US10712431B1 - Systems and methods for refractive beam-steering - Google Patents
Systems and methods for refractive beam-steering Download PDFInfo
- Publication number
- US10712431B1 US10712431B1 US16/725,419 US201916725419A US10712431B1 US 10712431 B1 US10712431 B1 US 10712431B1 US 201916725419 A US201916725419 A US 201916725419A US 10712431 B1 US10712431 B1 US 10712431B1
- Authority
- US
- United States
- Prior art keywords
- polygon deflector
- plane
- polygon
- deflector
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title description 33
- 239000000835 fiber Substances 0.000 claims description 37
- 238000012545 processing Methods 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 description 68
- 238000010586 diagram Methods 0.000 description 28
- 238000004891 communication Methods 0.000 description 24
- 238000001228 spectrum Methods 0.000 description 12
- 230000003534 oscillatory effect Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 230000035559 beat frequency Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000001427 coherent effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000003292 diminished effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000010329 laser etching Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000001343 mnemonic effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4818—Constructional features, e.g. arrangements of optical elements using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/12—Scanning systems using multifaceted mirrors
- G02B26/124—Details of the optical system between the light source and the polygonal mirror
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
- G01S17/26—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
Definitions
- LIDAR Optical detection of range using lasers, often referenced by a mnemonic, LIDAR, for light detection and ranging, also sometimes called laser RADAR, is used for a variety of applications, from altimetry, to imaging, to collision avoidance.
- LIDAR provides finer scale range resolution with smaller beam sizes than conventional microwave ranging systems, such as radio-wave detection and ranging (RADAR).
- the LIDAR apparatus can include a polygon deflector that includes a plurality of facets.
- the LIDAR apparatus can include a motor rotatably coupled to the polygon deflector.
- the motor is configured to rotate the polygon deflector about a first axis orthogonal to a first plane.
- the LIDAR apparatus can include an optic positioned within an interior of the polygon deflector.
- the optic is configured to collimate a first beam to be incident on a particular facet of the plurality of facet.
- the particular facet of the plurality of facets is configured to refract the first beam in the first plane between a first angle and a second angle as the polygon deflector rotates about the first axis to output a second beam.
- the LIDAR system can include a polygon deflector that includes a plurality of facets.
- the LIDAR system can include a detector array.
- the LIDAR system can include a processing circuit configured to cause the polygon deflector to rotate about a first axis at a rotational frequency, cause a laser source to transmit a first beam in an interior of the polygon deflector so that the polygon deflector refracts the first beam in a first plane between a first angle and a second angle, the first plane orthogonal to the first axis, receive a signal from the detector array based on a second beam received at the detector array from an object responsive to the first beam, and determine a range to the object based on the signal received from the detector array.
- the LIDAR apparatus can include a polygon deflector that includes a plurality of facets.
- the LIDAR apparatus can include a motor rotatably coupled to the polygon deflector.
- the motor is configured to rotate the polygon deflector about a first axis orthogonal to a first plane.
- the LIDAR apparatus can include an optic positioned within an interior of the polygon deflector.
- the optic is configured to collimate a first beam to be incident on a particular facet of the plurality of facet.
- the particular facet of the plurality of facets is configured to refract the first beam in the first plane between a first angle and a second angle as the polygon deflector rotates about the first axis to output a second beam.
- At least one other aspect relates to a method.
- the method can include rotating about a first axis, by a motor, a polygon deflector comprising a plurality of facets, shaping, by an optic in an interior of the polygon deflector, a beam incident on one of the facets, and refracting, by each facet of the plurality of facets, the beam in a first plane orthogonal to the first axis between a first angle and a second angle as the polygon deflector is rotated about the first axis.
- FIG. 1A is a schematic graph that illustrates the example transmitted signal of a series of binary digits along with returned optical signals for measurement of range, according to an implementation
- FIG. 1B is a schematic graph that illustrates an example spectrum of the reference signal and an example spectrum of a Doppler shifted return signal, according to an implementation
- FIG. 1C is a schematic graph that illustrates an example cross-spectrum of phase components of a Doppler shifted return signal, according to an implementation
- FIG. 1D is a set of graphs that illustrates an example optical chirp measurement of range, according to an implementation
- FIG. 1E is a graph using a symmetric LO signal, and shows the return signal in this frequency time plot as a dashed line when there is no Doppler shift, according to an implementation
- FIG. 1F is a graph similar to FIG. 1E , using a symmetric LO signal, and shows the return signal in this frequency time plot as a dashed line when there is a non zero Doppler shift, according to an implementation;
- FIG. 2A is a block diagram that illustrates example components of a high resolution (hi res) LIDAR system, according to an implementation
- FIG. 2B is a block diagram that illustrates a saw tooth scan pattern for a hi-res Doppler system, used in some implementations;
- FIG. 2C is an image that illustrates an example speed point cloud produced by a hi-res Doppler LIDAR system, according to an implementation
- FIG. 2D is a block diagram that illustrates example components of the scanning optics of the system of FIG. 2A , according to an implementation
- FIG. 2E is a block diagram that illustrates an example system that includes at least one hi-res LIDAR system mounted on a vehicle, according to an implementation
- FIG. 3 is a block diagram that illustrates an example of a conventional assembly including a polygon reflector rotated by a motor to reflect an incident beam over a field of view;
- FIG. 4 is a block diagram that illustrates an example of an assembly including a polygon deflector rotated by a motor to refract an incident beam from an interior of the deflector, according to an implementation
- FIG. 5A is a schematic diagram that illustrates an example of a cross-sectional side view of an assembly including a polygon deflector rotated by a motor to refract an incident beam from an interior of the deflector, according to an implementation;
- FIG. 5B is a schematic diagram that illustrates an example of a cross-sectional top view of the polygon deflector of FIG. 5A , according to an implementation
- FIG. 5C is a schematic diagram that illustrates an example of a side view of a planar fiber array of the assembly of FIG. 5A , according to an implementation
- FIG. 5D is a schematic diagram that illustrates an example of a side view of a lens assembly of the assembly of FIG. 5A , according to an implementation
- FIG. 5E is a schematic diagram that illustrates an example of the polygon deflector of FIG. 5B in two rotation positions, according to an implementation
- FIG. 5F is a schematic diagram that illustrates an example of a partial cross-sectional side view of the polygon deflector of FIG. 5A , according to an implementation
- FIG. 5G is a schematic diagram that illustrates an example of a cut away cross-sectional view of a toric lens used in the assembly of FIG. 5A , according to an implementation
- FIG. 6 is a flow chart that illustrates an example method for optimizing a scan pattern of a beam in a first plane between a first angle and a second angle, according to an implementation
- FIG. 7 is a block diagram that illustrates a computer system, according to an implementation.
- FIG. 8 illustrates a chip set, according to an implementation.
- a method and apparatus and system and computer-readable medium are described for scanning of a LIDAR system. Some implementations are described below in the context of a hi-res LIDAR system. An implementation is described in the context of optimization of scanning a beam by a unidirectional scan element of a LIDAR system, including both Doppler and non-Doppler LIDAR systems. An implementation is described in the context of optimization of scanning a beam by a polygon deflector, such as a polygon deflector that is configured to deflect or refract a beam incident on a facet of the polygon deflector from an interior of the polygon deflector. A polygon deflector can be polygon shaped element with a number of facets based on the polygon structure.
- Each facet is configured to deflect (e.g. reflect an incident light beam on the facet or refract an incident light beam from within an interior of the polygon shaped element) over a field of view as the polygon deflector is rotated about an axis.
- the polygon deflector repeatedly scans the beam over the field of view as the beam transitions over a facet break between adjacent facets during the rotation of the polygon deflector.
- Some scanning systems utilize polygon reflectors which are regularly shaped reflective objects that spin relative to a static incident light beam.
- the reflective facet causes a repeating reflection of light in a direction over a field of view.
- the incident light beam on the reflective facet inherently limits the field of view since the field of view cannot include angles encompassing the incident light beam that is coplanar with the reflective facet.
- Useful return beam data cannot be attained if the field of view extended over angles that encompassed the incident light beam and thus the field of view is inherently limited by the incident light beam.
- This can also inherently limit the duty cycle or ratio of time when the beam is scanned over the field of view to a total operation time of the polygon reflectors.
- Various systems and methods in accordance with the present disclosure can use a refractive beam-steering assembly and method that utilizes a polygon deflector that deflects (e.g. refracts) an incident light beam over a field of view rather than reflecting the incident light beam over a field of view.
- the polygon deflector can enhance both the field of view and the duty cycle since the incident light beam is directed from within an interior of the deflector and thus does not inherently limit the field of view.
- a LIDAR apparatus can scan a beam in a first plane between a first angle and a second angle.
- the apparatus includes a polygon deflector comprising a plurality of facets and a motor rotatably coupled to the polygon deflector and configured to rotate the polygon deflector about a first axis orthogonal to the first plane.
- the apparatus also includes an optic positioned within an interior of the polygon deflector to collimate the beam incident on the facet from the interior of the polygon deflector. Each facet is configured to refract the beam in the first plane between the first angle and the second angle as the polygon deflector is rotated about the first axis.
- the shortest interval of constant phase is a parameter of the encoding called pulse duration ⁇ and is typically the duration of several periods of the lowest frequency in the band.
- the reciprocal, 1/ ⁇ , is baud rate, where each baud indicates a symbol.
- the number N of such constant phase pulses during the time of the transmitted signal is the number N of symbols and represents the length of the encoding.
- phase values In binary encoding, there are two phase values and the phase of the shortest interval can be considered a 0 for one value and a 1 for the other, thus the symbol is one bit, and the baud rate is also called the bit rate.
- each symbol is two bits and the bit rate is twice the baud rate.
- Phase-shift keying refers to a digital modulation scheme that conveys data by changing (modulating) the phase of a reference signal (the carrier wave). The modulation is impressed by varying the sine and cosine inputs at a precise time.
- PSK is widely used for wireless local area networks (LANs), RF identification (RFID) and Bluetooth communication.
- LANs wireless local area networks
- RFID RFID
- Bluetooth communication Alternatively, instead of operating with respect to a constant reference wave, the transmission can operate with respect to itself. Changes in phase of a single transmitted waveform can be considered the symbol.
- the demodulator determines the changes in the phase of the received signal rather than the phase (relative to a reference wave) itself.
- DPSK differential phase-shift keying
- Optical detection of range can be accomplished with several different techniques, including direct ranging based on round trip travel time of an optical pulse to an object, and chirped detection based on a frequency difference between a transmitted chirped optical signal and a returned signal scattered from an object, and phase-encoded detection based on a sequence of single frequency phase changes that are distinguishable from natural signals.
- direct long range LIDAR systems may use short pulse lasers with low pulse repetition rate and extremely high pulse peak power.
- the high pulse power can lead to rapid degradation of optical components.
- Chirped and phase-encoded LIDAR systems may use long optical pulses with relatively low peak optical power. In this configuration, the range accuracy can increase with the chirp bandwidth or length and bandwidth of the phase codes rather than the pulse duration, and therefore excellent range accuracy can still be obtained.
- Useful optical bandwidths have been achieved using wideband radio frequency (RF) electrical signals to modulate an optical carrier.
- RF radio frequency
- using the same modulated optical carrier as a reference signal that is combined with the returned signal at an optical detector can produce in the resulting electrical signal a relatively low beat frequency in the RF band that is proportional to the difference in frequencies or phases between the references and returned optical signals.
- This kind of beat frequency detection of frequency differences at a detector is called heterodyne detection. It has several advantages known in the art, such as the advantage of using RF components of ready and inexpensive availability.
- Hi-res range-Doppler LIDAR systems can use an arrangement of optical components and coherent processing to detect Doppler shifts in returned signals to provide improved range and relative signed speed on a vector between the LIDAR system and each external object.
- these improvements provide range, with or without target speed, in a pencil thin laser beam of proper frequency or phase content.
- a pencil thin laser beam of proper frequency or phase content When such beams are swept over a scene, information about the location and speed of surrounding objects can be obtained. This information can be used in control systems for autonomous vehicles, such as self driving, or driver assisted, automobiles.
- the carrier frequency is an optical frequency fc and a RF f 0 is modulated onto the optical carrier.
- the number N and duration ⁇ of symbols are selected to achieve the desired range accuracy and resolution.
- the pattern of symbols is selected to be distinguishable from other sources of coded signals and noise.
- a strong correlation between the transmitted and returned signal can be a strong indication of a reflected or backscattered signal.
- the transmitted signal is made up of one or more blocks of symbols, where each block is sufficiently long to provide strong correlation with a reflected or backscattered return even in the presence of noise.
- the transmitted signal can be made up of M blocks of N symbols per block, where M and N are non-negative integers.
- FIG. 1A is a schematic graph 120 that illustrates the example transmitted signal as a series of binary digits along with returned optical signals for measurement of range, according to an implementation.
- the horizontal axis 122 indicates time in arbitrary units after a start time at zero.
- the vertical axis 124 a indicates amplitude of an optical transmitted signal at frequency fc+f 0 in arbitrary units relative to zero.
- the vertical axis 124 b indicates amplitude of an optical returned signal at frequency fc+f 0 in arbitrary units relative to zero, and is offset from axis 124 a to separate traces.
- Trace 125 represents a transmitted signal of M*N binary symbols, with phase changes as shown in FIG.
- Trace 126 represents an idealized (noiseless) return signal that is scattered from an object that is not moving (and thus the return is not Doppler shifted). The amplitude is reduced, but the code 00011010 is recognizable.
- Trace 127 represents an idealized (noiseless) return signal that is scattered from an object that is moving and is therefore Doppler shifted. The return is not at the proper optical frequency fc+f 0 and is not well detected in the expected frequency band, so the amplitude is diminished.
- f ′ ( c + v o ) ( c + v s ) ⁇ f ( 1 )
- c the speed of light in the medium
- v 0 the velocity of the observer
- v s the velocity of the source along the vector connecting source to receiver.
- phase coded ranging the arrival of the phase coded reflection can be detected in the return by cross correlating the transmitted signal or other reference signal with the returned signal, which can be implemented by cross correlating the code for a RF signal with an electrical signal from an optical detector using heterodyne detection and thus down-mixing back to the RF band.
- Cross correlation for any one lag can be computed by convolving the two traces, e.g., multiplying corresponding values in the two traces and summing over all points in the trace, and then repeating for each time lag.
- the cross correlation can be accomplished by a multiplication of the Fourier transforms of each of the two traces followed by an inverse Fourier transform. Forward and inverse Fast Fourier transforms can be efficiently implemented in hardware and software.
- the cross correlation computation may be done with analog or digital electrical signals after the amplitude and phase of the return is detected at an optical detector.
- the optical return signal is optically mixed with the reference signal before impinging on the detector.
- a copy of the phase-encoded transmitted optical signal can be used as the reference signal, but it is also possible, and often preferable, to use the continuous wave carrier frequency optical signal output by the laser as the reference signal and capture both the amplitude and phase of the electrical signal output by the detector.
- the return signal does not include the phase encoding in the proper frequency bin, the correlation stays low for all time lags, and a peak is not as readily detected, and is often undetectable in the presence of noise.
- ⁇ t is not as readily determined and range R is not as readily produced.
- FIG. 1B is a schematic graph 140 that illustrates an example spectrum of the transmitted signal and an example spectrum of a Doppler shifted complex return signal, according to an implementation.
- the horizontal axis 142 indicates RF frequency offset from an optical carrier fc in arbitrary units.
- the vertical axis 144 a indicates amplitude of a particular narrow frequency bin, also called spectral density, in arbitrary units relative to zero.
- the vertical axis 144 b indicates spectral density in arbitrary units relative to zero and is offset from axis 144 a to separate traces.
- Trace 145 represents a transmitted signal; and, a peak occurs at the proper RF f 0 .
- Trace 146 represents an idealized (noiseless) complex return signal that is backscattered from an object that is moving toward the LIDAR system and is therefore Doppler shifted to a higher frequency (called blue shifted). The return does not have a peak at the proper RF f 0 ; but, instead, is blue shifted by ⁇ f D to a shifted frequency f S .
- a complex return representing both in-phase and quadrature (I/Q) components of the return is used to determine the peak at + ⁇ f D , thus the direction of the Doppler shift, and the direction of motion of the target on the vector between the sensor and the object, can be detected from a single return.
- FIG. 1C is a schematic graph 150 that illustrates an example cross-spectrum, according to an implementation.
- the horizontal axis 152 indicates frequency shift in arbitrary units relative to the reference spectrum; and, the vertical axis 154 indicates amplitude of the cross spectrum in arbitrary units relative to zero.
- a peak 156 a occurs when one of the components is blue shifted ⁇ f D1 ; and, another peak 156 b occurs when one of the components is red shifted ⁇ f D2 .
- the Doppler shifts are determined. These shifts can be used to determine a signed velocity of approach of objects in the vicinity of the LIDAR, such as for collision avoidance applications. However, if I/Q processing is not done, peaks may appear at both +/ ⁇ f D1 and both +/ ⁇ f D2 , so there may be ambiguity on the sign of the Doppler shift and thus the direction of movement.
- the Doppler shift(s) detected in the cross spectrum can be used to correct the cross correlation so that the peak 135 is apparent in the Doppler compensated Doppler shifted return at lag ⁇ t, and range R can be determined.
- simultaneous I/Q processing can be performed.
- serial I/Q processing can be used to determine the sign of the Doppler return.
- errors due to Doppler shifting can be tolerated or ignored; and, no Doppler correction is applied to the range measurements.
- FIG. 1D is a set of graphs that illustrates an example optical chirp measurement of range, according to an implementation.
- Graph 100 indicates the power of a beam of light used as a transmitted optical signal.
- the vertical axis 104 in graph 100 indicates power of the transmitted signal in arbitrary units.
- Trace 106 indicates that the power is on for a limited pulse duration, r starting at time ⁇ .
- Graph 110 indicates the frequency of the transmitted signal.
- the vertical axis 114 indicates the frequency transmitted in arbitrary units.
- the frequency rate of change is (f 2 ⁇ f 1 )/ ⁇ .
- the returned signal is depicted in graph 160 which has a horizontal axis 102 that indicates time and a vertical axis 114 that indicates frequency as in graph 110 .
- the chirp (e.g., trace 116 ) of graph 110 is also plotted as a dotted line on graph 160 .
- a first returned signal is given by trace 166 a , which can represent the transmitted reference signal diminished in intensity (not shown) and delayed by ⁇ t.
- the returned signal start at the delayed time ⁇ t can be given by 2R/c, where c is the speed of light in the medium (approximately 3 ⁇ 10 8 meters per second, m/s), related according to Equation 3, described above.
- the frequency has changed by an amount that depends on the range, called f R , and given by the frequency rate of change multiplied by the delay time. This is given by Equation 4a.
- Equation 4b Equation 4b
- the fixed or known delay time of the reference signal can be multiplied by the speed of light, c, to give an additional range that is added to range computed from Equation 4b. While the absolute range may be off due to uncertainty of the speed of light in the medium, this is a near-constant error and the relative ranges based on the frequency difference are still very precise.
- a spot illuminated (pencil beam cross section) by the transmitted light beam encounters two or more different scatterers at different ranges, such as a front and a back of a semitransparent object, or the closer and farther portions of an object at varying distances from the LIDAR, or two separate objects within the illuminated spot.
- a second diminished intensity and differently delayed signal will also be received, indicated on graph 160 by trace 166 b . This will have a different measured value of f R that gives a different range using Equation 4b.
- multiple additional returned signals are received.
- Graph 170 depicts the difference frequency f R between a first returned signal 166 a and the reference chirp 116 .
- the horizontal axis 102 indicates time as in all the other aligned graphs in FIG. 1D , and the vertical axis 164 indicates frequency difference on a much expanded scale.
- Trace 176 depicts the constant frequency f R measured in response to the transmitted chirp, which indicates a particular range as given by Equation 4b.
- the second returned signal 166 b if present, would give rise to a different, larger value of f R (not shown) during de-chirping; and, as a consequence yield a larger range using Equation 4b.
- De-chirping can be performed by directing both the reference optical signal and the returned optical signal to the same optical detector.
- the electrical output of the detector may be dominated by a beat frequency that is equal to, or otherwise depends on, the difference in the frequencies of the two signals converging on the detector.
- a Fourier transform of this electrical output signal will yield a peak at the beat frequency.
- Such signals can be processed by RF components, such as a Fast Fourier Transform (FFT) algorithm running on a microprocessor or a specially built FFT or other digital signal processing (DSP) integrated circuit.
- FFT Fast Fourier Transform
- DSP digital signal processing
- the return signal can be mixed with a continuous wave (CW) tone acting as the local oscillator (versus a chirp as the local oscillator).
- CW continuous wave
- the detected signal which itself is a chirp (or whatever waveform was transmitted).
- the detected signal can undergo matched filtering in the digital domain, though the digitizer bandwidth requirement may generally be higher.
- the positive aspects of coherent detection are otherwise retained.
- the LIDAR system is changed to produce simultaneous up and down chirps.
- This approach can eliminate variability introduced by object speed differences, or LIDAR position changes relative to the object which actually does change the range, or transient scatterers in the beam, among others, or some combination.
- the approach may guarantee that the Doppler shifts and ranges measured on the up and down chirps are indeed identical and can be most usefully combined.
- the Doppler scheme may guarantee parallel capture of asymmetrically shifted return pairs in frequency space for a high probability of correct compensation.
- FIG. 1E is a graph using a symmetric LO signal and shows the return signal in this frequency time plot as a dashed line when there is no Doppler shift, according to an implementation.
- the horizontal axis indicates time in example units of 10 ⁇ 5 seconds (tens of microseconds).
- the vertical axis indicates frequency of the optical transmitted signal relative to the carrier frequency f c or reference signal in example units of GigaHertz (10 9 Hertz).
- a light beam comprising two optical frequencies at any time is generated. One frequency increases from f 1 to f 2 (e.g., 1 to 2 GHz above the optical carrier) while the other frequency simultaneous decreases from f 4 to f 3 (e.g., 1 to 2 GHz below the optical carrier).
- the two frequency bands e.g., band 1 from f 1 to f 2 , and band 2 from f 3 to f 4 ) do not overlap so that both transmitted and return signals can be optically separated by a high pass or a low pass filter, or some combination, with pass bands starting at pass frequency f p .
- pass bands starting at pass frequency f p .
- f 1 ⁇ f 2 ⁇ f p ⁇ f 3 ⁇ f 4 the higher frequencies can provide the up chirp and the lower frequencies can provide the down chirp.
- the higher frequencies produce the down chirp and the lower frequencies produce the up chirp.
- two different laser sources are used to produce the two different optical frequencies in each beam at each time.
- a single optical carrier is modulated by a single RF chirp to produce symmetrical sidebands that serve as the simultaneous up and down chirps.
- a double sideband Mach-Zehnder intensity modulator is used that, in general, may not leave much energy in the carrier frequency; instead, almost all of the energy goes into the sidebands.
- the bandwidth of the two optical chirps can be the same if the same order sideband is used.
- other sidebands are used, e.g., two second order sideband are used, or a first order sideband and a non-overlapping second sideband is used, or some other combination.
- FIG. 1F is a graph similar to FIG. 1E , using a symmetric LO signal, and shows the return signal in this frequency time plot as a dashed line when there is a nonzero Doppler shift.
- the time separated I/Q processing (aka time domain multiplexing) can be used to overcome hardware requirements of other approaches.
- an AOM can be used to break the range-Doppler ambiguity for real valued signals.
- a scoring system can be used to pair the up and down chirp returns.
- I/Q processing can be used to determine the sign of the Doppler chirp.
- FIG. 2A is a block diagram that illustrates example components of a high resolution range LIDAR system 200 , according to an implementation.
- Optical signals are indicated by arrows.
- Electronic wired or wireless connections are indicated by segmented lines without arrowheads.
- a laser source 212 emits a beam (e.g., carrier wave 201 ) that is phase or frequency modulated in modulator 282 a , before or after splitter 216 , to produce a phase coded or chirped optical signal 203 that has a duration D.
- a splitter 216 splits the modulated (or, as shown, the unmodulated) optical signal for use in a reference path 220 .
- a target beam 205 also called transmitted signal herein, with most of the energy of the beam 201 can be produced.
- a modulated or unmodulated reference beam 207 a which can have a much smaller amount of energy that is nonetheless enough to produce good mixing with the returned light 291 scattered from an object (not shown), can also be produced. As depicted in FIG. 2A , the reference beam 207 a is separately modulated in modulator 282 b . The reference beam 207 a passes through reference path 220 and is directed to one or more detectors as reference beam 207 b .
- the reference path 220 introduces a known delay sufficient for reference beam 207 b to arrive at the detector array 230 with the scattered light from an object outside the LIDAR within a spread of ranges of interest.
- the reference beam 207 b is called the local oscillator (LO) signal, such as if the reference beam 207 b were produced locally from a separate oscillator.
- LO local oscillator
- the reference beam 207 b can be caused to arrive with the scattered or reflected field by: 1) putting a mirror in the scene to reflect a portion of the transmit beam back at the detector array so that path lengths are well matched; 2) using a fiber delay to closely match the path length and broadcast the reference beam with optics near the detector array, as suggested in FIG.
- the object is close enough and the transmitted duration long enough that the returns sufficiently overlap the reference signal without a delay.
- the transmitted signal is then transmitted to illuminate an area of interest, such as through one or more scanning optics 218 .
- the detector array can be a single paired or unpaired detector or a 1 dimensional (1D) or 2 dimensional (2D) array of paired or unpaired detectors arranged in a plane roughly perpendicular to returned beams 291 from the object.
- the reference beam 207 b and returned beam 291 can be combined in zero or more optical mixers 284 to produce an optical signal of characteristics to be properly detected.
- the frequency, phase or amplitude of the interference pattern, or some combination, can be recorded by acquisition system 240 for each detector at multiple times during the signal duration D. The number of temporal samples processed per signal duration or integration time can affect the down-range extent.
- the number or integration time can be a practical consideration chosen based on number of symbols per signal, signal repetition rate and available camera frame rate.
- the frame rate is the sampling bandwidth, often called “digitizer frequency.”
- the only fundamental limitations of range extent are the coherence length of the laser and the length of the chirp or unique phase code before it repeats (for unambiguous ranging). This is enabled because any digital record of the returned heterodyne signal or bits could be compared or cross correlated with any portion of transmitted bits from the prior transmission history.
- the acquired data is made available to a processing system 250 , such as a computer system described below with reference to FIG. 7 , or a chip set described below with reference to FIG. 8 .
- a scanner control module 270 provides scanning signals to drive the scanning optics 218 .
- the scanner control module 270 can include instructions to perform one or more steps of the method 600 related to the flowchart of FIG. 6 .
- a signed Doppler compensation module (not shown) in processing system 250 can determine the sign and size of the Doppler shift and the corrected range based thereon along with any other corrections.
- the processing system 250 can include a modulation signal module (not shown) to send one or more electrical signals that drive modulators 282 a , 282 b .
- the processing system also includes a vehicle control module 272 to control a vehicle on which the system 200 is installed.
- an optical coupler is any component that affects the propagation of light within spatial coordinates to direct light from one component to another component, such as a vacuum, air, glass, crystal, mirror, lens, optical circulator, beam splitter, phase plate, polarizer, optical fiber, optical mixer, among others, alone or in some combination.
- FIG. 2A also illustrates example components for a simultaneous up and down chirp LIDAR system according to an implementation.
- the modulator 282 a can be a frequency shifter added to the optical path of the transmitted beam 205 .
- the frequency shifter is added to the optical path of the returned beam 291 or to the reference path 220 .
- the frequency shifter can be added as modulator 282 b on the local oscillator (LO, also called the reference path) side or on the transmit side (before the optical amplifier) as the device used as the modulator (e.g., an acousto-optic modulator, AOM) has some loss associated and it can be disadvantageous to put lossy components on the receive side or after the optical amplifier.
- LO local oscillator
- AOM acousto-optic modulator
- the optical shifter can shift the frequency of the transmitted signal (or return signal) relative to the frequency of the reference signal by a known amount ⁇ f S , so that the beat frequencies of the up and down chirps occur in different frequency bands, which can be picked up, e.g., by the FFT component in processing system 250 , in the analysis of the electrical signal output by the optical detector 230 .
- the blue shift causing range effects is f B
- the beat frequency of the up chirp will be increased by the offset and occur at f B + ⁇ f S and the beat frequency of the down chirp will be decreased by the offset to f B ⁇ f S .
- the up chirps will be in a higher frequency band than the down chirps, thereby separating them. If ⁇ f S is greater than any expected Doppler effect, there will be no ambiguity in the ranges associated with up chirps and down chirps.
- the measured beats can then be corrected with the correctly signed value of the known ⁇ f S to get the proper up-chirp and down-chirp ranges.
- the RF signal coming out of the balanced detector is digitized directly with the bands being separated via FFT.
- the RF signal coming out of the balanced detector is pre-processed with analog RF electronics to separate a low-band (corresponding to one of the up chirp or down chip) which can be directly digitized and a high-band (corresponding to the opposite chirp) which can be electronically down-mixed to baseband and then digitized.
- analog RF electronics to separate a low-band (corresponding to one of the up chirp or down chip) which can be directly digitized and a high-band (corresponding to the opposite chirp) which can be electronically down-mixed to baseband and then digitized.
- the modulator 282 a is excluded (e.g. direct ranging).
- FIG. 2B is a block diagram that illustrates a saw tooth scan pattern for a hi-res Doppler system.
- the scan sweeps through a range of azimuth angles (e.g. horizontally along axis 222 ) and inclination angles (e.g. vertically along axis 224 above and below a level direction at zero inclination).
- Various can patterns can be used, including adaptive scanning.
- FIG. 2C is an image that illustrates an example speed point cloud produced by a hi-res Doppler LIDAR system.
- FIG. 2D is a block diagram that illustrates example components of the scanning optics 218 of the system 200 of FIG. 2A .
- the scanning optics 218 is a two-element scan system including an oscillatory scan element 226 that controls actuation of the beam 205 along one axis (e.g. between angles ⁇ A and +A along axis 222 of FIG. 2B ) and a unidirectional constant speed scan element 228 (e.g. polygon deflector) that controls actuation of the beam 205 in one direction along another axis (e.g. along axis 224 of FIG. 2B ).
- the scanning optics 218 can be used in the system 200 of FIG. 2A .
- the scanning optics 218 can be used in systems other than LIDAR systems such as the system 200 , including laser etching, surface treatment, barcode scanning, and refractive scanning of a beam.
- the oscillatory scan element 226 is provided without the unidirectional scan element 228 or in other implementations, the unidirectional scan element 228 is provided without the oscillatory scan element 226 .
- the oscillatory scan element 226 actuates the beam 205 in opposing directions along the axis 222 between the angles ⁇ A and +A as the unidirectional constant speed scan element 228 simultaneously actuates the beam 205 in one direction along the axis 224 .
- the scanner control module 270 provides signals that are transmitted from the processing system 250 to a motor 232 that is mechanically coupled to the oscillatory scan element 226 and/or the unidirectional scan element 228 .
- a motor 232 that is mechanically coupled to the oscillatory scan element 226 and/or the unidirectional scan element 228 .
- two motors are provided where one motor is mechanically coupled to the oscillatory scan element 226 and another motor is mechanically coupled to the unidirectional scan element 228 .
- the motor 232 rotates the oscillatory scan element 226 and/or the unidirectional scan element 228 based on a value of a parameter (e.g. angular speed, etc.) in the signal.
- a parameter e.g. angular speed, etc.
- FIG. 3 is a block diagram that illustrates an example of an assembly 300 including a polygon reflector 304 rotated by a motor (not shown) to reflect an incident beam 311 over a field of view 310 (e.g. between a first and second angle within the plane of FIG. 3 ).
- the polygon reflector 304 includes a plurality of reflective facets 306 (e.g. six in a hexagon reflector). Each facet 306 reflects the incident beam 311 into a reflected beam 312 which defines the field of view 310 as the reflector 304 rotates about a rotation axis.
- the field of view 310 can be defined when the incident beam 311 encounters a first and second break in the facet 306 .
- the field of view 310 can be limited by the position of the incident beam 311 that is co-planar with the facet 306 , since the field of view 310 cannot encompass angles coinciding with the incident beam 311 .
- the field of view 310 cannot encompass the incident beam 311 since no useful return beam data can be gathered for those scan angles.
- the polygon reflector 304 has a limited field of view 310 due to the nature of the incident beam 311 that is coplanar and incident on the exterior surface of the facet 306 .
- This field of view 310 can limit a duty cycle of the polygon reflector 304 , which is defined as a time that the facets 306 reflect the beam 312 over the field of view 310 to a total time of operation of the assembly 300 . This duty cycle may be about 50% with conventional polygon reflectors 304 .
- FIG. 4 is a block diagram that illustrates an example of an assembly 400 including a polygon deflector 404 rotated by a motor 232 to deflect (e.g. refract) an incident beam 411 from an interior 432 of the deflector 404 .
- the polygon deflector 404 can include the unidirectional constant speed scan element 228 , which may or may not be used in the system 200 of FIG. 2A .
- the incident beam 411 can be shaped (e.g., collimated) by an optic 405 (e.g. one or more lenses or mirrors) positioned within an interior 432 of the polygon deflector 404 .
- the incident beam 411 can be directed to the interior 432 from outside the polygon deflector 404 before it is shaped by the optic 405 within the interior 432 .
- a plurality of incident beams 411 are provided and shaped by the optic 405 before being directed at the facet 406 .
- the facet 406 can refract the incident beam 411 as the refracted beam 412 based on Snell's law, according to the index of refraction of the facet 406 and angle of incidence of the beam 411 on the facet 406 .
- the field of view 410 is defined by the refracted beam 412 between facet breaks of the incident beam 411 on a first facet 406 .
- the field of view 410 is greater than the field of view 310 in the polygon reflector 304 .
- the field of view 410 is about 90 degrees (e.g. polygon deflector 404 made from high index material such as Silicon) or about 50 degrees (e.g. polygon deflector 404 made from non-exotic material) as compared with the field of view 310 which is less than or about 90 degrees.
- a width of the polygon deflector 404 e.g. defined as a distance between opposing facets 406
- the savings in space of the assembly 400 as compared to the assembly 300 can be due to the assembly 400 not requiring external components of the assembly 300 (e.g. collimator to direct the incident beam 311 ) relative to the polygon deflector 404 .
- the polygon deflector 404 has a width of about 70 mm (e.g. measured between facets 406 on opposite sides of the deflector 404 ) and about 44 mm length along each facet 406 .
- the polygon reflector 304 has similar dimensions as the polygon deflector 404 but has an additional collimator (e.g. to direct the incident beam 311 ) measuring about 50 mm and spaced about 25 mm from the polygon reflector 304 .
- the front area length of the polygon deflector 404 is about 70 mm as compared to the polygon reflector 304 which is about 140 mm.
- the incident beam 411 is continuously refracted over the field of view 410 by each facet 406 as the polygon deflector 404 is rotated by the motor 232 .
- the duty cycle of the polygon deflector 404 is greater than 50% and/or greater than about 70% and/or about 80%. The duty cycle can be based on a ratio of a first time based on refraction of the incident beam 411 to a second time based on rotation of the polygon deflector 404 and shaping of the incident beam 411 .
- FIG. 5A is a schematic diagram that illustrates an example of a cross-sectional side view of an assembly 500 including a polygon deflector 501 rotated by a motor 534 to refract an incident beam 580 from an interior 532 of the deflector 501 .
- FIG. 5B is a schematic diagram that illustrates an example of a cross-sectional top view of the polygon deflector 501 of FIG. 5A .
- the polygon deflector 501 includes a plurality of facets 506 .
- the polygon deflector 501 is made from material that is transmissive or has high transmission characteristics (e.g. above 90%) at a wavelength of the beam 580 .
- FIG. 5A-5B depict a hexagon deflector (e.g. six sides), various implementations are not limited to a hexagon deflector and may include any polygon deflector with any number of facets and need not be a regular polygon with equal angles and equal width of the facets 506 but may be an irregular polygon with unequal angles or unequal widths of the facets 506 , for example.
- the polygon deflector 501 can be rotatably coupled to a motor 534 .
- the motor 534 rotates the polygon deflector 501 about a rotation axis 540 .
- the rotation axis 540 is orthogonal to a first plane 541 (plane of FIG. 5B ) in which the polygon deflector 501 rotates with a rotation velocity 502 .
- FIGS. 5A-5B depict that the rotation velocity 502 is clockwise, the rotation velocity 502 can be counterclockwise.
- the magnitude of the rotation velocity is about 100 revolutions per minute (rpm) to about 1000 rpm and/or about 10 rpm to about 10,000 rpm.
- the magnitude of the rotation velocity can be an order of magnitude more than the numerical ranges disclosed herein.
- the motor 534 is a brushless DC (BLDC) motor that includes a plurality of bearings 520 a , 520 b rotatably coupled to an inner surface 536 of the polygon deflector 501 that defines the interior 532 .
- the motor 534 can include a rotor 522 actuated by coils 524 to rotate the polygon deflector 501 about the rotation axis 540 .
- the motor 534 can include a stator 526 that is partially positioned in the interior 532 of the polygon deflector 501 and defines a cavity 530 where optics are positioned to steer the incident beams 580 on the facet 506 .
- the stator can output an electromagnetic field to drive the coils 524 to actuate the rotor 522 .
- the motor 534 is a BLDC motor manufactured by Nidec® Corporation, Braintree Mass.
- one or more optic are positioned in the interior 532 of the polygon deflector 501 to steer the incident beams 580 on the facet 506 .
- the optics include a lens assembly 505 that includes one or more lenses and/or a pair of mirrors 528 a , 528 b .
- the lens assembly 505 is a free form toric single lens.
- FIG. 5G is a schematic diagram that illustrates an example of a cut away cross-sectional view of a single toric lens 505 ′ used in the assembly 500 of FIG. 5A .
- the toric lens 505 ′ is used in place of the lens assembly 505 .
- the toric lens 505 ′ is selected since it features some characteristics of a cylindrical lens and other characteristics of a spherical lens and/or is a hybrid lens in a shape of a doughnut that is an optical combination of the first and second lens of the lens assembly 505 .
- software instructions of the module 270 can include one or more instructions to determine one or more parameter values of the toric lens 505 ′ that is equivalent to the lens assembly 505 .
- the beams 580 are transmitted to the interior 532 with a planar fiber array 529 that is mounted in a focal plane (e.g. plane 543 of FIG. 5A ) of the lens assembly 505 .
- FIG. 5C is a schematic diagram that illustrates an example of a side view of a planar fiber array 529 of the assembly 500 of FIG. 5A , according to an implementation.
- FIG. 5C is taken along the same plane 543 as FIG. 5A (e.g. the focal plane of the lens assembly 505 ).
- the planar fiber array 529 includes a plurality of fibers 582 a , 582 b , 582 c that are spaced apart by respective transverse spacing 584 a , 584 b .
- three fibers 582 are depicted in the planar fiber array 529 of FIG. 5C , this is merely one example and more or less than three fibers 582 can be provided in the planar fiber array 529 .
- the transverse spacing 584 a , 584 b is equal between adjacent fiber pairs. In some implementations, the transverse spacing 584 a , 584 b is unequal between adjacent fiber pairs (e.g. the spacing 584 a between fibers 582 a , 582 b is not the same as spacing 584 b between fibers 582 b , 582 c ). In an implementation, a respective beam 580 is transmitted from a tip of each fiber 582 and thus a plurality of beams 580 are transmitted within the interior 532 (e.g. the cavity 530 of the stator 526 ) from the tips of the fibers 582 . In one example implementation, the planar fiber array 529 is a fixed spacing fiber array and planar lightwave circuit (PLC) connections, manufactured by Zhongshan Meisu Technology Company, Zhongshan, Guangdongzhou, China.
- PLC planar lightwave circuit
- the plurality of beams 580 transmitted from the planar fiber array 529 can be reflected by a first mirror 528 a to a second mirror 528 b which in turn reflects the plurality of beams 580 to the lens assembly 505 .
- the mirrors 528 a , 528 b are angled orthogonally to each other (e.g. 90 degrees or in a range from about 70 degrees to about 110 degrees) so that the beams 580 reflected by the mirror 528 b are oriented in a direction that is about 180 degrees from the direction of the beams 580 incident on the mirror 528 a .
- the second mirror 528 b has a longer reflective surface than the first mirror 528 a since the beams 580 cover a wider angular spread at the second mirror 528 b than the first mirror 528 a .
- the mirrors 528 are manufactured by Edmunds® Optics of Barrington N.J.
- FIG. 5D is a schematic diagram that illustrates an example of a side view of a lens assembly 505 of the assembly 500 of FIG. 5A , according to an implementation.
- FIG. 5D is taken along the plane 541 of FIG. 5B (e.g. orthogonal to the plane 543 of FIG. 5A ).
- the lens assembly 505 includes a first lens 582 that collimates diverging beams 580 that are reflected to the first lens 582 from the second mirror 528 b .
- the first lens 582 is an aspheric lens with a focal length that is selected so that the diverging beams 580 from the second mirror 528 b are collimated by the aspheric lens.
- the focal length of the aspheric lens extends beyond the second mirror 528 b.
- collimated beams 580 ′ from the first lens 582 can be diverted by a second lens 584 .
- the second lens 584 is a positive cylindrical lens that converges the beams based on a focal length of the positive cylindrical lens.
- the converging beams 580 ′′ from the second lens 584 are refracted by the inner surface 536 of the polygon deflector 501 that defines the interior 532 so that the beams 580 ′′′ are collimated within the polygon deflector 501 and incident on the facet 506 .
- the focal length of the first lens 582 is about 40-50 mm and/or about 20-60 mm, creating a beam 580 ′ with a diameter of about 8-10 mm and/or about 6-12 mm using a standard fiber of about 10 ⁇ m mode field diameter (MFD) and/or about 6-14 ⁇ m MFD.
- a spacing 584 a , 584 b of the beams in the fiber array 529 would be increments or multiples of about 127 ⁇ m, yielding a total subtended angular spread 560 of about 1-4 degrees.
- a curvature of the positive cylindrical lens is the same as a curvature of the inner surface 536 and/or a transition of an index of refraction from the positive cylindrical lens to air is an opposite of a transition of the index of refraction from air to the polygon deflector 501 across the inner surface 536 .
- the index of refraction of the second lens 584 is about 1.7 or in a range from about 1.3 to about 1.8 and the index of refraction of the polygon deflector 501 is about 1.7 of in a range from about 1.3 to about 1.8 and the curvature of the positive cylindrical lens and inner surface 536 is about 25.4 mm radius and/or in a range from about 20 mm to about 30 mm and/or in a range from about 15 mm to about 40 mm.
- the collimated beams 580 ′′′ incident on the facet 506 a are depicted in FIG. 5B which shows the beams 580 ′′′ in the plane 541 or plane of FIG. 5D .
- FIG. 5E is a schematic diagram that illustrates an example of the polygon deflector 501 of FIG. 5B in two rotation positions 550 a , 550 b .
- ⁇ 2 is the angle of refraction of the beam 512 a relative to a normal to the (outside of) the facet 506 a .
- the angle of refraction can be measured as an angle 552 a relative to an axis 544 that is orthogonal to the rotation axis 542 .
- the plurality of beams 512 a are refracted at the angle 552 a (relative to the axis 544 ).
- the incident beams 580 ′′′ can go from being refracted by one side of the facet 506 a (e.g. refracted beams 512 a at the angle 552 a ) to an opposite side of the facet 506 a (e.g. refracted beams 512 b at an angle 552 b ), relative to the axis 544 , to define a field of view 510 of the refracted beams 512 .
- the field of view 510 is about 50 degrees (e.g. where the index of refraction of the polygon deflector 501 is about 1.6) and about 90 degrees (e.g. where the index of refraction is higher for high index of refraction material, such as Silicon).
- FIG. 5F is a schematic diagram that illustrates an example of a partial cross-sectional side view of the polygon deflector 501 of FIG. 5A .
- FIG. 5F is within the plane 543 of FIG. 5A .
- the incident beams 580 ′′′ are depicted in the plane 543 and an angular spread 560 of the incident beams 580 ′′′ is shown.
- the angular spread 560 is related to the transverse spacing 584 of the fibers 582 of the planar fiber array 529 by:
- the facet 506 forms a non-orthogonal angle 574 with a top or bottom of the polygon deflector 501 .
- the non-orthogonal angle 574 is any angle other than 90 degrees and/or an angle in a range from about 75 degrees to about 105 degrees and/or an angle in a range from about 60 degrees to about 120 degrees.
- the non-orthogonal angle 574 in FIG. 5F is less than 90 degrees, the non-orthogonal angle 574 can be greater than 90 degrees, for example the non-orthogonal angle 574 for the facet 506 b in FIG. 5A .
- the angle 574 can be orthogonal and/or about 90 degrees for some or all of the facet 506 .
- the angle 574 can be non-orthogonal for each facet 506 but varies for one or more facets, e.g. less than about 90 degrees for one or more facets 506 but greater than about 90 degrees for one or more facets 506 .
- An advantage of an arrangement with one or more facets 506 with the angle 574 less than 90 degrees and one or more facets 506 with the angle 574 greater than 90 degrees can be that the refracted beams 512 in the plane 543 ( FIG. 5F ) can alternate between above the horizontal axis 544 (for the facet 506 with the angle 574 less than 90 degrees) to below the horizontal axis 544 (for the facet 506 with the angle 574 greater than 90 degrees). This can permit the beams 512 to be scanned over multiple ranges within the plane 543 , e.g. to capture return beam data from objects in these multiple ranges.
- the incident beams 580 ′′′ on the facet 506 have an angular spread 560 which widens to a greater angular spread 562 after refraction by the facet 506 .
- each beam 580 ′′′ has an angular spacing of about 1 degree incident on the facet 506
- each refracted beam 512 has an angular spacing of about 1.5 degrees, e.g. a product of the angular spacing of the beams 580 ′′′ in the polygon deflector and the index ratio.
- a net direction of the beams 512 in the plane 543 is changed by refraction at the facet 506 .
- a centerline 570 of the incident beams 580 ′′′ on the facet 506 is refracted by the facet 506 as a centerline 572 of the refracted beams 512 , based on Snell's law in equation 5 within the plane 543 .
- the facet 506 can vary the direction of the centerline 572 of the refracted beams 512 , relative to the centerline 570 of the incident beams 580 ′′.
- variation of the angular spread 560 changes on the order of 50%, e.g. from angular spread 560 of about 1 degree between beams 580 to angular spread 562 of about 1.5 degrees between beams 580 .
- the centerline 572 changes on the order of +5, +10, ⁇ 5, ⁇ 10 degrees relative to the centerline 570 .
- a vehicle is controlled at least in part based on data received from a hi-res Doppler LIDAR system mounted on the vehicle.
- FIG. 2E is a block diagram that illustrates an example system 234 that includes at least one hi-res Doppler LIDAR system 236 mounted on a vehicle 238 , according to an implementation.
- the LIDAR system 236 is similar to one of the LIDAR systems 200 .
- the vehicle has a center of mass indicted by a star 242 and travels in a forward direction given by arrow 244 .
- the vehicle 238 includes a component, such as a steering or braking system (not shown), operated in response to a signal from a processor, such as the vehicle control module 272 of the processing system 250 .
- the vehicle has an on-board processor 246 , such as chip set depicted in FIG. 8 .
- the on board processor 246 is in wired or wireless communication with a remote processor, as depicted in FIG. 7 .
- the processing system 250 of the LIDAR system is communicatively coupled with the on-board processor 246 or the processing system 250 of the LIDAR is used to perform the operations of the on board processor 246 so that the vehicle control module 272 causes the processing system 250 to transmit one or more signals to the steering or braking system of the vehicle to control the direction and speed of the vehicle (e.g., to perform collision avoidance with respect to one or more objects detected using information received from the LIDAR system 236 ).
- the vehicle control module 272 can control operation of the processing system 250 using at least one of range data or velocity data (including direction data) determined using the LIDAR system 236 .
- the hi-res Doppler LIDAR uses a scanning beam 252 that sweeps from one side to another side, represented by future beam 253 , through an azimuthal field of view 254 , as well as through vertical angles illuminating spots in the surroundings of vehicle 238 .
- the field of view is 360 degrees of azimuth.
- the scanning optics 218 including the oscillatory scan element 226 and/or unidirectional scan element 228 can be used to scan the beam through the azimuthal field of view 254 or through vertical angles.
- inclination angle field of view is from about +10 degrees to about ⁇ 10 degrees or a subset thereof.
- the maximum design range over the field of view 254 is about 200 meters or in a range from about 150 meters to about 300 meters.
- the vehicle includes ancillary sensors (not shown), such as a GPS sensor, odometer, tachometer, temperature sensor, vacuum sensor, electrical voltage or current sensors, among others.
- ancillary sensors such as a GPS sensor, odometer, tachometer, temperature sensor, vacuum sensor, electrical voltage or current sensors, among others.
- a gyroscope 256 is included to provide rotation information.
- FIG. 6 is a flow chart that illustrates an example method 600 for optimizing a scan pattern of a LIDAR system.
- the method 600 is for optimizing a scan pattern of a beam in a first direction between a first angle and a second angle based on a desired waveform with a linear slope.
- the system 600 is for optimizing the scan pattern of a LIDAR system mounted on an autonomous vehicle.
- steps are depicted in FIG. 6 as integral steps in a particular order for purposes of illustration, one or more steps, or portions thereof, can be performed in a different order, or overlapping in time, in series or in parallel, or are omitted, or one or more additional steps are added, or the method is changed in some combination of ways.
- step 601 the polygon deflector 404 is rotated with a motor about a first axis.
- the polygon deflector 501 is rotated with the motor 534 about the axis 540 .
- one or more signals is transmitted to the motor 232 , 534 to rotate the polygon deflector 404 , 501 , where the signal includes data that indicates one or more values of a parameter of the rotation (e.g. a value of a rotation speed, a direction of the rotation velocity, a duration of the rotation, etc.).
- one or more beams are transmitted within the interior 432 of the polygon deflector 404 .
- a plurality of beams 580 are transmitted from the planar fiber array 529 within the interior 532 of the polygon deflector 501 .
- a light source e.g. laser source
- the one or more beams are shaped with one or more optics 405 within the interior 432 so that the beams are collimated and incident on the facet 406 from the interior 432 of the polygon deflector 404 .
- the plurality of beam 580 from the planar fiber array 529 are reflected by a pair of mirrors 528 a , 528 b to a lens assembly 505 including a first lens 582 positioned within the interior 532 .
- step 607 the plurality of beams 580 from the mirrors 528 a , 528 b in step 605 are collimated into beams 580 ′ by the first lens 582 .
- the first lens 582 is an aspheric lens.
- step 609 the plurality of beams 580 ′ from the first lens 582 in step 607 are diverted by a second lens 584 .
- the second lens 584 is a positive cylindrical lens and the beams 580 ′ are converged into converging beams 580 ′′ that are incident on the inner surface 534 of the polygon deflector 501 .
- step 611 the converging beams 580 ′′ from step 609 are collimated by the inner surface 534 of the polygon deflector 501 so that collimated beams 580 ′′′ are transmitted into the polygon deflector 501 and incident on the facet 506 .
- the collimated beams 580 ′′′ incident on the facet 506 are refracted as beams 512 by the facet 506 into a first plane 541 orthogonal to the rotation axis 542 from a first angle to a second angle that defines a field of view 510 within the plane 541 .
- the field of view 510 is defined by the collimated beams 580 ′′′ passing from one side to an opposite side of a facet 506 and ends when the collimated beams 580 ′′′ pass over a break in the facet 506 .
- the refracted beams 512 are re-scanned through the field of view 510 within the plane 541 .
- the collimated beams 580 ′′′ incident on the facet 506 are refracted as beams 512 into a second plane 543 that is orthogonal to the first plane 541 .
- the refraction of the beams 580 ′′′ in the second plane 543 involves an increase of the angular spread 562 of the beams 512 , and/or a refraction of the centerline of the beams 512 and/or rotation of the beams 512 within the plane 543 based on the rotation of the polygon deflector 501 .
- the polygon deflector 404 can have a duty cycle greater than 50%, wherein the duty cycle is based on a ratio of a first time based on the refracting step to a second time based on the rotating and shaping steps.
- the duty cycle can be greater than 70%.
- FIG. 7 is a block diagram that illustrates a computer system 700 that can be used to perform various operations described herein.
- Computer system 700 includes a communication mechanism such as a bus 710 for passing information between other internal and external components of the computer system 700 .
- Information is represented as physical signals of a measurable phenomenon, typically electric voltages, but including, in other implementations, such phenomena as magnetic, electromagnetic, pressure, chemical, molecular atomic and quantum interactions. For example, north and south magnetic fields, or a zero and non-zero electric voltage, represent two states (0, 1) of a binary digit (bit). Other phenomena can represent digits of a higher base.
- a superposition of multiple simultaneous quantum states before measurement represents a quantum bit (qubit).
- a sequence of one or more digits constitutes digital data that is used to represent a number or code for a character.
- information called analog data is represented by a near continuum of measurable values within a particular range.
- Computer system 700 or a portion thereof, constitutes a means for performing one or more steps of one or more methods described herein.
- a sequence of binary digits constitutes digital data that is used to represent a number or code for a character.
- a bus 710 includes many parallel conductors of information so that information is transferred quickly among devices coupled to the bus 710 .
- One or more processors 702 for processing information are coupled with the bus 710 .
- a processor 702 performs a set of operations on information.
- the set of operations include bringing information in from the bus 710 and placing information on the bus 710 .
- the set of operations also typically include comparing two or more units of information, shifting positions of units of information, and combining two or more units of information, such as by addition or multiplication.
- a sequence of operations to be executed by the processor 702 constitutes computer instructions.
- Computer system 700 also includes a memory 704 coupled to bus 710 .
- the memory 704 such as a random access memory (RAM) or other dynamic storage device, stores information including computer instructions. Dynamic memory allows information stored therein to be changed by the computer system 700 . RAM allows a unit of information stored at a location called a memory address to be stored and retrieved independently of information at neighboring addresses.
- the memory 704 is also used by the processor 702 to store temporary values during execution of computer instructions.
- the computer system 700 also includes a read only memory (ROM) 706 or other static storage device coupled to the bus 710 for storing static information, including instructions, that is not changed by the computer system 700 .
- ROM read only memory
- Also coupled to bus 710 is a non-volatile (persistent) storage device 708 , such as a magnetic disk or optical disk, for storing information, including instructions, that persists even when the computer system 700 is turned off or otherwise loses power.
- Information is provided to the bus 710 for use by the processor from an external input device 712 , such as a keyboard containing alphanumeric keys operated by a human user, or a sensor.
- an external input device 712 such as a keyboard containing alphanumeric keys operated by a human user, or a sensor.
- a sensor detects conditions in its vicinity and transforms those detections into signals compatible with the signals used to represent information in computer system 700 .
- bus 710 Other external devices coupled to bus 710 , used primarily for interacting with humans, include a display device 714 , such as a cathode ray tube (CRT) or a liquid crystal display (LCD), for presenting images, and a pointing device 716 , such as a mouse or a trackball or cursor direction keys, for controlling a position of a small cursor image presented on the display 714 and issuing commands associated with graphical elements presented on the display 714 .
- a display device 714 such as a cathode ray tube (CRT) or a liquid crystal display (LCD)
- LCD liquid crystal display
- pointing device 716 such as a mouse or a trackball or cursor direction keys
- special purpose hardware such as an application specific integrated circuit (IC) 720
- IC application specific integrated circuit
- the special purpose hardware is configured to perform operations not performed by processor 702 quickly enough for special purposes.
- application specific ICs include graphics accelerator cards for generating images for display 714 , cryptographic boards for encrypting and decrypting messages sent over a network, speech recognition, and interfaces to special external devices, such as robotic arms and medical scanning equipment that repeatedly perform some complex sequence of operations that are more efficiently implemented in hardware.
- Computer system 700 also includes one or more instances of a communications interface 770 coupled to bus 710 .
- Communication interface 770 provides a two-way communication coupling to a variety of external devices that operate with their own processors, such as printers, scanners and external disks. In general the coupling is with a network link 778 that is connected to a local network 780 to which a variety of external devices with their own processors are connected.
- communication interface 770 may be a parallel port or a serial port or a universal serial bus (USB) port on a personal computer.
- communications interface 770 is an integrated services digital network (ISDN) card or a digital subscriber line (DSL) card or a telephone modem that provides an information communication connection to a corresponding type of telephone line.
- ISDN integrated services digital network
- DSL digital subscriber line
- a communication interface 770 is a cable modem that converts signals on bus 710 into signals for a communication connection over a coaxial cable or into optical signals for a communication connection over a fiber optic cable.
- communications interface 770 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN, such as Ethernet.
- LAN local area network
- Wireless links may also be implemented.
- Carrier waves, such as acoustic waves and electromagnetic waves, including radio, optical and infrared waves travel through space without wires or cables. Signals include man-made variations in amplitude, frequency, phase, polarization or other physical properties of carrier waves.
- the communications interface 770 sends and receives electrical, acoustic or electromagnetic signals, including infrared and optical signals, that carry information streams, such as digital data.
- Non-volatile media include, for example, optical or magnetic disks, such as storage device 708 .
- Volatile media include, for example, dynamic memory 704 .
- Transmission media include, for example, coaxial cables, copper wire, fiber optic cables, and waves that travel through space without wires or cables, such as acoustic waves and electromagnetic waves, including radio, optical and infrared waves.
- the term computer-readable storage medium is used herein to refer to any medium that participates in providing information to processor 702 , except for transmission media.
- Computer-readable media include, for example, a floppy disk, a flexible disk, a hard disk, a magnetic tape, or any other magnetic medium, a compact disk ROM (CD-ROM), a digital video disk (DVD) or any other optical medium, punch cards, paper tape, or any other physical medium with patterns of holes, a RAM, a programmable ROM (PROM), an erasable PROM (EPROM), a FLASH-EPROM, or any other memory chip or cartridge, a carrier wave, or any other medium from which a computer can read.
- the term non-transitory computer-readable storage medium is used herein to refer to any medium that participates in providing information to processor 702 , except for carrier waves and other signals.
- Logic encoded in one or more tangible media includes one or both of processor instructions on a computer-readable storage media and special purpose hardware, such as ASIC 720 .
- Network link 778 typically provides information communication through one or more networks to other devices that use or process the information.
- network link 778 may provide a connection through local network 780 to a host computer 782 or to equipment 784 operated by an Internet Service Provider (ISP).
- ISP equipment 784 in turn provides data communication services through the public, world-wide packet-switching communication network of networks now commonly referred to as the Internet 790 .
- a computer called a server 792 connected to the Internet provides a service in response to information received over the Internet.
- server 792 provides information representing video data for presentation at display 714 .
- the computer system 700 can be used to implement various techniques described herein. Techniques can be performed by computer system 700 in response to processor 702 executing one or more sequences of one or more instructions contained in memory 704 . Such instructions, also called software and program code, may be read into memory 704 from another computer-readable medium such as storage device 708 . Execution of the sequences of instructions contained in memory 704 causes processor 702 to perform the method steps described herein. In alternative implementations, hardware, such as application specific integrated circuit 720 , may be used in place of or in combination with software to implement various operations described herein. Thus, various implementations are not limited to any specific combination of hardware and software.
- the signals transmitted over network link 778 and other networks through communications interface 770 carry information to and from computer system 700 .
- Computer system 700 can send and receive information, including program code, through the networks 780 , 790 among others, through network link 778 and communications interface 770 .
- a server 792 transmits program code for a particular application, requested by a message sent from computer 700 , through Internet 790 , ISP equipment 784 , local network 780 and communications interface 770 .
- the received code may be executed by processor 702 as it is received, or may be stored in storage device 708 or other non-volatile storage for later execution, or both. In this manner, computer system 700 may obtain application program code in the form of a signal on a carrier wave.
- instructions and data may initially be carried on a magnetic disk of a remote computer such as host 782 .
- the remote computer loads the instructions and data into its dynamic memory and sends the instructions and data over a telephone line using a modem.
- a modem local to the computer system 700 receives the instructions and data on a telephone line and uses an infra-red transmitter to convert the instructions and data to a signal on an infra-red a carrier wave serving as the network link 778 .
- An infrared detector serving as communications interface 770 receives the instructions and data carried in the infrared signal and places information representing the instructions and data onto bus 710 .
- Bus 710 carries the information to memory 704 from which processor 702 retrieves and executes the instructions using some of the data sent with the instructions.
- the instructions and data received in memory 704 may optionally be stored on storage device 708 , either before or after execution by the processor 702 .
- FIG. 8 illustrates a chip set 800 .
- Chip set 800 is programmed to perform one or more steps of a method described herein and includes, for instance, the processor and memory components described with respect to FIG. 7 incorporated in one or more physical packages (e.g., chips).
- a physical package includes an arrangement of one or more materials, components, and/or wires on a structural assembly (e.g., a baseboard) to provide one or more characteristics such as physical strength, conservation of size, and/or limitation of electrical interaction.
- the chip set can be implemented in a single chip.
- Chip set 800 or a portion thereof, constitutes a means for performing one or more steps of a method described herein.
- the chip set 800 includes a communication mechanism such as a bus 801 for passing information among the components of the chip set 800 .
- a processor 803 has connectivity to the bus 801 to execute instructions and process information stored in, for example, a memory 805 .
- the processor 803 may include one or more processing cores with each core configured to perform independently.
- a multi-core processor enables multiprocessing within a single physical package. Examples of a multi-core processor include two, four, eight, or greater numbers of processing cores.
- the processor 803 may include one or more microprocessors configured in tandem via the bus 801 to enable independent execution of instructions, pipelining, and multithreading.
- the processor 803 may also be accompanied with one or more specialized components to perform certain processing functions and tasks such as one or more digital signal processors (DSP) 807 , or one or more application-specific integrated circuits (ASIC) 809 .
- DSP digital signal processor
- ASIC application-specific integrated circuits
- a DSP 807 typically is configured to process real-world signals (e.g., sound) in real time independently of the processor 803 .
- an ASIC 809 can be configured to performed specialized functions not easily performed by a general purposed processor.
- Other specialized components to aid in performing the inventive functions described herein include one or more field programmable gate arrays (FPGA) (not shown), one or more controllers (not shown), or one or more other special-purpose computer chips.
- FPGA field programmable gate arrays
- the processor 803 and accompanying components have connectivity to the memory 805 via the bus 801 .
- the memory 805 includes both dynamic memory (e.g., RAM, magnetic disk, writable optical disk, etc.) and static memory (e.g., ROM, CD-ROM, etc.) for storing executable instructions that when executed perform one or more steps of a method described herein.
- the memory 805 also stores the data associated with or generated by the execution of one or more steps of the methods described herein.
- references to implementations or elements or acts of the systems and methods herein referred to in the singular can also embrace implementations including a plurality of these elements, and any references in plural to any implementation or element or act herein can also embrace implementations including only a single element.
- References in the singular or plural form are not intended to limit the presently disclosed systems or methods, their components, acts, or elements to single or plural configurations.
- References to any act or element being based on any information, act or element can include implementations where the act or element is based at least in part on any information, act, or element.
- Coupled and variations thereof includes the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent or fixed) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members coupled directly with or to each other, with the two members coupled with each other using a separate intervening member and any additional intermediate members coupled with one another, or with the two members coupled with each other using an intervening member that is integrally formed as a single unitary body with one of the two members.
- Coupled or variations thereof are modified by an additional term (e.g., directly coupled)
- the generic definition of “coupled” provided above is modified by the plain language meaning of the additional term (e.g., “directly coupled” means the joining of two members without any separate intervening member), resulting in a narrower definition than the generic definition of “coupled” provided above.
- Such coupling may be mechanical, electrical, or fluidic.
- references to “or” can be construed as inclusive so that any terms described using “or” can indicate any of a single, more than one, and all of the described terms.
- a reference to “at least one of ‘A’ and ‘B’” can include only ‘A’, only ‘B’, as well as both ‘A’ and ‘B’.
- Such references used in conjunction with “comprising” or other open terminology can include additional items.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
Where c is the speed of light in the medium, v0 is the velocity of the observer and vs is the velocity of the source along the vector connecting source to receiver. Note that the two frequencies are the same if the observer and source are moving at the same speed in the same direction on the vector between the two. The difference between the two frequencies, Δf=f′−f, is the Doppler shift, ΔfD, which causes problems for the range measurement, and is given by
Note that the magnitude of the error increases with the frequency f of the signal. Note also that for a stationary LIDAR system (vo=0), for an object moving at 10 meters a second (vs=10), and visible light of frequency about 500 THz, then the size of the error is on the order of 16 megahertz (MHz, 1 MHz=106 hertz, Hz, 1 Hz=1 cycle per second). In various implementations described below, the Doppler shift error is detected and used to process the data for the calculation of range.
R=c*Δt/2 (3)
f R=(f 2 −f 1)/τ*R/c=2BR/cτ (4a)
The value of fR can be measured by the frequency difference between the transmitted
R=f R cτ/2B (4b)
If the returned signal arrives after the pulse is completely transmitted, that is, if 2R/c is greater than r, then Equations 4a and 4b are not valid. In this case, the reference signal can be delayed a known or fixed amount to ensure the returned signal overlaps the reference signal. The fixed or known delay time of the reference signal can be multiplied by the speed of light, c, to give an additional range that is added to range computed from Equation 4b. While the absolute range may be off due to uncertainty of the speed of light in the medium, this is a near-constant error and the relative ranges based on the frequency difference are still very precise.
n 1 sin θ1 =n 2 sin θ2 (5)
where n1 is the index of refraction of the
where y is a distance of the
Claims (19)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/725,419 US10712431B1 (en) | 2019-01-04 | 2019-12-23 | Systems and methods for refractive beam-steering |
US16/875,114 US11822010B2 (en) | 2019-01-04 | 2020-05-15 | LIDAR system |
US16/888,071 US20200292674A1 (en) | 2019-01-04 | 2020-05-29 | Systems and methods for refractive beam-steering |
US18/481,678 US20240151819A1 (en) | 2019-01-04 | 2023-10-05 | Lidar system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962788368P | 2019-01-04 | 2019-01-04 | |
US16/725,419 US10712431B1 (en) | 2019-01-04 | 2019-12-23 | Systems and methods for refractive beam-steering |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/875,114 Continuation-In-Part US11822010B2 (en) | 2019-01-04 | 2020-05-15 | LIDAR system |
US16/888,071 Continuation US20200292674A1 (en) | 2019-01-04 | 2020-05-29 | Systems and methods for refractive beam-steering |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200217935A1 US20200217935A1 (en) | 2020-07-09 |
US10712431B1 true US10712431B1 (en) | 2020-07-14 |
Family
ID=69185747
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/725,419 Active US10712431B1 (en) | 2019-01-04 | 2019-12-23 | Systems and methods for refractive beam-steering |
US16/888,071 Pending US20200292674A1 (en) | 2019-01-04 | 2020-05-29 | Systems and methods for refractive beam-steering |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/888,071 Pending US20200292674A1 (en) | 2019-01-04 | 2020-05-29 | Systems and methods for refractive beam-steering |
Country Status (8)
Country | Link |
---|---|
US (2) | US10712431B1 (en) |
EP (1) | EP3906422A1 (en) |
JP (1) | JP7121862B2 (en) |
KR (3) | KR102577234B1 (en) |
CN (1) | CN113260873A (en) |
AU (2) | AU2019418766B2 (en) |
CA (1) | CA3125553C (en) |
WO (1) | WO2020142316A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210072381A1 (en) * | 2019-07-16 | 2021-03-11 | Blackmore Sensors & Analytics, Llc | Method and system for enhanced velocity resolution and signal to noise ratio in optical phase-encoded range detection |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10838047B2 (en) | 2018-04-17 | 2020-11-17 | Santec Corporation | Systems and methods for LIDAR scanning of an environment over a sweep of wavelengths |
US11067671B2 (en) | 2018-04-17 | 2021-07-20 | Santec Corporation | LIDAR sensing arrangements |
US11360214B2 (en) * | 2020-10-08 | 2022-06-14 | Aeva, Inc. | Techniques for ghosting mitigation in coherent lidar systems |
CN113991415B (en) * | 2021-09-17 | 2022-11-08 | 国科大杭州高等研究院 | Laser adaptive coupling cavity matching system and method for ultrastable laser |
WO2024092177A1 (en) * | 2022-10-27 | 2024-05-02 | Analog Photonics LLC | Doppler processing in coherent lidar |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5216534A (en) * | 1992-04-24 | 1993-06-01 | E-Systems, Inc. | Read-write head for an optical tape recorder |
US5223986A (en) * | 1990-08-09 | 1993-06-29 | Kaman Aerospace Corporation | Radiation projecting device |
US5227910A (en) | 1992-03-27 | 1993-07-13 | Khattak Anwar S | High resolution laser beam scanner and method for operation thereof |
US5231401A (en) * | 1990-08-10 | 1993-07-27 | Kaman Aerospace Corporation | Imaging lidar system |
US5999302A (en) * | 1997-06-27 | 1999-12-07 | Speedring Systems, Inc. | Polygon scanner having a fluid film bearing and active correction of cross-scan and in-scan errors |
GB2349231A (en) * | 1999-04-22 | 2000-10-25 | Thomas Swan & Company Limited | Phase modulator |
US20020140924A1 (en) * | 1999-01-08 | 2002-10-03 | Richard J. Wangler | Vehicle classification and axle counting sensor system and method |
US20040222366A1 (en) | 2001-08-09 | 2004-11-11 | Rainer Frick | Device for distance measurement |
US20090009842A1 (en) * | 2007-07-02 | 2009-01-08 | Texas Instruments Incorporated | Optical architecture having a rotating polygon for use in imaging systems |
US20130120989A1 (en) * | 2011-11-16 | 2013-05-16 | National Central University | Atmosphere Light with Interacting Functions |
US20150282707A1 (en) * | 2014-04-08 | 2015-10-08 | Kabushiki Kaisha Topcon | Ophthalmologic apparatus |
US20170329014A1 (en) * | 2016-05-13 | 2017-11-16 | Korea Electronics Technology Institute | Light detection and ranging (lidar) time of flight (tof) sensor capable of inputting and outputting simultaneously and 3-dimensional laser scanning system including the same |
EP3330766A1 (en) | 2015-07-27 | 2018-06-06 | Konica Minolta, Inc. | Mirror unit and optical-scanning-type object detection device |
US20180188355A1 (en) * | 2016-12-31 | 2018-07-05 | Innovusion Ireland Limited | 2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES |
DE102017200692A1 (en) | 2017-01-17 | 2018-07-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Omnidirectional lighting device and method for scanning a solid angle range |
US20180284286A1 (en) * | 2017-03-31 | 2018-10-04 | Luminar Technologies, Inc. | Multi-eye lidar system |
US20190361119A1 (en) * | 2018-05-24 | 2019-11-28 | Samsung Electronics Co., Ltd. | Lidar device |
US20200025879A1 (en) * | 2017-12-07 | 2020-01-23 | Ouster, Inc. | Light ranging system with opposing circuit boards |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2227965B (en) * | 1988-10-12 | 1993-02-10 | Rolls Royce Plc | Apparatus for drilling a shaped hole in a workpiece |
JPH06148556A (en) * | 1992-11-10 | 1994-05-27 | Canon Inc | Optical-scanning device |
US7418346B2 (en) * | 1997-10-22 | 2008-08-26 | Intelligent Technologies International, Inc. | Collision avoidance methods and systems |
JPH09325290A (en) * | 1996-06-04 | 1997-12-16 | Matsushita Electric Ind Co Ltd | Scanning optical device |
JPH1144750A (en) * | 1997-05-30 | 1999-02-16 | Aisin Seiki Co Ltd | Optical radar |
JPH1184291A (en) * | 1997-09-11 | 1999-03-26 | Olympus Optical Co Ltd | Scanning optical system |
JPH11305156A (en) * | 1998-04-23 | 1999-11-05 | Aisin Seiki Co Ltd | Optical scanner |
JP2005291787A (en) * | 2004-03-31 | 2005-10-20 | Denso Corp | Distance detection device |
JP4830311B2 (en) * | 2005-02-21 | 2011-12-07 | 株式会社デンソー | Automotive radar equipment |
JP2007155467A (en) * | 2005-12-05 | 2007-06-21 | Nidec Sankyo Corp | Light beam scanner |
US7544945B2 (en) * | 2006-02-06 | 2009-06-09 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Vertical cavity surface emitting laser (VCSEL) array laser scanner |
CN101256232A (en) * | 2007-02-28 | 2008-09-03 | 电装波动株式会社 | Laser radar apparatus for three-dimensional detection of objects |
JP2011039490A (en) * | 2009-07-17 | 2011-02-24 | Sony Corp | Image display device, head-mounted display, and light beam extending device |
JP5402772B2 (en) * | 2010-03-25 | 2014-01-29 | 株式会社日本自動車部品総合研究所 | Optical radar device |
JP5648368B2 (en) * | 2010-08-23 | 2015-01-07 | ミツミ電機株式会社 | Optical scanning device |
US9504100B2 (en) * | 2011-05-31 | 2016-11-22 | Munro Design & Technologies, Llc | Selective radiation utilization apparatuses for high-efficiency photobioreactor illumination and methods thereof |
US9086273B1 (en) * | 2013-03-08 | 2015-07-21 | Google Inc. | Microrod compression of laser beam in combination with transmit lens |
EP3207405B1 (en) * | 2014-10-17 | 2020-09-23 | Commonwealth Scientific and Industrial Research Organisation | Range finding apparatus and system |
KR20180058068A (en) * | 2016-11-23 | 2018-05-31 | 전자부품연구원 | Mirror rotational optical structure for 360˚ multichannel scanning and 3d lidar system comprising the same |
KR20180126927A (en) * | 2017-05-19 | 2018-11-28 | 정종택 | A eight-channel ridar |
US11415675B2 (en) * | 2017-10-09 | 2022-08-16 | Luminar, Llc | Lidar system with adjustable pulse period |
CN207318710U (en) * | 2017-11-02 | 2018-05-04 | 厦门市和奕华光电科技有限公司 | A kind of more harness hybrid laser radars of list laser |
KR102664391B1 (en) * | 2018-08-07 | 2024-05-08 | 삼성전자주식회사 | optical scanner and lidar system including the same |
-
2019
- 2019-12-23 CA CA3125553A patent/CA3125553C/en active Active
- 2019-12-23 EP EP19839775.4A patent/EP3906422A1/en active Pending
- 2019-12-23 KR KR1020217023519A patent/KR102577234B1/en active IP Right Grant
- 2019-12-23 WO PCT/US2019/068351 patent/WO2020142316A1/en unknown
- 2019-12-23 AU AU2019418766A patent/AU2019418766B2/en active Active
- 2019-12-23 JP JP2021538998A patent/JP7121862B2/en active Active
- 2019-12-23 KR KR1020237029630A patent/KR102623279B1/en active Application Filing
- 2019-12-23 CN CN201980087957.5A patent/CN113260873A/en active Pending
- 2019-12-23 US US16/725,419 patent/US10712431B1/en active Active
- 2019-12-23 KR KR1020247000342A patent/KR102664858B1/en active IP Right Grant
-
2020
- 2020-05-29 US US16/888,071 patent/US20200292674A1/en active Pending
-
2021
- 2021-09-09 AU AU2021229207A patent/AU2021229207B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5223986A (en) * | 1990-08-09 | 1993-06-29 | Kaman Aerospace Corporation | Radiation projecting device |
US5231401A (en) * | 1990-08-10 | 1993-07-27 | Kaman Aerospace Corporation | Imaging lidar system |
US5227910A (en) | 1992-03-27 | 1993-07-13 | Khattak Anwar S | High resolution laser beam scanner and method for operation thereof |
US5216534A (en) * | 1992-04-24 | 1993-06-01 | E-Systems, Inc. | Read-write head for an optical tape recorder |
US5999302A (en) * | 1997-06-27 | 1999-12-07 | Speedring Systems, Inc. | Polygon scanner having a fluid film bearing and active correction of cross-scan and in-scan errors |
US20020140924A1 (en) * | 1999-01-08 | 2002-10-03 | Richard J. Wangler | Vehicle classification and axle counting sensor system and method |
GB2349231A (en) * | 1999-04-22 | 2000-10-25 | Thomas Swan & Company Limited | Phase modulator |
US20040222366A1 (en) | 2001-08-09 | 2004-11-11 | Rainer Frick | Device for distance measurement |
US20090009842A1 (en) * | 2007-07-02 | 2009-01-08 | Texas Instruments Incorporated | Optical architecture having a rotating polygon for use in imaging systems |
US20130120989A1 (en) * | 2011-11-16 | 2013-05-16 | National Central University | Atmosphere Light with Interacting Functions |
US20150282707A1 (en) * | 2014-04-08 | 2015-10-08 | Kabushiki Kaisha Topcon | Ophthalmologic apparatus |
EP3330766A1 (en) | 2015-07-27 | 2018-06-06 | Konica Minolta, Inc. | Mirror unit and optical-scanning-type object detection device |
US20170329014A1 (en) * | 2016-05-13 | 2017-11-16 | Korea Electronics Technology Institute | Light detection and ranging (lidar) time of flight (tof) sensor capable of inputting and outputting simultaneously and 3-dimensional laser scanning system including the same |
US20180188355A1 (en) * | 2016-12-31 | 2018-07-05 | Innovusion Ireland Limited | 2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES |
DE102017200692A1 (en) | 2017-01-17 | 2018-07-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Omnidirectional lighting device and method for scanning a solid angle range |
US20180284286A1 (en) * | 2017-03-31 | 2018-10-04 | Luminar Technologies, Inc. | Multi-eye lidar system |
US20200025879A1 (en) * | 2017-12-07 | 2020-01-23 | Ouster, Inc. | Light ranging system with opposing circuit boards |
US20190361119A1 (en) * | 2018-05-24 | 2019-11-28 | Samsung Electronics Co., Ltd. | Lidar device |
Non-Patent Citations (1)
Title |
---|
International Search Report and Written Opinion issued on PCT/US2019/068351 dated Apr. 9, 2020 pp. 1-14. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210072381A1 (en) * | 2019-07-16 | 2021-03-11 | Blackmore Sensors & Analytics, Llc | Method and system for enhanced velocity resolution and signal to noise ratio in optical phase-encoded range detection |
US11709267B2 (en) * | 2019-07-16 | 2023-07-25 | Blackmore Sensors & Analytics, Llc | Method and system for enhanced velocity resolution and signal to noise ratio in optical phase-encoded range detection |
Also Published As
Publication number | Publication date |
---|---|
KR20210105981A (en) | 2021-08-27 |
US20200217935A1 (en) | 2020-07-09 |
AU2021229207A1 (en) | 2021-10-07 |
CN113260873A (en) | 2021-08-13 |
US20200292674A1 (en) | 2020-09-17 |
KR102664858B1 (en) | 2024-05-08 |
AU2021229207B2 (en) | 2022-12-01 |
CA3125553C (en) | 2024-02-20 |
KR102623279B1 (en) | 2024-01-10 |
AU2019418766B2 (en) | 2021-08-12 |
WO2020142316A1 (en) | 2020-07-09 |
KR102577234B1 (en) | 2023-09-08 |
CA3125553A1 (en) | 2020-07-09 |
KR20230130168A (en) | 2023-09-11 |
AU2019418766A1 (en) | 2021-07-22 |
JP7121862B2 (en) | 2022-08-18 |
JP2022508460A (en) | 2022-01-19 |
EP3906422A1 (en) | 2021-11-10 |
KR20240006017A (en) | 2024-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11181641B2 (en) | Lidar system for autonomous vehicle | |
US10712431B1 (en) | Systems and methods for refractive beam-steering | |
US11822010B2 (en) | LIDAR system | |
US10809381B2 (en) | Method and system for refractive beam-steering | |
US11953677B2 (en) | Method and system for optimizing scanning of coherent LIDAR | |
AU2021271815B2 (en) | Lidar system | |
CN116057405B (en) | LIDAR system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BLACKMORE SENSORS AND ANALYTICS, INC., MONTANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANGUS, EDWARD JOSEPH;GALLOWAY, RYAN MOORE;SIGNING DATES FROM 20190218 TO 20190219;REEL/FRAME:051360/0638 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: BLACKMORE SENSORS & ANALYTICS, LLC, MONTANA Free format text: MERGER;ASSIGNOR:BLACKMORE SENSORS & ANALYTICS, INC.;REEL/FRAME:051382/0240 Effective date: 20190826 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: AURORA OPERATIONS, INC., PENNSYLVANIA Free format text: PATENT ASSIGNMENT AGREEMENT;ASSIGNOR:BLACKMORE SENSORS & ANALYTICS, LLC;REEL/FRAME:065849/0949 Effective date: 20231201 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |