI) server, or other server (or a combination of servers).
  • an application server e-mail server, web server, caching server, streaming data server, business intelligence (BI) server, or other server (or a combination of servers).
  • BI business intelligence
  • the computer 402 can receive requests over network 430 from a client application (for example, executing on another computer 402 ) and responding to the received requests by processing the said requests in an appropriate software application.
  • requests may also be sent to the computer 402 from internal users (for example, from a command console or by other appropriate access method), external or third-parties, other automated applications, as well as any other appropriate entities, individuals, systems, or computers.
  • Each of the components of the computer 402 can communicate using a system bus 403 .
  • any or all of the components of the computer 402 may interface with each other or the interface 404 (or a combination of both) over the system bus 403 using an application programming interface (API) 412 or a service layer 413 (or a combination of the API 412 and service layer 413 ).
  • the API 412 may include specifications for routines, data structures, and object classes.
  • the API 412 may be either computer-language independent or dependent and refer to a complete interface, a single function, or even a set of APIs.
  • the service layer 413 provides software services to the computer 402 or other components (whether or not illustrated) that are communicably coupled to the computer 402 .
  • the functionality of the computer 402 may be accessible for all service consumers using this service layer.
  • Software services, such as those provided by the service layer 413 provide reusable, defined business functionalities through a defined interface.
  • the interface may be software written in JAVA, C++, or other suitable language providing data in extensible markup language (XML) format or other suitable format.
  • XML extensible markup language
  • alternative implementations may illustrate the API 412 or the service layer 413 as stand-alone components in relation to other components of the computer 402 or other components (whether or not illustrated) that are communicably coupled to the computer 402 .
  • any or all parts of the API 412 or the service layer 413 may be implemented as child or sub-modules of another software module, enterprise application, or hardware module without departing from the scope of this disclosure.
  • the computer 402 includes an interface 404 . Although illustrated as a single interface 404 in FIG. 4 , two or more interfaces 404 may be used according to particular needs, desires, or particular implementations of the computer 402 .
  • the interface 404 is used by the computer 402 for communicating with other systems in a distributed environment that are connected to the network 430 (whether illustrated or not).
  • the interface 404 comprises logic encoded in software or hardware (or a combination of software and hardware) and operable to communicate with the network 430 . More specifically, the interface 404 may comprise software supporting one or more communication protocols associated with communications such that the network 430 or interface's hardware is operable to communicate physical signals within and outside of the illustrated computer 402 .
  • the computer 402 includes a processor 405 . Although illustrated as a single processor 405 in FIG. 4 , two or more processors may be used according to particular needs, desires, or particular implementations of the computer 402 . Generally, the processor 405 executes instructions and manipulates data to perform the operations of the computer 402 and any algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure.
  • the computer 402 also includes a memory 406 that holds data for the computer 402 or other components (or a combination of both) that can be connected to the network 430 (whether illustrated or not).
  • memory 406 can be a database storing data consistent with this disclosure. Although illustrated as a single memory 406 in FIG. 4 , two or more memories may be used according to particular needs, desires, or particular implementations of the computer 402 and the described functionality. While memory 406 is illustrated as an integral component of the computer 402 , in alternative implementations, memory 406 can be external to the computer 402 .
  • the application 407 is an algorithmic software engine providing functionality according to particular needs, desires, or particular implementations of the computer 402 , particularly with respect to functionality described in this disclosure.
  • application 407 can serve as one or more components, modules, applications, etc.
  • the application 407 may be implemented as multiple applications 407 on the computer 402 .
  • the application 407 can be external to the computer 402 .
  • computers 402 there may be any number of computers 402 associated with, or external to, a computer system containing computer 402 , each computer 402 communicating over network 430 .
  • client the term “client,” “user,” and other appropriate terminology may be used interchangeably as appropriate without departing from the scope of this disclosure.
  • this disclosure contemplates that many users may use one computer 402 , or that one user may use multiple computers 402 .
  • Described implementations of the subject matter can include one or more features, alone or in combination.
  • a computer-implemented method comprising: initializing a global objective function to an initial value; preparing input data for a particular model simulation process of a plurality of model simulation processes; executing the particular model simulation process using the prepared input data; computing a mismatch value by using a local function to compare an output of the particular model simulation process to corresponding input data for the particular model simulation process; sending model objects associated with the particular model simulation process to another model simulation process; and executing an optimization process to predict new values for input data to reduce the computed mismatch value.
  • a first feature combinable with any of the following features, wherein the global objective function is represented by:
  • a second feature combinable with any of the previous or following features, wherein the input data is obtained from interpretation of raw measured data or from an output of another model simulation process.
  • a third feature combinable with any of the previous or following features, wherein the local objective function is based on the Euclidian Norm and defined as:
  • a fifth feature combinable with any of the previous or following features, comprising updating the global objective function value with the computed mismatch value associated with the particular model simulation process.
  • a sixth feature combinable with any of the previous or following features, comprising determining whether there is an additional model simulation process to execute in the workflow.
  • a non-transitory, computer-readable medium storing one or more instructions executable by a computer to: initialize a global objective function to an initial value; prepare input data for a particular model simulation process of a plurality of model simulation processes; execute the particular model simulation process using the prepared input data; compute a mismatch value by using a local function to compare an output of the particular model simulation process to corresponding input data for the particular model simulation process; send model objects associated with the particular model simulation process to another model simulation process; and execute an optimization process to predict new values for input data to reduce the computed mismatch value.
  • a first feature combinable with any of the following features, wherein the global objective function is represented by:
  • a second feature combinable with any of the previous or following features, wherein the input data is obtained from interpretation of raw measured data or from an output of another model simulation process.
  • a third feature combinable with any of the previous or following features, wherein the local objective function is based on the Euclidian Norm and defined as:
  • a fifth feature combinable with any of the previous or following features, comprising one or more instructions to update the global objective function value with the computed mismatch value associated with the particular model simulation process.
  • a sixth feature combinable with any of the previous or following features, comprising one or more instructions to determine whether there is an additional model simulation process to execute in the workflow.
  • a computer-implemented system comprising: a computer memory; at least one hardware processor interoperably coupled with the computer memory and configured to: initialize a global objective function to an initial value; prepare input data for a particular model simulation process of a plurality of model simulation processes; execute the particular model simulation process using the prepared input data; compute a mismatch value by using a local function to compare an output of the particular model simulation process to corresponding input data for the particular model simulation process; send model objects associated with the particular model simulation process to another model simulation process; and execute an optimization process to predict new values for input data to reduce the computed mismatch value.
  • a first feature combinable with any of the following features, wherein the global objective function is represented by:
  • a second feature combinable with any of the previous or following features, wherein the input data is obtained from interpretation of raw measured data or from an output of another model simulation process.
  • a third feature combinable with any of the previous or following features, wherein the local objective function is based on the Euclidian Norm and defined as:
  • a fifth feature combinable with any of the previous or following features, configured to: update the global objective function value with the computed mismatch value associated with the particular model simulation process.
  • a sixth feature combinable with any of the previous or following features, configured to determine whether there is an additional model simulation process to execute in the workflow.
  • Implementations of the subject matter and the functional operations described in this specification can be implemented in digital electronic circuitry, in tangibly embodied computer software or firmware, in computer hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them.
  • Implementations of the subject matter described in this specification can be implemented as one or more computer programs, that is, one or more modules of computer program instructions encoded on a tangible, non-transitory, computer-readable computer-storage medium for execution by, or to control the operation of, data processing apparatus.
  • the program instructions can be encoded on an artificially generated propagated signal, for example, a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus.
  • the computer-storage medium can be a machine-readable storage device, a machine-readable storage substrate, a random or serial access memory device, or a combination of computer-storage mediums.
  • data processing apparatus refers to data processing hardware and encompass all kinds of apparatus, devices, and machines for processing data, including by way of example, a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can also be or further include special purpose logic circuitry, for example, a central processing unit (CPU), an FPGA (field programmable gate array), or an ASIC (application-specific integrated circuit).
  • the data processing apparatus or special purpose logic circuitry may be hardware- or software-based (or a combination of both hardware- and software-based).
  • the apparatus can optionally include code that creates an execution environment for computer programs, for example, code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of execution environments.
  • code that constitutes processor firmware for example, code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of execution environments.
  • the present disclosure contemplates the use of data processing apparatuses with or without conventional operating systems, for example LINUX, UNIX, WINDOWS, MAC OS, ANDROID, IOS or any other suitable conventional operating system.
  • a computer program which may also be referred to or described as a program, software, a software application, a module, a software module, a script, or code, can be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program may, but need not, correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data, for example, one or more scripts stored in a markup language document, in a single file dedicated to the program in question, or in multiple coordinated files, for example, files that store one or more modules, sub-programs, or portions of code.
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network. While portions of the programs illustrated in the various figures are shown as individual modules that implement the various features and functionality through various objects, methods, or other processes, the programs may instead include a number of sub-modules, third-party services, components, libraries, and such, as appropriate. Conversely, the features and functionality of various components can be combined into single components as appropriate.
  • the processes and logic flows described in this specification can be performed by one or more programmable computers executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, for example, a CPU, an FPGA, or an ASIC.
  • Computers suitable for the execution of a computer program can be based on general or special purpose microprocessors, both, or any other kind of CPU.
  • a CPU will receive instructions and data from a read-only memory (ROM) or a random access memory (RAM) or both.
  • the essential elements of a computer are a CPU for performing or executing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to, receive data from or transfer data to, or both, one or more mass storage devices for storing data, for example, magnetic, magneto-optical disks, or optical disks.
  • mass storage devices for storing data, for example, magnetic, magneto-optical disks, or optical disks.
  • a computer need not have such devices.
  • a computer can be embedded in another device, for example, a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a global positioning system (GPS) receiver, or a portable storage device, for example, a universal serial bus (USB) flash drive, to name just a few.
  • PDA personal digital assistant
  • GPS global positioning system
  • USB universal serial bus
  • Computer-readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, for example, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices; magnetic disks, for example, internal hard disks or removable disks; magneto-optical disks; and CD-ROM, DVD+/ ⁇ R, DVD-RAM, and DVD-ROM disks.
  • semiconductor memory devices for example, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory devices for example, internal hard disks or removable disks
  • magneto-optical disks magneto-optical disks
  • the memory may store various objects or data, including caches, classes, frameworks, applications, backup data, jobs, web pages, web page templates, database tables, repositories storing dynamic information, and any other appropriate information including any parameters, variables, algorithms, instructions, rules, constraints, or references thereto. Additionally, the memory may include any other appropriate data, such as logs, policies, security or access data, reporting files, as well as others.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
  • implementations of the subject matter described in this specification can be implemented on a computer having a display device, for example, a CRT (cathode ray tube), LCD (liquid crystal display), LED (Light Emitting Diode), or plasma monitor, for displaying information to the user and a keyboard and a pointing device, for example, a mouse, trackball, or trackpad by which the user can provide input to the computer.
  • a display device for example, a CRT (cathode ray tube), LCD (liquid crystal display), LED (Light Emitting Diode), or plasma monitor
  • a keyboard and a pointing device for example, a mouse, trackball, or trackpad by which the user can provide input to the computer.
  • Input may also be provided to the computer using a touchscreen, such as a tablet computer surface with pressure sensitivity, a multi-touch screen using capacitive or electric sensing, or other type of touchscreen.
  • a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's client device in response to requests received from the web browser.
  • GUI graphical user interface
  • GUI may be used in the singular or the plural to describe one or more graphical user interfaces and each of the displays of a particular graphical user interface. Therefore, a GUI may represent any graphical user interface, including but not limited to, a web browser, a touch screen, or a command line interface (CLI) that processes information and efficiently presents the information results to the user.
  • a GUI may include a plurality of user interface (UI) elements, some or all associated with a web browser, such as interactive fields, pull-down lists, and buttons operable by the business suite user. These and other UI elements may be related to or represent the functions of the web browser.
  • UI user interface
  • Implementations of the subject matter described in this specification can be implemented in a computing system that includes a back-end component, for example, as a data server, or that includes a middleware component, for example, an application server, or that includes a front-end component, for example, a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back-end, middleware, or front-end components.
  • the components of the system can be interconnected by any form or medium of wireline or wireless digital data communication (or a combination of data communication), for example, a communication network.
  • Examples of communication networks include a local area network (LAN), a radio access network (RAN), a metropolitan area network (MAN), a wide area network (WAN), Worldwide Interoperability for Microwave Access (WIMAX), a wireless local area network (WLAN) using, for example, 802.11 a/b/g/n or 802.20 (or a combination of 802.11x and 802.20 or other protocols consistent with this disclosure), all or a portion of the Internet, or any other communication system or systems at one or more locations (or a combination of communication networks).
  • the network may communicate with, for example, Internet Protocol (IP) packets, Frame Relay frames, Asynchronous Transfer Mode (ATM) cells, voice, video, data, or other suitable information (or a combination of communication types) between network addresses.
  • IP Internet Protocol
  • ATM Asynchronous Transfer Mode
  • the computing system can include clients and servers.
  • a client and server are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
  • any or all of the components of the computing system may interface with each other or the interface using an application programming interface (API) or a service layer (or a combination of API and service layer).
  • API application programming interface
  • the API may include specifications for routines, data structures, and object classes.
  • the API may be either computer language independent or dependent and refer to a complete interface, a single function, or even a set of APIs.
  • the service layer provides software services to the computing system. The functionality of the various components of the computing system may be accessible for all service consumers using this service layer.
  • Software services provide reusable, defined business functionalities through a defined interface.
  • the interface may be software written in JAVA, C++, or other suitable language providing data in extensible markup language (XML) format or other suitable format.
  • the API or service layer (or a combination of the API and the service layer) may be an integral or a stand-alone component in relation to other components of the computing system.
  • any or all parts of the service layer may be implemented as child or sub-modules of another software module, enterprise application, or hardware module without departing from the scope of this disclosure.
  • any claimed implementation below is considered to be applicable to at least a computer-implemented method; a non-transitory, computer-readable medium storing computer-readable instructions to perform the computer-implemented method; and a computer system comprising a computer memory interoperably coupled with a hardware processor configured to perform the computer-implemented method or the instructions stored on the non-transitory, computer-readable medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Remote Sensing (AREA)
  • Computational Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Geology (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)
US15/162,205 2016-05-23 2016-05-23 Iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments Active 2038-01-15 US10713398B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/162,205 US10713398B2 (en) 2016-05-23 2016-05-23 Iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments
PCT/US2017/020858 WO2017204879A1 (en) 2016-05-23 2017-03-06 An iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments
EP17712315.5A EP3465488A1 (en) 2016-05-23 2017-03-06 An iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments
CA3024411A CA3024411C (en) 2016-05-23 2017-03-06 An iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments
CN201780041194.1A CN109478208B (zh) 2016-05-23 2017-03-06 用于石油勘探和生产评估的综合数据和过程集成的迭代且可重复的工作流程
SA518400444A SA518400444B1 (ar) 2016-05-23 2018-11-15 تدفق عمل متكرر وقابل للتكرار من أجل تكامل شامل لبيانات وعمليات التنقيب عن البترول وتقييمات الإنتاج

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/162,205 US10713398B2 (en) 2016-05-23 2016-05-23 Iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments

Publications (2)

Publication Number Publication Date
US20170337302A1 US20170337302A1 (en) 2017-11-23
US10713398B2 true US10713398B2 (en) 2020-07-14

Family

ID=58361119

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/162,205 Active 2038-01-15 US10713398B2 (en) 2016-05-23 2016-05-23 Iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments

Country Status (6)

Country Link
US (1) US10713398B2 (zh)
EP (1) EP3465488A1 (zh)
CN (1) CN109478208B (zh)
CA (1) CA3024411C (zh)
SA (1) SA518400444B1 (zh)
WO (1) WO2017204879A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287548B2 (en) * 2017-11-29 2022-03-29 Landmark Graphics Corporation Geological sediment provenance analysis and display system
US20230161062A1 (en) * 2021-11-19 2023-05-25 Saudi Arabian Oil Company Multimodal approach to target stratigraphic plays through seismic sequence stratigraphy, rock physics, seismic inversion and machine learning
US11867862B2 (en) 2021-04-23 2024-01-09 Saudi Arabian Oil Company Method for validating rock formations compaction parameters using geomechanical modeling

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11487915B2 (en) * 2015-06-29 2022-11-01 Onesubsea Ip Uk Limited Integrated modeling using multiple subsurface models
AU2016431618A1 (en) * 2016-12-09 2019-04-11 Landmark Graphics Corporation Wavelet estimation for four-dimensional characterization of subsurface properties based on dynamic simulation
WO2018118335A1 (en) * 2016-12-19 2018-06-28 Conocophillips Company Subsurface modeler workflow and tool
US11131187B2 (en) 2017-08-14 2021-09-28 Saudi Arabian Oil Company Identifying hydrocarbon production zones
AU2017428008A1 (en) * 2017-08-18 2019-12-05 Landmark Graphics Corporation Hybrid optimization of fault detection and interpretation
US11215734B2 (en) * 2017-11-29 2022-01-04 Landmark Graphics Corporation Geological source-to-sink analysis and display system
JP7029990B2 (ja) * 2018-03-22 2022-03-04 日本電信電話株式会社 最適解探索装置、最適解探索方法及びプログラム
US11506804B2 (en) * 2018-05-31 2022-11-22 Saudi Arabian Oil Company Inverse stratigraphic modeling using a hybrid linear and nonlinear algorithm
US11269098B2 (en) * 2018-08-31 2022-03-08 Halliburton Energy Services, Inc. Sparse deconvolution and inversion for formation properties
US10914158B2 (en) 2018-09-07 2021-02-09 Saudi Arabian Oil Company Methods and systems for hydrocarbon resources exploration assessment
CN109814513B (zh) * 2019-03-20 2020-12-29 广东辛孚科技有限公司 一种基于数据模型的催化裂化装置优化方法
US11379633B2 (en) * 2019-06-05 2022-07-05 X Development Llc Cascading models for optimization of fabrication and design of a physical device
US11754746B2 (en) * 2020-02-21 2023-09-12 Saudi Arabian Oil Company Systems and methods for creating 4D guided history matched models
CN113093302B (zh) * 2020-03-04 2022-04-15 中国海洋石油集团有限公司 复杂断裂带多层系油气立体充注运移分析方法
US11846741B2 (en) 2020-04-06 2023-12-19 Saudi Arabian Oil Company Systems and methods for evaluating a simulation model of a hydrocarbon field
US11815650B2 (en) 2020-04-09 2023-11-14 Saudi Arabian Oil Company Optimization of well-planning process for identifying hydrocarbon reserves using an integrated multi-dimensional geological model
US11486230B2 (en) 2020-04-09 2022-11-01 Saudi Arabian Oil Company Allocating resources for implementing a well-planning process
US11693140B2 (en) 2020-04-09 2023-07-04 Saudi Arabian Oil Company Identifying hydrocarbon reserves of a subterranean region using a reservoir earth model that models characteristics of the region
US11493654B2 (en) * 2020-05-11 2022-11-08 Saudi Arabian Oil Company Construction of a high-resolution advanced 3D transient model with multiple wells by integrating pressure transient data into static geological model
US11867604B2 (en) 2020-05-11 2024-01-09 Saudi Arabian Oil Company Real-time estimation of formation hydrocarbon mobility from mud gas data
US11512580B2 (en) * 2020-05-11 2022-11-29 Saudi Arabian Oil Company Real-time estimation of reservoir porosity from mud gas data
US11352873B2 (en) * 2020-05-11 2022-06-07 Saudi Arabian Oil Company System and method to identify water management candidates at asset level
EP4217905A1 (en) * 2020-09-23 2023-08-02 Services Pétroliers Schlumberger Machine-learning calibration for petroleum system modeling
CN112206553B (zh) * 2020-09-24 2022-06-03 天津大学 一种评估砂滤中聚苯乙烯微球与腐殖酸竞争吸附的方法
CN114446397A (zh) * 2020-10-19 2022-05-06 中国石油化工股份有限公司 存储器、炼化过程流程分段模拟和优化方法、装置和设备
US11668847B2 (en) 2021-01-04 2023-06-06 Saudi Arabian Oil Company Generating synthetic geological formation images based on rock fragment images
US20220245534A1 (en) * 2021-02-01 2022-08-04 Chevron U.S.A. Inc. System and method for data analytics with multi-stage feature selection
WO2022221179A1 (en) * 2021-04-12 2022-10-20 Board Of Regents, The University Of Texas System A starting model independent full waveform inversion system, method, and computer-program product for subsurface velocity estimation
CN113382412B (zh) * 2021-05-12 2022-12-27 重庆邮电大学 超密集异构网络中考虑终端安全的网络选择方法
CN113343391B (zh) * 2021-07-02 2024-01-09 华电电力科学研究院有限公司 一种刮板取料系统控制方法、装置及设备
US11808909B2 (en) 2021-08-20 2023-11-07 Saudi Arabian Oil Company System and method for predicting fluid type and thermal maturity
EP4177644A1 (en) * 2021-11-05 2023-05-10 MATRIX JVCO LTD trading as AIQ Method and system for determining geomechanical parameters of a well
CN115019897B (zh) * 2022-06-27 2024-06-04 重庆工商大学 一种基于遗传算法的油类氧化反应动力学模型确定方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480790B1 (en) * 1999-10-29 2002-11-12 Exxonmobil Upstream Research Company Process for constructing three-dimensional geologic models having adjustable geologic interfaces
US20020177955A1 (en) 2000-09-28 2002-11-28 Younes Jalali Completions architecture
US6980940B1 (en) 2000-02-22 2005-12-27 Schlumberger Technology Corp. Intergrated reservoir optimization
US20070016389A1 (en) 2005-06-24 2007-01-18 Cetin Ozgen Method and system for accelerating and improving the history matching of a reservoir simulation model
US20120253770A1 (en) * 2010-02-12 2012-10-04 David Stern Method and System For Creating History Matched Simulation Models
US8335677B2 (en) 2006-09-01 2012-12-18 Chevron U.S.A. Inc. Method for history matching and uncertainty quantification assisted by global optimization techniques utilizing proxies
US8676557B2 (en) 2009-08-26 2014-03-18 Ifp Method of developing a petroleum reservoir from optimized history matching
US8793111B2 (en) 2009-01-20 2014-07-29 Schlumberger Technology Corporation Automated field development planning
US20140214387A1 (en) * 2013-01-25 2014-07-31 Schlumberger Technology Corporation Constrained optimization for well placement planning
US8849623B2 (en) 2008-12-16 2014-09-30 Exxonmobil Upstream Research Company Systems and methods for reservoir development and management optimization
US20140303951A1 (en) * 2013-04-09 2014-10-09 Schlumberger Technology Corporation Integrated system for production design assistance
US20150081265A1 (en) * 2013-09-13 2015-03-19 Schlumberger Technology Corporation Combining downhole fluid analysis and petroleum systems modeling
US20150153476A1 (en) * 2012-01-12 2015-06-04 Schlumberger Technology Corporation Method for constrained history matching coupled with optimization
US20170091636A1 (en) * 2015-09-25 2017-03-30 Schlumberger Technology Corporation Method for automated workflow and best practices extraction from captured user interactions for oilfield applications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8223587B2 (en) * 2010-03-29 2012-07-17 Exxonmobil Upstream Research Company Full wavefield inversion using time varying filters

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480790B1 (en) * 1999-10-29 2002-11-12 Exxonmobil Upstream Research Company Process for constructing three-dimensional geologic models having adjustable geologic interfaces
US6980940B1 (en) 2000-02-22 2005-12-27 Schlumberger Technology Corp. Intergrated reservoir optimization
US20020177955A1 (en) 2000-09-28 2002-11-28 Younes Jalali Completions architecture
US20070016389A1 (en) 2005-06-24 2007-01-18 Cetin Ozgen Method and system for accelerating and improving the history matching of a reservoir simulation model
US8335677B2 (en) 2006-09-01 2012-12-18 Chevron U.S.A. Inc. Method for history matching and uncertainty quantification assisted by global optimization techniques utilizing proxies
US8849623B2 (en) 2008-12-16 2014-09-30 Exxonmobil Upstream Research Company Systems and methods for reservoir development and management optimization
US8793111B2 (en) 2009-01-20 2014-07-29 Schlumberger Technology Corporation Automated field development planning
US8676557B2 (en) 2009-08-26 2014-03-18 Ifp Method of developing a petroleum reservoir from optimized history matching
US20120253770A1 (en) * 2010-02-12 2012-10-04 David Stern Method and System For Creating History Matched Simulation Models
US20150153476A1 (en) * 2012-01-12 2015-06-04 Schlumberger Technology Corporation Method for constrained history matching coupled with optimization
US20140214387A1 (en) * 2013-01-25 2014-07-31 Schlumberger Technology Corporation Constrained optimization for well placement planning
US20140303951A1 (en) * 2013-04-09 2014-10-09 Schlumberger Technology Corporation Integrated system for production design assistance
US20150081265A1 (en) * 2013-09-13 2015-03-19 Schlumberger Technology Corporation Combining downhole fluid analysis and petroleum systems modeling
US20170091636A1 (en) * 2015-09-25 2017-03-30 Schlumberger Technology Corporation Method for automated workflow and best practices extraction from captured user interactions for oilfield applications

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
Abu-Ali et al., "Paleozoic petroleum systems of Saudi Arabia: a basin modeling approach," Geo Arabia, vol. 10, No. 3, published 2005; pp. 131-168.
Caeiro et al., "Geostatistical Modeling of Complex Deltaic Reservoirs Integrating Production Data through Optimized History Matching," SPE 177813, Abu Dhabi International Petroleum Exhibition and Conference, Nov. 12, 2015, Abu Dhabi, UAE; 14 pages.
Cullick et al., "Improved and more-rapid history matching with a nonlinear proxy and global optimization," SPE 101933, SPE Annual Technical Conference and Exhibition, vol. 2, Sep. 24, 2006, San Antonio, TX; pp. 728-740.
European Communication Pursuant to Rules 161(1) and 162 EPC issued in European Application No. 17712315.5 dated Jan. 8, 2019, 3 pages.
GCC Examination Report in GCC Appin. No. GC 2017-38334, dated Mar. 26, 2020, 4 pages.
Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning," Addison-Wesley Longman Publishing Co., Inc., Boston, MA, published 1989; Chapter 1, pp. 1-25.
Gulf Cooperation Council Examination Report issued in GCC Application No. GC 2017-33222 dated Apr. 21, 2019, 4 pages.
Gulf Cooperation Council Examination Report issued in GCC Application No. GC 2017-33222 dated Dec. 20, 2018, 4 pages.
Gulf Cooperation Council Examination Report issued in GCC Application No. GC2017-33222 dated Sep. 25, 2019, 3 pages.
International Search Report and Written Opinion issued in International Application No. PCT/US2017/020858 dated Jun. 26, 2017.
Jichao Yin et al, A hierarchical streamline-assisted history matching approach with global and local parameter updates Journal of Petroleum Science and Engineering 80 (2012) 116-130 (Year: 2012). *
Manish Choudhary and Tapan Mukerji Generation of Multiple History Matched Models Using Optimization Technique 25th Annual SCRF Meeting (Year: 2012). *
Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields J.C. Li, B. Gong & H.G. Wang pp. 1378-1400 | Accepted Oct. 13, 2015, Published online: Dec. 10, 2015 Journal Engineering Optimization vol. 48, 2016-Issue 8 (Year: 2015). *
Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields J.C. Li, B. Gong & H.G. Wang pp. 1378-1400 | Accepted Oct. 13, 2015, Published online: Dec. 10, 2015 Journal Engineering Optimization vol. 48, 2016—Issue 8 (Year: 2015). *
Schepers et al., "Optimized Reservoir History Matching Simulation of Canyon Formation, SACROC Unit, Permian Basin," Topical Report, Department of Energy, Nov. 9, 2007; 79 pages.
Sivanandam et al., "Introduction to Genetic Algorithms," Springer-Verlag Berlin Heidelberg, published 2008; Chapter 2, pp. 15-36.
Tarantola, "Inverse Problem Theory and Methods for Model Parameter Estimation," Society for the Industrial and Applied Mathematics (SIAM), published 2005; Chapter 3, pp. 57-80.
Tissot et al., "Petroleum Formation and Occurrence," Springer-Verlag Berlin Heidelberg, published 1984, 2nd edition; Chapter 26, pp. 1-33.
Van Laarhoven et al., "Simulated Annealing: Theory and Applications," Mathematics and Its Applications (Book 37), Springer Netherlands, 1987 edition; Chapters 1-2, pp. 1-15.
Yin et al., "A hierarchical streamline-assisted history matching approach with global and local parameter updates," Journal of Petroleum Science and Engineering, vol. 80, No. 1, Dec. 2011; pp. 116-130.
Zhang et al., "Evolutionary Computation and Its Applications in Neural and Fuzzy Systems," Applied Computational Intelligence and Soft Computing, vol. 2011, No. 7, Jan. 2011; 20 pages.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287548B2 (en) * 2017-11-29 2022-03-29 Landmark Graphics Corporation Geological sediment provenance analysis and display system
US11867862B2 (en) 2021-04-23 2024-01-09 Saudi Arabian Oil Company Method for validating rock formations compaction parameters using geomechanical modeling
US20230161062A1 (en) * 2021-11-19 2023-05-25 Saudi Arabian Oil Company Multimodal approach to target stratigraphic plays through seismic sequence stratigraphy, rock physics, seismic inversion and machine learning
US11852768B2 (en) * 2021-11-19 2023-12-26 Saudi Arabian Oil Company Multimodal approach to target stratigraphic plays through seismic sequence stratigraphy, rock physics, seismic inversion and machine learning

Also Published As

Publication number Publication date
CN109478208A (zh) 2019-03-15
WO2017204879A1 (en) 2017-11-30
SA518400444B1 (ar) 2022-03-16
CA3024411A1 (en) 2017-11-30
CA3024411C (en) 2023-09-26
CN109478208B (zh) 2023-09-19
US20170337302A1 (en) 2017-11-23
EP3465488A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US10713398B2 (en) Iterative and repeatable workflow for comprehensive data and processes integration for petroleum exploration and production assessments
US20210264262A1 (en) Physics-constrained deep learning joint inversion
US11693140B2 (en) Identifying hydrocarbon reserves of a subterranean region using a reservoir earth model that models characteristics of the region
US10088596B2 (en) Meshless representation of a geologic environment
EP3298437B1 (en) Inversion for tectonic stress
US20130218538A1 (en) Simulation model optimization
EP3938815A1 (en) Method for dynamic calibration and simultaneous closed-loop inversion of simulation models of fractured reservoirs
US9910173B2 (en) Saturation end-point adjustment
US11815650B2 (en) Optimization of well-planning process for identifying hydrocarbon reserves using an integrated multi-dimensional geological model
US11346833B2 (en) Reservoir fluid characterization system
EP4133158A1 (en) Allocating resources for implementing a well-planning process
Liu et al. Asymmetric propagation mechanism of hydraulic fracture networks in continental reservoirs
EP4028800A1 (en) An integrated geomechanics model for predicting hydrocarbon and migration pathways
WO2022076301A1 (en) System and method to identify high-impact discrete fracture model realizations for accelerated calibration of reservoir simulation models
US20160202389A1 (en) H-matrix preconditioner
Maleki et al. Quantitative integration of 3D and 4D seismic impedance into reservoir simulation model updating in the Norne Field
WO2016187238A1 (en) Auto-validating earth interpretation and modeling system
Pradhan et al. Approximate Bayesian inference of seismic velocity and pore-pressure uncertainty with basin modeling, rock physics, and imaging constraints
US20230125277A1 (en) Integration of upholes with inversion-based velocity modeling
US20240036225A1 (en) Thermal conductivity mapping from rock physics guided seismic inversion
US20240102384A1 (en) Determining a three-dimensional fracability index for identifying fracable areas in a subsurface region
Tolstukhin et al. Geologically consistent seismic history matching workflow for Ekofisk chalk reservoir
Dubey et al. Petroleum System Based Integrated Exploration and Prospect Generation
Choudhary Generation of Multiple History Match Models Using Multistart Optimization
Sudan et al. Application of an Integrated Approach to Preserve Geologic and Seismic Consistency in a History Matching Workflow of a North Sea Chalk Reservoir

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAUDI ARABIAN OIL COMPANY, SAUDI ARABIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEZGHANI, MOKHLES MUSTAPHA;NAJJAR, NAZIH F.;ABUALI, MAHDI;AND OTHERS;SIGNING DATES FROM 20160518 TO 20160522;REEL/FRAME:039655/0736

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4