US10632132B2 - Methods for treating heart transplant rejection - Google Patents

Methods for treating heart transplant rejection Download PDF

Info

Publication number
US10632132B2
US10632132B2 US16/256,235 US201916256235A US10632132B2 US 10632132 B2 US10632132 B2 US 10632132B2 US 201916256235 A US201916256235 A US 201916256235A US 10632132 B2 US10632132 B2 US 10632132B2
Authority
US
United States
Prior art keywords
available
compound
subject
effective amount
treating heart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/256,235
Other versions
US20190255077A1 (en
Inventor
Carlos Batthyány
Gloria Virginia López
Carlos Escande
Williams Arturo Porcal Quinta
Germán Adrian Galliussi López
Marcelo Hill
Mercedes Segovia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/256,235 priority Critical patent/US10632132B2/en
Publication of US20190255077A1 publication Critical patent/US20190255077A1/en
Priority to US16/822,657 priority patent/US20200215083A1/en
Application granted granted Critical
Publication of US10632132B2 publication Critical patent/US10632132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection

Definitions

  • Heart transplantation is currently the only definitive solution when a heart has total failure of its functions.
  • allografts of the heart are usually performed, necessarily carrying immunosuppression protocols to avoid acute rejection.
  • chronic rejection has not yet been successfully managed.
  • the side effects associated with the chronic use of immunosupressants constitute a therapeutic problem due to their toxicity and the fact that they generate a global immunodepression to the patient.
  • therapeutic strategies are sought to avoid their chronic use and high doses of them.
  • all therapies to avoid the rejection of allotransplantation had as objective the manipulation of the adaptive immunity.
  • a novel therapeutic protocol which includes a combination with classical immunosuppressants (administered in low doses and short duration) in order to obtain synergistic and long-term effects for allograft survival.
  • One embodiment of the described invention is a therapeutic approach to treat heart allotransplantation rejection based on the inflammasome inhibition with a new anti-inflammatory nitroalkene.
  • the one or more secondary therapeutic agents is selected from the group consisting of calcineurin inhibitors, corticosteroids, cytotoxic immunosuppressants, immunosuppressant antibodies, sirolimus derivatives, other immunosuppressants, and any combination thereof.
  • composition further comprises one or more secondary therapeutic agents.
  • the pharmaceutical composition further comprises one or more secondary therapeutic agents selected from the group consisting of calcineurin inhibitors, corticosteroids, cytotoxic immunosuppressants, immunosuppressant antibodies, sirolimus derivatives, other immunosuppressants, and any combination thereof.
  • FIG. 1 demonstrates the inhibitory effect of SANA on NF- ⁇ B and NLRP3 inflamasome-dependent IL-1 ⁇ release in the plasma of C57BL/6 mice.
  • FIG. 2 demonstrates the inhibitory effect of SANA on NF- ⁇ B and NLRP3 inflamasome-dependent IL-1 ⁇ release in the peritoneum of C57BL/6 mice.
  • FIG. 3 demonstrates prolonged survival for fully mismatched heterotopic heart allograft in rat models treated with SANA.
  • the term “about” means plus or minus 5% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.
  • administering when used in conjunction with a therapeutic means to administer a therapeutic directly to a subject, whereby the agent positively impacts the target.
  • administering a composition may be accomplished by, for example, injection, oral administration, topical administration, or by these methods in combination with other known techniques. Such combination techniques include heating, radiation, ultrasound and the use of delivery agents.
  • administration and its variants are each understood to include concurrent and sequential provision of the compound or salt and other agents.
  • pharmaceutically acceptable it is meant the carrier, diluent, adjuvant, or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • composition as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • pharmaceutical composition is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
  • the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.
  • agent means a compound or composition utilized to treat, combat, ameliorate, prevent or improve an unwanted condition or disease of a patient.
  • agent active agent
  • therapeutic agent therapeutic agent
  • a “therapeutically effective amount” or “effective amount” of a composition is a predetermined amount calculated to achieve the desired effect, i.e., to inhibit, block, or reverse the activation, migration, proliferation, alteration of cellular function, and to preserve the normal function of cells.
  • the activity contemplated by the methods described herein includes both medical therapeutic and/or prophylactic treatment, as appropriate, and the compositions of the invention may be used to provide improvement in any of the conditions described. It is also contemplated that the compositions described herein may be administered to healthy subjects or individuals not exhibiting symptoms but who may be at risk of developing a particular disorder.
  • a therapeutically effective amount of compound of this invention is typically an amount such that when it is administered in a physiologically tolerable excipient composition, it is sufficient to achieve an effective systemic concentration or local concentration in the tissue.
  • treat refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder, or disease, or to obtain beneficial or desired clinical results.
  • beneficial or desired results include, but are not limited to, alleviation of symptoms; diminishment of the extent of the condition, disorder, or disease; stabilization (i.e., not worsening) of the state of the condition, disorder, or disease; delay in onset or slowing of the progression of the condition, disorder, or disease; amelioration of the condition, disorder, or disease state; and remission (whether partial or total), whether detectable or undetectable, or enhancement or improvement of the condition, disorder, or disease.
  • Treatment includes prolonging survival as compared to expected survival if not receiving treatment.
  • subject describes an organism, including mammals, to which treatment with the compositions and compounds according to the subject disclosure can be administered.
  • Mammalian species that can benefit from the disclosed methods include, but are not limited to, apes, chimpanzees, orangutans, humans, monkeys; and other animals such as dogs, cats, horses, cattle, pigs, sheep, goats, chickens, mice, rats, guinea pigs, and hamsters.
  • the subject is a human.
  • tissue describes an aggregate of cells typically of a particular kind together with their intercellular substance that form one of the structural materials of a subject.
  • organ describes a group of tissues that perform a specific function. For example, heart is a type of organ embodied herein.
  • the compounds and pharmaceutically-acceptable salts thereof can be administered by means that produces contact of the active agent with the agent's site of action. They can be administered by conventional means available for use in conjunction with pharmaceuticals in a dosage range of 0.001 to 1000 mg/kg of mammal (e.g. human) body weight per day in a single dose or in divided doses. One dosage range is 0.01 to 500 mg/kg body weight per day orally in a single dose or in divided doses. Administration can be delivered as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but typically are administered with a pharmaceutically acceptable excipient selected on the basis of the chosen route of administration and standard pharmaceutical practice.
  • Compounds can be administered by one or more ways.
  • the following routes may be utilized: oral, parenteral (including subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques), inhalation, buccal, sublingual, or rectal, in the form of a unit dosage of a pharmaceutical composition containing an effective amount of the compound and optionally in combination with one or more pharmaceutically-acceptable excipients such as stabilizers, anti-oxidants, lubricants, bulking agents, fillers, carriers, adjuvants, vehicles, diluents and other readily known excipients in standard pharmaceutical practice.
  • excipients such as stabilizers, anti-oxidants, lubricants, bulking agents, fillers, carriers, adjuvants, vehicles, diluents and other readily known excipients in standard pharmaceutical practice.
  • Liquid preparations suitable for oral administration can employ media such as water, glycols, oils, alcohols, and the like.
  • Solid preparations suitable for oral administration e.g. powders, pills, capsules and tablets
  • solid excipients such as starches, sugars, kaolin, lubricants, binders, disintegrating agents, antioxidants and the like.
  • compositions typically employ sterile water as a carrier and optionally other ingredients, such as solubility aids.
  • injectable solutions can be prepared, for example, using a carrier comprising a saline solution, a glucose solution or a solution containing a mixture of saline and glucose. Further guidance for methods suitable for use in preparing pharmaceutical compositions is provided in Remington: The Science and Practice of Pharmacy, 21 st edition (Lippincott Williams & Wilkins, 2006).
  • Therapeutic compounds can be administered orally in a dosage range of about 0.001 to 1000 mg/kg of mammal (e.g. human) body weight per day in a single dose or in divided doses.
  • One dosage range is about 0.01 to 500 mg/kg body weight per day orally in a single dose or in divided doses.
  • the compositions can be provided in the form of tablets or capsules containing about 1.0 to 500 mg of the active ingredient, particularly about 1, 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, and 750 mg of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated.
  • the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the subject undergoing therapy.
  • the dose frequency can range from multiple doses daily to monthly dosages.
  • the preferred dose frequency ranges from twice a day to every two weeks.
  • a more preferred dose frequency ranges from twice a day to weekly.
  • a most preferred dose frequency ranges from twice a day to twice a week.
  • compositions including the active agent can be administered to a subject in an “effective amount.”
  • An effective amount may be any amount that provides a beneficial effect to the patient, and in particular embodiments, the effective amount is an amount that may: (1) prevent or reduce rejection of heart tissue allografts and (2) prevent or reduce rejection of a transplanted heart.
  • compositions containing the compounds of the invention and a suitable carrier can be in various forms including, but not limited to, solids, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, and dry powders including an effective amount of an the active agent of the invention.
  • the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, antioxidants, preservatives and the like.
  • the means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance.
  • the active agent prepared as described above which are formulated as a solid dosage form for oral administration including capsules, tablets, pills, powders, and granules.
  • the active compound may be admixed with one or more inert diluent such as sucrose, lactose, or starch.
  • Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
  • the dosage forms may also comprise buffering agents and can additionally be prepared with enteric coatings.
  • an oily preparation of an active agent prepared as described above may be lyophilized to form a solid that may be mixed with one or more pharmaceutically acceptable excipient, carrier or diluent to form a tablet, and in yet another embodiment, the active agent may be crystallized to from a solid which may be combined with a pharmaceutically acceptable excipient, carrier or diluent to form a tablet.
  • a liquid dosage may include a pharmaceutically acceptable emulsion, solution, suspension, syrup, and elixir containing inert diluents commonly used in the art, such as water.
  • Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
  • the compounds can be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • suitable diluents include, but are not limited to those described below:
  • Vegetable oil refers to a compound, or mixture of compounds, formed from ethoxylation of vegetable oil, wherein at least one chain of polyethylene glycol is covalently bound to the vegetable oil.
  • the fatty acids may have between about twelve carbons to about eighteen carbons.
  • the amount of ethoxylation can vary from about 2 to about 200, about 5 to 100, about 10 to about 80, about 20 to about 60, or about 12 to about 18 of ethylene glycol repeat units.
  • the vegetable oil may be hydrogenated or unhydrogenated.
  • Suitable vegetable oils include, but are not limited to castor oil, hydrogenated castor oil, sesame oil, corn oil, peanut oil, olive oil, sunflower oil, safflower oil, soybean oil, benzyl benzoate, sesame oil, cottonseed oil, and palm oil.
  • Suitable vegetable oils include commercially available synthetic oils such as, but not limited to, MiglyolTM 810 and 812 (available from Dynamit Nobel Chemicals, Sweden) NeobeeTM M5 (available from Drew Chemical Corp.), AlofineTM (available from Jarchem Industries), the LubritabTM series (available from JRS Pharma), the SterotexTM (available from Abitec Corp.), SoftisanTM 154 (available from Sasol), CroduretTM (available from Croda), FancolTM (available from the Fanning Corp.), CutinaTM HR (available from Cognis), SimulsolTM (available from CJ Petrow), EmConTM CO (available from Amisol Co.), LipvolTM CO, SES, and HS-K (available from Lipo), and SterotexTM HM (available from Abitec Corp.).
  • synthetic oils such as, but not limited to, MiglyolTM 810 and 812 (available from Dynamit Nobel Chemicals, Sweden) NeobeeTM M5 (available from Drew Chemical Corp.), AlofineTM (available
  • Suitable vegetable oils including sesame, castor, corn, and cottonseed oils, include those listed in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients , (2006), 5th ed., which is incorporated herein by reference in its entirety.
  • Suitable polyethoxylated vegetable oils include but are not limited to, CremaphorTM EL or RH series (available from BASF), EmulphorTM EL-719 (available from Stepan products), and EmulphorTM EL-620P (available from GAF).
  • Mineral oils refers to both unrefined and refined (light) mineral oil. Suitable mineral oils include, but are not limited to, the AvatechTM grades (available from Avatar Corp.), DrakeolTM grades (available from Penreco), SiriusTM grades (available from Shell), and the CitationTM grades (available from Avater Corp.).
  • Castor oils refers to a compound formed from the ethoxylation of castor oil, wherein at least one chain of polyethylene glycol is covalently bound to the castor oil.
  • the castor oil may be hydrogenated or unhydrogenated.
  • Synonyms for polyethoxylated castor oil include, but are not limited to polyoxyl castor oil, hydrogenated polyoxyl castor oil, mcrogolglyceroli ricinoleas, macrogolglyceroli hydroxystearas, polyoxyl 35 castor oil, and polyoxyl 40 hydrogenated castor oil.
  • Suitable polyethoxylated castor oils include, but are not limited to, the NikkolTM HCO series (available from Nikko Chemicals Co.
  • Nikkol HCO-30, HC-40, HC-50, and HC-60 polyethylene glycol-30 hydrogenated castor oil, polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-50 hydrogenated castor oil, and polyethylene glycol-60 hydrogenated castor oil
  • EmulphorTM EL-719 castor oil 40 mole-ethoxylate, available from Stepan Products
  • CremophoreTM series available from BASF
  • Cremophore RH40, RH60, and EL35 polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-60 hydrogenated castor oil, and polyethylene glycol-35 hydrogenated castor oil, respectively
  • Emulgin® RO and HRE series available from Cognis PharmaLine.
  • Other suitable polyoxyethylene castor oil derivatives include those listed in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients , (2006), 5th ed., which is incorporated herein by reference in its entirety.
  • Sterol refers to a compound, or mixture of compounds, derived from the ethoxylation of sterol molecule.
  • Suitable polyethoyxlated sterols include, but are not limited to, PEG-24 cholesterol ether, SolulanTM C-24 (available from Amerchol); PEG-30 cholestanol, NikkolTM DHC (available from Nikko); Phytosterol, GENEROLTM series (available from Henkel); PEG-25 phyto sterol, NikkolTM BPSH-25 (available from Nikko); PEG-5 soya sterol, NikkolTM BPS-5 (available from Nikko); PEG-10 soya sterol, NikkolTM BPS-10 (available from Nikko); PEG-20 soya sterol, NikkolTM BPS-20 (available from Nikko); and PEG-30 soya sterol, NikkolTM BPS-30 (available from Nikko).
  • Polyethylene glycol As used herein, the term “polyethylene glycol” or “PEG” refers to a polymer containing ethylene glycol monomer units of formula —O—CH 2 —CH 2 —. Suitable polyethylene glycols may have a free hydroxyl group at each end of the polymer molecule, or may have one or more hydroxyl groups etherified with a lower alkyl, e.g., a methyl group. Also suitable are derivatives of polyethylene glycols having esterifiable carboxy groups. Polyethylene glycols useful in the present invention can be polymers of any chain length or molecular weight, and can include branching. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 9000.
  • the average molecular weight of the polyethylene glycol is from about 200 to about 5000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 900. In some embodiments, the average molecular weight of the polyethylene glycol is about 400.
  • Suitable polyethylene glycols include, but are not limited to polyethylene glycol-200, polyethylene glycol-300, polyethylene glycol-400, polyethylene glycol-600, and polyethylene glycol-900. The number following the dash in the name refers to the average molecular weight of the polymer. In some embodiments, the polyethylene glycol is polyethylene glycol-400.
  • Suitable polyethylene glycols include, but are not limited to the CarbowaxTM and CarbowaxTM Sentry series (available from Dow), the LipoxolTM series (available from Brenntag), the LutrolTM series (available from BASF), and the PluriolTM series (available from BASF).
  • Propylene glycol fatty acid ester refers to a monoether or diester, or mixtures thereof, formed between propylene glycol or polypropylene glycol and a fatty acid.
  • Fatty acids that are useful for deriving propylene glycol fatty alcohol ethers include, but are not limited to, those defined herein.
  • the monoester or diester is derived from propylene glycol.
  • the monoester or diester has about 1 to about 200 oxypropylene units.
  • the polypropylene glycol portion of the molecule has about 2 to about 100 oxypropylene units.
  • the monoester or diester has about 4 to about 50 oxypropylene units. In some embodiments, the monoester or diester has about 4 to about 30 oxypropylene units.
  • Suitable propylene glycol fatty acid esters include, but are not limited to, propylene glycol laurates: LauroglycolTM FCC and 90 (available from Gattefosse); propylene glycol caprylates: CapryolTM PGMC and 90 (available from Gatefosse); and propylene glycol dicaprylocaprates: LabrafacTM PG (available from Gatefosse).
  • Stearoyl macrogol glyceride refers to a polyglycolized glyceride synthesized predominately from stearic acid or from compounds derived predominately from stearic acid, although other fatty acids or compounds derived from other fatty acids may be used in the synthesis as well.
  • Suitable stearoyl macrogol glycerides include, but are not limited to, Gelucire® 50/13 (available from Gattefossé).
  • the diluent component comprises one or more of mannitol, lactose, sucrose, maltodextrin, sorbitol, xylitol, powdered cellulose, microcrystalline cellulose, carboxymethylcellulose, carboxyethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, methylhydroxyethylcellulose, starch, sodium starch glycolate, pregelatinized starch, a calcium phosphate, a metal carbonate, a metal oxide, or a metal aluminosilicate.
  • excipients or carriers for use in solid and/or liquid dosage forms include, but are not limited to:
  • Sorbitol Suitable sorbitols include, but are not limited to, PharmSorbidex E420 (available from Cargill), Liponic 70-NC and 76-NC (available from Lipo Chemical), Neosorb (available from Roquette), Partech SI (available from Merck), and Sorbogem (available from SPI Polyols).
  • Starch, sodium starch glycolate, and pregelatinized starch include, but are not limited to, those described in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients , (2006), 5th ed., which is incorporated herein by reference in its entirety.
  • the disintegrant may include one or more of croscarmellose sodium, carmellose calcium, crospovidone, alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floc, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate, a metal carbonate, sodium bicarbonate, calcium citrate, or calcium phosphate.
  • croscarmellose sodium, carmellose calcium, crospovidone alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floc, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate,
  • Still further embodiments of the invention include the active agent administered in combination with other active such as, for example, adjuvants, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.
  • compositions comprising an effective amount of the active agent and one or more pharmaceutically acceptable excipient.
  • pharmaceutical compositions include a pharmaceutical composition comprising an effective amount of pharmaceutically-acceptable salts of the active agent.
  • pharmaceutical composition comprising an effective amount of pharmaceutically-acceptable salts of active agent and a pharmaceutically-acceptable excipient.
  • the active agent may be administered simultaneously or separately with one or more secondary therapeutic agents.
  • Secondary therapeutic agents may include but are not limited to: immunosuppressant agents such as calcineurin inhibitors (cyclosporin, tacrolimus), corticosteroids (methylprednisolone, dexamethasone, prednisolone), cytotoxic immunosuppressants (azathioprine, chlorambucil, cyclophosphamide, mercaptopurine, methotrexate), immunosuppressant antibodies (eg antithymocyte globulins, basiliximab, infliximab), sirolimus derivatives (everolimus, sirolimus), other immunosuppressants (mycophenolate), and any combination thereof.
  • immunosuppressant agents such as calcineurin inhibitors (cyclosporin, tacrolimus), corticosteroids (methylprednisolone, dexamethasone, prednisolone), cytotoxic immunos
  • the compound of Formula I and pharmaceutical compositions thereof as described herein may be administered to subjects to treat tissue allograft rejection. In other embodiments, the compound of Formula I and pharmaceutical compositions thereof as described herein may be administered to subjects to prevent or reduce rejection of a transplanted organ. In some embodiments the compound of Formula I and pharmaceutical compositions thereof as described herein may be administered to subjects to prevent or reduce rejection of a transplanted heart. In some embodiments, the compound of Formula I and pharmaceutical compositions thereof as described herein may be used to prolong the survival of a transplanted heart.
  • NLRP3 inflammasome activation is a mechanism that mediates the rejection of allotransplantation and in one embodiment of the described invention, it is a possible therapeutic target to treat allotransplantation of a heart.
  • SANA in vivo, inhibits NF- ⁇ B and the NLRP3 inflammasome-dependent IL-1 ⁇ release.
  • C57BL/6 mice were treated with SANA or salicylic acid (SA) (100 mg/kg, IP) or the vehicle (DMSO) for 1 hour. Then were injected with LPS (10 mg/kg, IP) or PBS for 2 hours, with subsequent peritoneal washes and blood extractions.
  • SA salicylic acid
  • DMSO vehicle
  • FIG. 3 demonstrated SANA in a rat model, for a fully mismatched heterotopic heart allograft, prolonged the heart grafted survival respect to the control and its precursor drug.
  • Rats were administrated with SANA or SA (100 mg/kg), SANA (50 mg/kg) or vehicle (Phosphate buffer) by oral gavage every day since day ⁇ 1 until day 15 post-transplantation.
  • Heart heterotopic transplantation was done by implantation of the donor heart (Lewis 1W rat) into the receptor abdomen (Lewis 1A rat). Rejection was diagnosed when the heart lost functionality (beats has stopped).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Current therapeutic approach to treating heart allotransplantation rejection focus on immunosuppression protocols that carry harmful side effects after chronic use, which include global immune depression to the patient. The present inventors have discovered alternative and synergistic protocols based on inhibiting NF-κB and NLRP3 inflammasome-dependent IL-1β release with nitrated NSAID derivatives.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application 62/621,228 filed Jan. 24, 2018
BACKGROUND
Heart transplantation is currently the only definitive solution when a heart has total failure of its functions. In clinical practice allografts of the heart are usually performed, necessarily carrying immunosuppression protocols to avoid acute rejection. However, chronic rejection has not yet been successfully managed. In addition, the side effects associated with the chronic use of immunosupressants constitute a therapeutic problem due to their toxicity and the fact that they generate a global immunodepression to the patient. Currently, therapeutic strategies are sought to avoid their chronic use and high doses of them. Until now, all therapies to avoid the rejection of allotransplantation had as objective the manipulation of the adaptive immunity. Thus, there is a need to develop a novel therapeutic protocol, which includes a combination with classical immunosuppressants (administered in low doses and short duration) in order to obtain synergistic and long-term effects for allograft survival.
SUMMARY
One embodiment of the described invention is a therapeutic approach to treat heart allotransplantation rejection based on the inflammasome inhibition with a new anti-inflammatory nitroalkene.
One embodiment is a method of treating heart transplant rejection comprising administering to a subject in need thereof an effective amount of a compound of Formula I:
Figure US10632132-20200428-C00001
Another embodiment includes a method of treating heart transplant rejection comprising administering to a subject in need thereof an effective amount of a compound of Formula I:
Figure US10632132-20200428-C00002
further comprising administering one or more secondary therapeutic agents.
Another embodiment includes a method of treating heart transplant rejection comprising administering to a subject in need thereof an effective amount of a compound of Formula I:
Figure US10632132-20200428-C00003
further comprising administering one or more secondary therapeutic agents, wherein the one or more secondary therapeutic agents is selected from the group consisting of calcineurin inhibitors, corticosteroids, cytotoxic immunosuppressants, immunosuppressant antibodies, sirolimus derivatives, other immunosuppressants, and any combination thereof.
One embodiment is method of treating heart transplant rejection in a subject comprising administering to said subject a pharmaceutical composition comprised of an effective amount of a compound of Formula I:
Figure US10632132-20200428-C00004
or a pharmaceutically acceptable salt thereof, and a carrier.
Another embodiment includes a method of treating heart transplant rejection in a subject comprising administering to said subject a pharmaceutical composition comprised of an effective amount of a compound of Formula I:
Figure US10632132-20200428-C00005
or a pharmaceutically acceptable salt thereof, and a carrier, wherein the pharmaceutical composition further comprises one or more secondary therapeutic agents.
Another embodiment includes a method of treating heart transplant rejection in a subject comprising administering to said subject a pharmaceutical composition comprised of an effective amount of a compound of Formula I:
Figure US10632132-20200428-C00006
or a pharmaceutically acceptable salt thereof, and a carrier, wherein the pharmaceutical composition further comprises one or more secondary therapeutic agents selected from the group consisting of calcineurin inhibitors, corticosteroids, cytotoxic immunosuppressants, immunosuppressant antibodies, sirolimus derivatives, other immunosuppressants, and any combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 demonstrates the inhibitory effect of SANA on NF-κB and NLRP3 inflamasome-dependent IL-1β release in the plasma of C57BL/6 mice.
FIG. 2 demonstrates the inhibitory effect of SANA on NF-κB and NLRP3 inflamasome-dependent IL-1β release in the peritoneum of C57BL/6 mice.
FIG. 3 demonstrates prolonged survival for fully mismatched heterotopic heart allograft in rat models treated with SANA.
DESCRIPTION
Before the present compositions and methods are described, it is to be understood that this invention is not limited to the particular processes, compositions, or methodologies described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated by reference in their entirety. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
It must also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to a “cell” is a reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth.
As used herein, the term “about” means plus or minus 5% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%.
“Administering” when used in conjunction with a therapeutic means to administer a therapeutic directly to a subject, whereby the agent positively impacts the target. “Administering” a composition may be accomplished by, for example, injection, oral administration, topical administration, or by these methods in combination with other known techniques. Such combination techniques include heating, radiation, ultrasound and the use of delivery agents. When a compound is provided in combination with one or more other active agents, “administration” and its variants are each understood to include concurrent and sequential provision of the compound or salt and other agents.
By “pharmaceutically acceptable” it is meant the carrier, diluent, adjuvant, or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
“Composition” as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. Such term in relation to “pharmaceutical composition” is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.
As used herein, the term “agent,” “active agent,” “therapeutic agent,” or “therapeutic” means a compound or composition utilized to treat, combat, ameliorate, prevent or improve an unwanted condition or disease of a patient. Furthermore, the term “agent,” “active agent,” “therapeutic agent,” or “therapeutic” encompasses a combination of one or more of the compounds of the present invention.
A “therapeutically effective amount” or “effective amount” of a composition is a predetermined amount calculated to achieve the desired effect, i.e., to inhibit, block, or reverse the activation, migration, proliferation, alteration of cellular function, and to preserve the normal function of cells. The activity contemplated by the methods described herein includes both medical therapeutic and/or prophylactic treatment, as appropriate, and the compositions of the invention may be used to provide improvement in any of the conditions described. It is also contemplated that the compositions described herein may be administered to healthy subjects or individuals not exhibiting symptoms but who may be at risk of developing a particular disorder. The specific dose of a compound administered according to this invention to obtain therapeutic and/or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, the route of administration, and the condition being treated. However, it will be understood that the chosen dosage ranges are not intended to limit the scope of the invention in any way. A therapeutically effective amount of compound of this invention is typically an amount such that when it is administered in a physiologically tolerable excipient composition, it is sufficient to achieve an effective systemic concentration or local concentration in the tissue.
The terms “treat,” “treated,” or “treating” as used herein refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological condition, disorder, or disease, or to obtain beneficial or desired clinical results. For the purposes of this invention, beneficial or desired results include, but are not limited to, alleviation of symptoms; diminishment of the extent of the condition, disorder, or disease; stabilization (i.e., not worsening) of the state of the condition, disorder, or disease; delay in onset or slowing of the progression of the condition, disorder, or disease; amelioration of the condition, disorder, or disease state; and remission (whether partial or total), whether detectable or undetectable, or enhancement or improvement of the condition, disorder, or disease. Treatment includes prolonging survival as compared to expected survival if not receiving treatment.
The term “subject,” as used herein, describes an organism, including mammals, to which treatment with the compositions and compounds according to the subject disclosure can be administered. Mammalian species that can benefit from the disclosed methods include, but are not limited to, apes, chimpanzees, orangutans, humans, monkeys; and other animals such as dogs, cats, horses, cattle, pigs, sheep, goats, chickens, mice, rats, guinea pigs, and hamsters. Typically, the subject is a human.
The term “tissue,” as used herein, describes an aggregate of cells typically of a particular kind together with their intercellular substance that form one of the structural materials of a subject. The term “organ,” as used herein, describes a group of tissues that perform a specific function. For example, heart is a type of organ embodied herein.
Administration and Compositions
The compounds and pharmaceutically-acceptable salts thereof can be administered by means that produces contact of the active agent with the agent's site of action. They can be administered by conventional means available for use in conjunction with pharmaceuticals in a dosage range of 0.001 to 1000 mg/kg of mammal (e.g. human) body weight per day in a single dose or in divided doses. One dosage range is 0.01 to 500 mg/kg body weight per day orally in a single dose or in divided doses. Administration can be delivered as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but typically are administered with a pharmaceutically acceptable excipient selected on the basis of the chosen route of administration and standard pharmaceutical practice.
Compounds can be administered by one or more ways. For example, the following routes may be utilized: oral, parenteral (including subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques), inhalation, buccal, sublingual, or rectal, in the form of a unit dosage of a pharmaceutical composition containing an effective amount of the compound and optionally in combination with one or more pharmaceutically-acceptable excipients such as stabilizers, anti-oxidants, lubricants, bulking agents, fillers, carriers, adjuvants, vehicles, diluents and other readily known excipients in standard pharmaceutical practice.
Liquid preparations suitable for oral administration (e.g. suspensions, syrups, elixirs and other similar liquids) can employ media such as water, glycols, oils, alcohols, and the like. Solid preparations suitable for oral administration (e.g. powders, pills, capsules and tablets) can employ solid excipients such as starches, sugars, kaolin, lubricants, binders, disintegrating agents, antioxidants and the like.
Parenteral compositions typically employ sterile water as a carrier and optionally other ingredients, such as solubility aids. Injectable solutions can be prepared, for example, using a carrier comprising a saline solution, a glucose solution or a solution containing a mixture of saline and glucose. Further guidance for methods suitable for use in preparing pharmaceutical compositions is provided in Remington: The Science and Practice of Pharmacy, 21st edition (Lippincott Williams & Wilkins, 2006).
Therapeutic compounds can be administered orally in a dosage range of about 0.001 to 1000 mg/kg of mammal (e.g. human) body weight per day in a single dose or in divided doses. One dosage range is about 0.01 to 500 mg/kg body weight per day orally in a single dose or in divided doses. For oral administration, the compositions can be provided in the form of tablets or capsules containing about 1.0 to 500 mg of the active ingredient, particularly about 1, 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, and 750 mg of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. The specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the subject undergoing therapy. In view of the factors affecting the specific dose level and frequency it is contemplated that the dose frequency can range from multiple doses daily to monthly dosages. The preferred dose frequency ranges from twice a day to every two weeks. A more preferred dose frequency ranges from twice a day to weekly. A most preferred dose frequency ranges from twice a day to twice a week.
In the methods of various embodiments, pharmaceutical compositions including the active agent can be administered to a subject in an “effective amount.” An effective amount may be any amount that provides a beneficial effect to the patient, and in particular embodiments, the effective amount is an amount that may: (1) prevent or reduce rejection of heart tissue allografts and (2) prevent or reduce rejection of a transplanted heart.
Pharmaceutical formulations containing the compounds of the invention and a suitable carrier can be in various forms including, but not limited to, solids, solutions, powders, fluid emulsions, fluid suspensions, semi-solids, and dry powders including an effective amount of an the active agent of the invention. It is also known in the art that the active ingredients can be contained in such formulations with pharmaceutically acceptable diluents, fillers, disintegrants, binders, lubricants, surfactants, hydrophobic vehicles, water soluble vehicles, emulsifiers, buffers, humectants, moisturizers, solubilizers, antioxidants, preservatives and the like. The means and methods for administration are known in the art and an artisan can refer to various pharmacologic references for guidance. For example, Modern Pharmaceutics, Banker & Rhodes, Marcel Dekker, Inc. (1979); and Goodman & Gilman's, The Pharmaceutical Basis of Therapeutics, 6th Edition, MacMillan Publishing Co., New York (1980) both of which are hereby incorporated by reference in their entireties can be consulted.
Other embodiments of the invention include the active agent prepared as described above which are formulated as a solid dosage form for oral administration including capsules, tablets, pills, powders, and granules. In such embodiments, the active compound may be admixed with one or more inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents and can additionally be prepared with enteric coatings.
In another exemplary embodiment, an oily preparation of an active agent prepared as described above may be lyophilized to form a solid that may be mixed with one or more pharmaceutically acceptable excipient, carrier or diluent to form a tablet, and in yet another embodiment, the active agent may be crystallized to from a solid which may be combined with a pharmaceutically acceptable excipient, carrier or diluent to form a tablet.
The means and methods for tableting are known in the art and one of ordinary skill in the art can refer to various references for guidance. For example, Pharmaceutical Manufacturing Handbook: Production and Processes, Shayne Cox Gad, John Wiley & Sons, Inc., Hoboken, N.J. (2008), which is hereby incorporated by reference in its entirety can be consulted.
Further embodiments which may be useful for oral administration of the active agent include liquid dosage forms. In such embodiments, a liquid dosage may include a pharmaceutically acceptable emulsion, solution, suspension, syrup, and elixir containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents. Thus, for example, the compounds can be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt. Other suitable diluents include, but are not limited to those described below:
Vegetable oil: As used herein, the term “vegetable oil” refers to a compound, or mixture of compounds, formed from ethoxylation of vegetable oil, wherein at least one chain of polyethylene glycol is covalently bound to the vegetable oil. In some embodiments, the fatty acids may have between about twelve carbons to about eighteen carbons. In some embodiments, the amount of ethoxylation can vary from about 2 to about 200, about 5 to 100, about 10 to about 80, about 20 to about 60, or about 12 to about 18 of ethylene glycol repeat units. The vegetable oil may be hydrogenated or unhydrogenated. Suitable vegetable oils include, but are not limited to castor oil, hydrogenated castor oil, sesame oil, corn oil, peanut oil, olive oil, sunflower oil, safflower oil, soybean oil, benzyl benzoate, sesame oil, cottonseed oil, and palm oil. Other suitable vegetable oils include commercially available synthetic oils such as, but not limited to, Miglyol™ 810 and 812 (available from Dynamit Nobel Chemicals, Sweden) Neobee™ M5 (available from Drew Chemical Corp.), Alofine™ (available from Jarchem Industries), the Lubritab™ series (available from JRS Pharma), the Sterotex™ (available from Abitec Corp.), Softisan™ 154 (available from Sasol), Croduret™ (available from Croda), Fancol™ (available from the Fanning Corp.), Cutina™ HR (available from Cognis), Simulsol™ (available from CJ Petrow), EmCon™ CO (available from Amisol Co.), Lipvol™ CO, SES, and HS-K (available from Lipo), and Sterotex™ HM (available from Abitec Corp.). Other suitable vegetable oils, including sesame, castor, corn, and cottonseed oils, include those listed in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety. Suitable polyethoxylated vegetable oils, include but are not limited to, Cremaphor™ EL or RH series (available from BASF), Emulphor™ EL-719 (available from Stepan products), and Emulphor™ EL-620P (available from GAF).
Mineral oils: As used herein, the term “mineral oil” refers to both unrefined and refined (light) mineral oil. Suitable mineral oils include, but are not limited to, the Avatech™ grades (available from Avatar Corp.), Drakeol™ grades (available from Penreco), Sirius™ grades (available from Shell), and the Citation™ grades (available from Avater Corp.).
Castor oils: As used herein, the term “castor oil,” refers to a compound formed from the ethoxylation of castor oil, wherein at least one chain of polyethylene glycol is covalently bound to the castor oil. The castor oil may be hydrogenated or unhydrogenated. Synonyms for polyethoxylated castor oil include, but are not limited to polyoxyl castor oil, hydrogenated polyoxyl castor oil, mcrogolglyceroli ricinoleas, macrogolglyceroli hydroxystearas, polyoxyl 35 castor oil, and polyoxyl 40 hydrogenated castor oil. Suitable polyethoxylated castor oils include, but are not limited to, the Nikkol™ HCO series (available from Nikko Chemicals Co. Ltd.), such as Nikkol HCO-30, HC-40, HC-50, and HC-60 (polyethylene glycol-30 hydrogenated castor oil, polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-50 hydrogenated castor oil, and polyethylene glycol-60 hydrogenated castor oil, Emulphor™ EL-719 (castor oil 40 mole-ethoxylate, available from Stepan Products), the Cremophore™ series (available from BASF), which includes Cremophore RH40, RH60, and EL35 (polyethylene glycol-40 hydrogenated castor oil, polyethylene glycol-60 hydrogenated castor oil, and polyethylene glycol-35 hydrogenated castor oil, respectively), and the Emulgin® RO and HRE series (available from Cognis PharmaLine). Other suitable polyoxyethylene castor oil derivatives include those listed in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.
Sterol: As used herein, the term “sterol” refers to a compound, or mixture of compounds, derived from the ethoxylation of sterol molecule. Suitable polyethoyxlated sterols include, but are not limited to, PEG-24 cholesterol ether, Solulan™ C-24 (available from Amerchol); PEG-30 cholestanol, Nikkol™ DHC (available from Nikko); Phytosterol, GENEROL™ series (available from Henkel); PEG-25 phyto sterol, Nikkol™ BPSH-25 (available from Nikko); PEG-5 soya sterol, Nikkol™ BPS-5 (available from Nikko); PEG-10 soya sterol, Nikkol™ BPS-10 (available from Nikko); PEG-20 soya sterol, Nikkol™ BPS-20 (available from Nikko); and PEG-30 soya sterol, Nikkol™ BPS-30 (available from Nikko).
Polyethylene glycol: As used herein, the term “polyethylene glycol” or “PEG” refers to a polymer containing ethylene glycol monomer units of formula —O—CH2—CH2—. Suitable polyethylene glycols may have a free hydroxyl group at each end of the polymer molecule, or may have one or more hydroxyl groups etherified with a lower alkyl, e.g., a methyl group. Also suitable are derivatives of polyethylene glycols having esterifiable carboxy groups. Polyethylene glycols useful in the present invention can be polymers of any chain length or molecular weight, and can include branching. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 9000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 5000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 900. In some embodiments, the average molecular weight of the polyethylene glycol is about 400. Suitable polyethylene glycols include, but are not limited to polyethylene glycol-200, polyethylene glycol-300, polyethylene glycol-400, polyethylene glycol-600, and polyethylene glycol-900. The number following the dash in the name refers to the average molecular weight of the polymer. In some embodiments, the polyethylene glycol is polyethylene glycol-400. Suitable polyethylene glycols include, but are not limited to the Carbowax™ and Carbowax™ Sentry series (available from Dow), the Lipoxol™ series (available from Brenntag), the Lutrol™ series (available from BASF), and the Pluriol™ series (available from BASF).
Propylene glycol fatty acid ester: As used herein, the term “propylene glycol fatty acid ester” refers to a monoether or diester, or mixtures thereof, formed between propylene glycol or polypropylene glycol and a fatty acid. Fatty acids that are useful for deriving propylene glycol fatty alcohol ethers include, but are not limited to, those defined herein. In some embodiments, the monoester or diester is derived from propylene glycol. In some embodiments, the monoester or diester has about 1 to about 200 oxypropylene units. In some embodiments, the polypropylene glycol portion of the molecule has about 2 to about 100 oxypropylene units. In some embodiments, the monoester or diester has about 4 to about 50 oxypropylene units. In some embodiments, the monoester or diester has about 4 to about 30 oxypropylene units. Suitable propylene glycol fatty acid esters include, but are not limited to, propylene glycol laurates: Lauroglycol™ FCC and 90 (available from Gattefosse); propylene glycol caprylates: Capryol™ PGMC and 90 (available from Gatefosse); and propylene glycol dicaprylocaprates: Labrafac™ PG (available from Gatefosse).
Stearoyl macrogol glyceride: Stearoyl macrogol glyceride refers to a polyglycolized glyceride synthesized predominately from stearic acid or from compounds derived predominately from stearic acid, although other fatty acids or compounds derived from other fatty acids may be used in the synthesis as well. Suitable stearoyl macrogol glycerides include, but are not limited to, Gelucire® 50/13 (available from Gattefossé).
In some embodiments, the diluent component comprises one or more of mannitol, lactose, sucrose, maltodextrin, sorbitol, xylitol, powdered cellulose, microcrystalline cellulose, carboxymethylcellulose, carboxyethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, methylhydroxyethylcellulose, starch, sodium starch glycolate, pregelatinized starch, a calcium phosphate, a metal carbonate, a metal oxide, or a metal aluminosilicate.
Exemplary excipients or carriers for use in solid and/or liquid dosage forms include, but are not limited to:
Sorbitol: Suitable sorbitols include, but are not limited to, PharmSorbidex E420 (available from Cargill), Liponic 70-NC and 76-NC (available from Lipo Chemical), Neosorb (available from Roquette), Partech SI (available from Merck), and Sorbogem (available from SPI Polyols).
Starch, sodium starch glycolate, and pregelatinized starch include, but are not limited to, those described in R. C. Rowe and P. J. Shesky, Handbook of Pharmaceutical Excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.
Disintegrant: The disintegrant may include one or more of croscarmellose sodium, carmellose calcium, crospovidone, alginic acid, sodium alginate, potassium alginate, calcium alginate, an ion exchange resin, an effervescent system based on food acids and an alkaline carbonate component, clay, talc, starch, pregelatinized starch, sodium starch glycolate, cellulose floc, carboxymethylcellulose, hydroxypropylcellulose, calcium silicate, a metal carbonate, sodium bicarbonate, calcium citrate, or calcium phosphate.
Still further embodiments of the invention include the active agent administered in combination with other active such as, for example, adjuvants, or other compatible drugs or compounds where such combination is seen to be desirable or advantageous in achieving the desired effects of the methods described herein.
Other embodiments of the present invention include a pharmaceutical composition comprising an effective amount of the active agent and one or more pharmaceutically acceptable excipient. Other embodiments include a pharmaceutical composition comprising an effective amount of pharmaceutically-acceptable salts of the active agent. Other embodiments include a pharmaceutical composition comprising an effective amount of pharmaceutically-acceptable salts of active agent and a pharmaceutically-acceptable excipient.
In yet other embodiments, the active agent may be administered simultaneously or separately with one or more secondary therapeutic agents. Secondary therapeutic agents may include but are not limited to: immunosuppressant agents such as calcineurin inhibitors (cyclosporin, tacrolimus), corticosteroids (methylprednisolone, dexamethasone, prednisolone), cytotoxic immunosuppressants (azathioprine, chlorambucil, cyclophosphamide, mercaptopurine, methotrexate), immunosuppressant antibodies (eg antithymocyte globulins, basiliximab, infliximab), sirolimus derivatives (everolimus, sirolimus), other immunosuppressants (mycophenolate), and any combination thereof.
The compound of Formula I and pharmaceutical compositions thereof as described herein may be administered to subjects to treat tissue allograft rejection. In other embodiments, the compound of Formula I and pharmaceutical compositions thereof as described herein may be administered to subjects to prevent or reduce rejection of a transplanted organ. In some embodiments the compound of Formula I and pharmaceutical compositions thereof as described herein may be administered to subjects to prevent or reduce rejection of a transplanted heart. In some embodiments, the compound of Formula I and pharmaceutical compositions thereof as described herein may be used to prolong the survival of a transplanted heart.
EXAMPLES
The following examples contain detailed methods of preparing compounds of Formula I. These detailed descriptions serve to exemplify the above general synthetic schemes which form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All parts are by weight and temperatures are in Degrees Celsius unless otherwise indicated. All compounds showed NMR spectra consistent with their assigned structures.
Example 1: 2-hydroxy-5-(2-nitroethenyl)benzoic acid (SANA)
To a solution of 5-formylsalicylic (1 g, 6.02 mmol) in ethanol (16.5 mL), nitromethane (5.5 mL, 0.10 mmol) and ammonium acetate (1.39 g, 18.06 mmol) were added. The reaction mixture is heated at 60° C. for 1 h, allowed to cool to room temperature and put in refrigerator for 15 minutes. Formed orange precipitate was filtered off and dissolved in water (ca. 250 mL). Solution was acidified with concentrated HCl (ca. 10 drops) until total precipitation. Formed yellow solid was filtered off and dried in vacuo. Yield: 1.18 g (93%).
1H NMR (acetone-d6): δ=8.35 (d, J=2.3 Hz, 1H), 8.14 (d, J=13.7, 1H), 8.06 (dd, J=8.7 2.3 Hz, 1H), 7.99 (d, J=13.7 Hz, 1H), 7.11 (d, J=8.7 Hz, 1H). 13C NMR (acetone-d6): δ=171.09, 164.66, 137.94, 136.51, 135.94, 133.21, 121.95, 118.51, 113.08
Biologic Activity
The following methods described are used in order to demonstrate biological activity and therapeutic use, and should not to be construed in any way as limiting the scope of the invention.
While not wishing to be bound by theory, NLRP3 inflammasome activation is a mechanism that mediates the rejection of allotransplantation and in one embodiment of the described invention, it is a possible therapeutic target to treat allotransplantation of a heart. As shown in FIGS. 1 and 2, SANA, in vivo, inhibits NF-κB and the NLRP3 inflammasome-dependent IL-1β release. C57BL/6 mice were treated with SANA or salicylic acid (SA) (100 mg/kg, IP) or the vehicle (DMSO) for 1 hour. Then were injected with LPS (10 mg/kg, IP) or PBS for 2 hours, with subsequent peritoneal washes and blood extractions. Peritoneal wash and plasma were stored to measure IL-1β by ELISA. FIG. 3 demonstrated SANA in a rat model, for a fully mismatched heterotopic heart allograft, prolonged the heart grafted survival respect to the control and its precursor drug. Rats were administrated with SANA or SA (100 mg/kg), SANA (50 mg/kg) or vehicle (Phosphate buffer) by oral gavage every day since day −1 until day 15 post-transplantation. Heart heterotopic transplantation was done by implantation of the donor heart (Lewis 1W rat) into the receptor abdomen (Lewis 1A rat). Rejection was diagnosed when the heart lost functionality (beats has stopped).

Claims (6)

What is claimed is:
1. A method of treating heart transplant rejection comprising administering to a subject in need thereof an effective amount of a compound of Formula I:
Figure US10632132-20200428-C00007
2. The method of claim 1, further comprising administering one or more secondary therapeutic agents.
3. The method of claim 2, wherein the one or more secondary therapeutic agents is selected from the group consisting of calcineurin inhibitors, cytotoxic immunosuppressants, and immunosuppressant antibodies, and any combination thereof.
4. A method of treating heart transplant rejection in a subject comprising administering to said subject a pharmaceutical composition comprised of an effective amount of a compound of Formula I:
Figure US10632132-20200428-C00008
or a pharmaceutically acceptable salt thereof, and a carrier.
5. The method of claim 4, wherein the pharmaceutical composition further comprises one or more secondary therapeutic agents.
6. The method of claim 5, wherein the one or more secondary therapeutic agents is selected from the group consisting of calcineurin inhibitors, cytotoxic immunosuppressants, and immunosuppressant antibodies, and any combination thereof.
US16/256,235 2018-01-24 2019-01-24 Methods for treating heart transplant rejection Active US10632132B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/256,235 US10632132B2 (en) 2018-01-24 2019-01-24 Methods for treating heart transplant rejection
US16/822,657 US20200215083A1 (en) 2018-01-24 2020-03-18 Methods for Treating Heart Transplant Rejection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862621228P 2018-01-24 2018-01-24
US16/256,235 US10632132B2 (en) 2018-01-24 2019-01-24 Methods for treating heart transplant rejection

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/822,657 Continuation US20200215083A1 (en) 2018-01-24 2020-03-18 Methods for Treating Heart Transplant Rejection

Publications (2)

Publication Number Publication Date
US20190255077A1 US20190255077A1 (en) 2019-08-22
US10632132B2 true US10632132B2 (en) 2020-04-28

Family

ID=65598685

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/256,235 Active US10632132B2 (en) 2018-01-24 2019-01-24 Methods for treating heart transplant rejection
US16/822,657 Abandoned US20200215083A1 (en) 2018-01-24 2020-03-18 Methods for Treating Heart Transplant Rejection

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/822,657 Abandoned US20200215083A1 (en) 2018-01-24 2020-03-18 Methods for Treating Heart Transplant Rejection

Country Status (2)

Country Link
US (2) US10632132B2 (en)
WO (1) WO2019145899A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2945822T3 (en) * 2016-10-14 2023-07-07 Inst Pasteur De Montevideo Pluripotent anti-inflammatory and metabolic modulators for the treatment of conditions related to inflammation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shaw. Comparison of the effects of acetylsalicylic acid and sodium salicylate on prolongation of rat cardiac allograft survival and on inhibition of rat platelet aggregation. Transplantation, vol. 36, No. 1, 1983. *

Also Published As

Publication number Publication date
US20190255077A1 (en) 2019-08-22
US20200215083A1 (en) 2020-07-09
WO2019145899A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US20220296546A1 (en) Methods Of Treatment Of Inflammation Related Conditions Using Pluripotent Anti-inflammatory And Metabolic Modulators
US11642325B2 (en) Prevention, treatment and reversal of disease using therapeutically effective amounts of dicarboxylic acid compounds
ES2802977T3 (en) Compound for immune modulation, use thereof and pharmaceutical composition comprising it
US20230346728A1 (en) Methods of Treatment of Inflammation Related Conditions Using Pluripotent Anti-Inflammatory and Metabolic Modulators
US20210107860A1 (en) Nitroalkene non steroidal anti-inflammatory drugs (na-nsaids) and methods of treating inflammation related conditions
US10632132B2 (en) Methods for treating heart transplant rejection
KR20070083903A (en) Orally effective cannabinoid analogs
US11400066B2 (en) Methods of treatment of inflammation related conditions using pluripotent anti-inflammatory and metabolic modulators
JP5830983B2 (en) Anti-cancer drug side effect reducing agent
EP3732162B1 (en) Nitroalkene non steroidal anti-inflammatory drugs (na-nsaids) and methods of treating inflammation related conditions
US10590126B2 (en) Non-selective protease activated receptor 4 ALA120THR isoform antagonist
TWI620566B (en) Uses of a triterpenoid mixture for treating multiple sclerosis
NZ765463A (en) Nitroalkene non steroidal anti-inflammatory drugs (na-nsaids) and methods of treating inflammation related conditions

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY