US10608434B2 - Power transmission network - Google Patents

Power transmission network Download PDF

Info

Publication number
US10608434B2
US10608434B2 US15/559,633 US201615559633A US10608434B2 US 10608434 B2 US10608434 B2 US 10608434B2 US 201615559633 A US201615559633 A US 201615559633A US 10608434 B2 US10608434 B2 US 10608434B2
Authority
US
United States
Prior art keywords
source side
power
side converter
frequency
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/559,633
Other languages
English (en)
Other versions
US20180342871A1 (en
Inventor
Andrzej Adamczyk
Carl David Barker
Robert Stephen Whitehouse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Assigned to GENERAL ELECTRIC TECHNOLOGY GMBH reassignment GENERAL ELECTRIC TECHNOLOGY GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADAMCZYK, ANDRZEJ, BARKER, CARL DAVID, WHITEHOUSE, ROBERT STEPHEN
Publication of US20180342871A1 publication Critical patent/US20180342871A1/en
Application granted granted Critical
Publication of US10608434B2 publication Critical patent/US10608434B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • H02M2001/0025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • Embodiments of the invention relate to a power transmission network and, in particular, a high voltage power transmission network.
  • variable power source to a power grid
  • variability in generated power may arise due to the intermittent nature of renewable energy resources, such as wind, tidal and solar farms. These power changes may lead to grid instability and thereby affect the quality of the transmitted power in the power grid, which has economic implications for the power supplier and the end user.
  • a power transmission network comprising: a variable power source; an AC transmission link for AC power transmission from the variable power source to at least one source side converter; at least one source side converter including: an AC connecting point operably connected to the AC transmission link; and a DC connecting point for connection to a DC transmission link; and a control system configured to operate the source side converter or at least one of the source side converters in a frequency damping mode to control an AC voltage at its AC connecting point and thereby damp at least one frequency component at its AC connecting point and/or in the AC transmission link.
  • control of the AC voltage at the AC connecting point may be a direct result of the control of the AC voltage at the AC connecting point or be an indirect result of the control of another AC voltage at another point in the power transmission network.
  • a variable power source may be any power source, such as an intermittent energy source, that is capable of generating a variable power.
  • an intermittent energy source include, but are not limited to, a wind farm, a tidal farm and a solar farm.
  • the frequency characteristic(s) of the variable power source may differ from that of the or each source side converter.
  • a difference in frequency characteristic(s) between the variable power source and the or each source side converter may arise as a result of, for example, the application of different control strategies in operating the variable power source and the or each source side converter.
  • the controllers for the variable power source and the or each source side converter may be designed independently of each other, thus potentially resulting in a difference in frequency characteristic(s) between the variable power source and the or each source side converter.
  • the relative electrical proximity between the variable power source and the or each source side converter allows a frequency component generated by the variable power source to influence the or each source side converter, and a frequency component generated by the or each source side converter to influence the variable power source. This means that generation of an undesirable frequency by the variable power source could lead to destabilisation of the operation of the or each source side converter, and generation of an undesirable frequency by the or each source side converter could lead to destabilisation of the operation of the variable power source, thus adversely affecting the stability of the power transmission network.
  • the interaction between the or each source side converter and the AC transmission link allows a frequency component generated by the or each source side converter to influence the AC transmission link, and the AC transmission link has a frequency-dependent impedance characteristic that may include peaks and troughs representing resonances that can be excited by an active element, such as the or each source side converter or the variable power source.
  • an active element such as the or each source side converter or the variable power source.
  • control system permits control of the source side converter or at least one of the source side converters to damp at least one frequency component at the AC connecting point of the source side converter or at least one of the source side converters and/or in the AC transmission link and thereby permits damping of at least one undesirable frequency that could destabilise the operation of the variable power source and/or the or each source side converter.
  • control system to operate the or each source side converter in a frequency damping mode to damp at least one frequency component at the AC connecting point of the source side converter or at least one of the source side converters and/or in the AC transmission link therefore results in a more reliable power transmission network.
  • variable power source to provide a damping power across a desired range of frequencies.
  • the complexity of a variable power source's control characteristic(s) however means that it can be difficult to modify the variable power source's control characteristic(s) to provide the necessary damping power across the desired range of frequencies, especially when the variable power source includes a plurality of electrical elements.
  • the ability of the control system to operate the source side converter or at least one of the source side converters in a frequency damping mode to damp at least one frequency component at the AC connecting point of the source side converter or at least one of the source side converters and/or in the AC transmission link may be limited by the bandwidth of the control system (which includes the bandwidth of its components). This prevents operation of the source side converter or at least one of the source side converters to damp a frequency component outside the bandwidth of the control system.
  • the source side converter or at least one of the source side converters would not be susceptible to any frequency component outside the bandwidth of the control system, and hence its operation would not be influenced by a frequency component outside the bandwidth of the control system.
  • a variation in power generated by the connected variable power source may arise. This may be due to, for example, the intermittent nature of a renewable energy resource such as a wind, tidal or solar farm.
  • the power transmission network is configured to accommodate the variation in power generated by the variable power source, thereby transmitting all of the power generated by the variable power source to the or each source side converter.
  • control system may be configured to operate the source side converter or at least one of the source side converters in an AC voltage control mode as an AC slack bus to control a magnitude and/or frequency of an AC voltage of the AC transmission link at a respective steady-state value and thereby facilitate variation of a power transfer between its AC and DC connecting points to accommodate a variation in power generated by the variable power source.
  • Operation of the source side converter or at least one of the source side converters in the AC voltage control mode facilitates generation of a stable AC voltage waveform in the AC transmission link and thereby allows the variable power source to synchronise to the stable AC voltage waveform.
  • Such synchronisation ensures that any power generated by the variable power source will be accommodated by the source side converter or at least one of the source side converters and thereby injected into the DC transmission link.
  • control system may be configured to operate the source side converter or at least one of the source side converters in an AC voltage control mode as an AC slack bus to control a magnitude and/or a frequency of an AC voltage of the AC transmission link at a respective steady-state value and thereby facilitate variation of a power transfer between its AC and DC connecting points so as to accommodate a variation in power generated by the variable power source, and the control system is further configured to operate the source side converter or at least one of the source side converters in the frequency damping mode during its operation in the AC voltage control mode.
  • Configuration of the control system in this manner enables damping of at least one frequency component to provide stable power transmission in the power transmission network during the operation of the source side converter or at least one of the source side converters in the AC voltage control mode to accommodate a variation in power generated by the variable power source.
  • Damping of at least one frequency component may be carried out in different ways. Damping at least one frequency component may include minimising, cancelling and/or inhibiting generation of at least one frequency component.
  • the method of damping of a respective frequency component may be selected depending on the origin and properties of the or each frequency component.
  • the or each frequency component may be generated by the source side converter or at least one of the source side converters; the excitation of a resonance of a frequency-dependent impedance characteristic of the AC transmission link; or the variable power source.
  • the or each frequency component may be a frequency component of: a respective power oscillation between the source side converter or at least one of the source side converters and the variable power source; a respective power oscillation between the AC transmission link and the source side converter or at least one of the source side converters; or a respective power oscillation between two or more of a plurality of electrical elements of the variable power source.
  • control system may be configured to passively and/or actively modify a magnitude reference value for an AC voltage of the AC transmission link, a frequency reference value for an AC voltage of the AC transmission link and/or a respective converter AC voltage reference value for an AC voltage of the source side converter or at least one of the source side converters, and to operate the source side converter or at least one of the source side converters in the frequency damping mode in accordance with the or each modified reference value.
  • the control system may be configured to filter at least one signal corresponding to an electrical characteristic of the power transmission network so as to attenuate one or more frequency components in the or each signal to provide a respective filtered reference value, and to operate the source side converter or at least one of the source side converters in the frequency damping mode in accordance with the or each filtered reference value.
  • the or each signal may correspond to, for example, a reference value of the power transmission network, a measured value of the power transmission network or an error signal between reference and measured values of the power transmission network
  • the or each signal corresponding to an electrical characteristic of the power transmission network may be selected from a group including: the measured AC voltage magnitude or frequency of the power transmission network; an error signal between the magnitude reference value and a measured AC voltage magnitude of the AC transmission link; an error signal between the frequency reference value and a measured AC voltage frequency of the AC transmission link; an error signal between the alternating current reference value and a measured alternating current of the AC transmission link; the respective converter AC voltage reference value.
  • the control system may include one or more filters tuned to at least one predefined frequency to filter the at least one signal corresponding to an electrical characteristic of the power transmission network so as to attenuate one or more frequency components in the or each signal to provide the or each filtered reference value.
  • the configuration of the control system in this manner enables attenuation of one or more predefined frequencies in the AC voltage at the AC connecting point of the source side converter or at least one of the source side converters by inhibiting generation of at least one frequency component by the source side converter or at least one of the source side converters that could adversely impact the operation of the variable power source.
  • the control system may be configured to modulate the magnitude reference value and/or the frequency reference value, and to operate the source side converter or at least one of the source side converters in the frequency damping mode in accordance with the or each modulated reference value.
  • the control system may be configured to modulate the magnitude reference value and/or the frequency reference value, and to operate the source side converter or at least one of the source side converters in the frequency damping mode in accordance with the or each modulated reference value and thereby inject at least one additional frequency component into its AC connecting point and/or the AC transmission link.
  • the configuration of the control system to modulate the magnitude reference value and/or the frequency reference value enables operation of the source side converter or at least one of the source side converters to provide an active damping power at one or more predefined frequencies to damp at least one frequency component at the AC connecting point of the source side converter or at least one of the source side converters and/or in the AC transmission link. In this manner the or each source converter can be operated to provide the active damping power to provide stable power transmission in the power transmission network.
  • the power transmission network may be configured in various ways to fulfill specific power transmission requirements.
  • the power transmission network may include: an AC transmission link for AC power transmission from the variable power source to a source side converter; a source side converter including: a DC connecting point for connection to a DC transmission link; and an AC connecting point operably connected to the AC transmission link.
  • the DC connecting point of the source side converter is operably connected to a DC transmission link for DC power transmission between a network side converter and a source side converter
  • a network side converter includes: a DC connecting point operably connected to the DC transmission link; and an AC connecting point operably connected to an AC electrical network.
  • the power transmission network is configured in use as a point-to-point power transmission network.
  • the power transmission network may include: an AC transmission link for AC power transmission from the variable power source to a plurality of source side converters; a plurality of source side converters, each source side converter including: a DC connecting point for connection to a respective one of a plurality of DC transmission links; and an AC connecting point operably connected to the AC transmission link.
  • each source side converter is operably connected to a respective one of a plurality of DC transmission links, each of which is for DC power transmission between a network side converter and a source side converter, and each of a plurality of network side converters includes: a DC connecting point operably connected to a respective one of the DC transmission links; and an AC connecting point operably connected to a respective AC electrical network.
  • the power transmission network is configured in use as a multiple point-to-point power transmission network.
  • the control system may be configured to operate at least one source side converter in an AC voltage control mode as an AC slack bus to control a magnitude of an AC voltage of the AC transmission link at a steady-state value and to operate at least one other source side converter in an AC voltage control mode as an AC slack bus to control a frequency of an AC voltage of the AC transmission link at a steady-state value, and thereby facilitate variation of a power transfer between the AC and DC connecting points of each source side converter to accommodate a variation in power generated by the variable power source.
  • the control system may be configured to operate at least one source side converter in an AC voltage control mode as an AC slack bus to control a magnitude and frequency of an AC voltage of the AC transmission link at a respective steady-state value and thereby facilitate variation of a power transfer between its AC and DC connecting points to accommodate a variation in power generated by the variable power source.
  • At least one source side converter may be operated to control the magnitude of the AC voltage of the AC transmission link while at least one other second converter may be operated to control the frequency of the AC voltage of the AC transmission link and/or at least one source side converter may be operated to control both the magnitude and frequency of the AC voltage of the AC transmission link.
  • the control system may be configured to operate the source side converter or the at least one source side converter in the frequency damping mode and as an active and/or reactive power sink or source.
  • control system may be configured to passively and/or actively modify an active power reference value for an active power of the AC transmission link and/or an reactive power reference value for a reactive power of the AC transmission link, and to operate the source side converter or at least one of the source side converters in the frequency damping mode in accordance with the or each modified reference value.
  • the control system may be configured to filter at least one signal corresponding to an active or reactive power characteristic of the power transmission network so as to attenuate one or more frequency components in the or each signal to provide respective filtered reference value, and to operate the source side converter or at least one of the source side converters in the frequency damping mode in accordance with the or each filtered reference value.
  • the or each signal may correspond to, for example, a reference active or reactive power value of the power transmission network, a measured active or reactive power value of the power transmission network or an error signal between reference and measured active or reactive power values of the power transmission network
  • the or each signal corresponding to an active or reactive power characteristic of the power transmission network may be selected from a group including: an error signal between the active power reference value and a measured active power of the AC transmission link; an error signal between the reactive power reference value and a measured reactive power of the AC transmission link.
  • the control system may include one or more filters tuned to at least one predefined frequency to filter at least one signal corresponding to an active or reactive power characteristic of the power transmission network so as to attenuate one or more frequency components in the or each signal to provide a respective filtered reference value.
  • the control system may be configured to modulate the active power reference value and/or the reactive power reference value, and to operate the source side converter or at least one of the source side converters in the frequency damping mode in accordance with the or each modulated reference value.
  • the control system may be configured to modulate the active power reference value and/or the reactive power reference value, and to operate the source side converter or at least one of the source side converters in the frequency damping mode in accordance with the or each modulated reference value and thereby inject at least one additional frequency component into its AC connecting point and/or the AC transmission link.
  • the configuration of the control system to modulate the active power reference value and/or the reactive power reference value enables operation of the source side converter or at least one of the source side converters to provide an active damping power at one or more predefined frequencies to damp at least one frequency component at the AC connecting point of the source side converter or at least one of the source side converters and/or in the AC transmission link. In this manner the or each source converter can be operated to provide the active damping power to provide stable power transmission in the power transmission network.
  • the control system may be configured to: operate at least one first source side converter to operate in an AC voltage control mode as an AC slack bus to control a magnitude and/or frequency of an AC voltage of the AC transmission link at a steady-state value, and thereby facilitate variation of a power transfer between the AC and DC connecting points of each source side converter to accommodate a variation in power generated by the variable power source; operate at least one second source side converter as an active and/or reactive power sink or source; and operate the or each first source side converter and/or the or each second source side converter in the frequency damping mode.
  • the control system may be configured to receive and process at least one electrical measurement of the power transmission network so as to provide at least one modulating signal, the control system being further configured to process the or each modulating signal to modulate the or each reference value as a function of the or each received electrical measurement.
  • control system When the control system includes a cascaded control loop, the control system may be configured to process the or each modulating signal in an inner control loop of the cascaded control loop. This allows the required damping to be provided in the event an outer loop of the cascaded control loop does not have sufficient bandwidth to allow processing of the or each modulating signal to provide the required damping.
  • control system may vary depending on specific requirements of the power transmission network.
  • the control system may include a global controller for controlling a plurality of converters, at least one local controller for controlling at least one converter, or a combination thereof.
  • the global controller may be located remotely from each converter and may be configured to communicate with each converter via telecommunications links.
  • the or each local controller may be located in the vicinity of at least one converter.
  • the global controller may be configured to communicate with at least one local controller via telecommunications links.
  • a method of damping at least one frequency component in a power transmission network comprising: a variable power source; an AC transmission link for AC power transmission from the variable power source to at least one source side converter; and at least one source side converter including: an AC connecting point operably connected to the AC transmission link; and a DC connecting point for connection to a DC transmission link
  • the method comprises the step of operating the source side converter or at least one of the source side converters in a frequency damping mode to control an AC voltage at its AC connecting point and thereby damp at least one frequency component at its AC connecting point and/or in the AC transmission link.
  • FIG. 1 shows, in schematic form, a power transmission network
  • FIGS. 2A, 2B and 2C respectively show, in schematic form, variations of a first local controller of the power transmission network of FIG. 1 ;
  • FIG. 3 shows, in schematic form, a second local controller of the power transmission network of FIG. 1 ;
  • FIG. 4 shows, in schematic form, a power transmission network
  • FIGS. 5A and 5B respectively show, in schematic form, further variations of a first local controller of the power transmission network of FIG. 1 ;
  • FIG. 6 shows, in schematic form, an inner current controller block.
  • FIG. 1 A first power transmission network according to a first embodiment of the invention is shown in FIG. 1 .
  • the first power transmission network comprises: a DC transmission link 20 for DC power transmission between a network side converter 22 and a source side converter 24 ; an AC transmission link 26 for AC power transmission from a wind farm 28 to a source side converter 24 ; a wind farm 28 ; a source side converter 24 including: a DC connecting point connected to a first end of the DC transmission link 20 ; and an AC connecting point operably connected to the AC transmission link 26 ; a network side converter 22 including: an AC connecting point for connection to an AC power grid 30 ; and a DC connecting point connected to a second end to the DC transmission link 20 .
  • the first power transmission network is configured as a point-to-point power transmission network for interconnecting the wind farm 28 and the AC power grid 30 .
  • the first power transmission network further includes a control system.
  • the control system includes first and second local controllers 32 a, 32 b for controlling the source and network side converters 24 , 22 respectively.
  • Each local controller 32 a, 32 b is located in the vicinity of the corresponding converter 24 , 22 .
  • FIGS. 2A and 2B respectively show, in schematic form, alternate configurations of the first local controller 32 a for controlling the source side converter 24 while FIG. 3 shows, in schematic form, the configuration of the second local controller 32 b for controlling the network side converter 22 .
  • the wind farm 28 In use, the wind farm 28 generates a power into the AC transmission link 26 .
  • the AC transmission link 26 transmits the generated power to the AC connecting point of the source side converter 24 .
  • the source side converter 24 transfers the power from its AC connecting point to its DC connecting point, thus transferring power into the DC transmission link 20 .
  • the DC transmission link 20 transmits the generated power to the DC connecting point of the network side converter 22 .
  • the network side converter 22 transfers the power from its DC connecting point to its AC connecting point, thus transferring power into the AC power grid 30 .
  • a variation in power generated by the wind farm 28 may arise due to its intermittent nature.
  • the first power transmission network is configured to accommodate the variation in power generated by the wind farm 28 , thereby transmitting all of the power generated by the wind farm 28 to the source side converter 24 .
  • the first local controller 32 a is configured to operate the source side converter 24 in an AC voltage control mode as an AC slack bus to control a magnitude and frequency of an AC voltage of the AC transmission link 26 at a respective steady-state value and thereby facilitate variation of a power transfer between its AC and DC connecting points to accommodate the variation in power generated by the wind farm 28 .
  • Operation of the source side converter 24 in the AC voltage control mode facilitates generation of a stable AC voltage waveform in the AC transmission link 26 and thereby allows the wind farm 28 to synchronise to the stable AC voltage waveform.
  • Such synchronisation ensures that any power generated by the wind farm 28 will be accommodated by the source side converter 24 and thereby injected into the DC transmission link 20 for subsequent transmission to the network side converter 22 and the AC power grid 30 .
  • the steady-state values of the magnitude and frequency of the AC voltage of the AC transmission link 26 are controlled by the first local controller 32 a through its operation of the source side converter 24 in the AC voltage control mode to generate an AC voltage at its AC connecting point in accordance with a converter AC voltage reference value V HVDC,ref that is derived from predefined magnitude and frequency reference values V AC,ref ,f ref for the AC voltage of the AC transmission link 26 .
  • the operation of the source side converter 24 in the AC voltage control mode as an AC slack bus to control a frequency of an AC voltage of the AC transmission link 26 at a steady-state value is carried out using an open loop control, as shown in FIGS. 2A and 2B , but may also be carried out using a feedback control using the measured frequency f means of the AC transmission link 26 as a feedback signal.
  • the converter AC voltage reference value V HVDC,ref may be derived from dynamic magnitude and frequency reference values V AC,ref ,f ref e.g. that are dispatched in real-time by a system operator.
  • Operation of the source side converter 24 in the AC voltage control mode however means that the DC voltage at the DC connecting point of the source side converter 24 is uncontrolled. This is because the two degrees of freedom available to the source side converter 24 is used to operate the source side converter 24 in the AC voltage control mode as an AC slack bus to control a magnitude and frequency of an AC voltage of the AC transmission link 26 at a respective steady-state value.
  • the second local controller 32 b is configured to operate the network side converter 22 in a DC voltage control mode as a DC slack bus to control a DC voltage at its DC connecting point. Operating the network side converter 22 in the DC voltage control mode facilitates variation of a power transfer between its AC and DC connecting points to accommodate the variation in power generated by the wind farm 28 , thus enabling power transmission in the first power transmission network.
  • the second local controller may be configured to operate the network side converter to fix the DC voltage at its DC connecting point.
  • control of the DC voltage at the DC connecting point may be a direct result of the control of the DC voltage at the DC connecting point or be an indirect result of the control of another DC voltage at another point in the power transmission network.
  • the frequency characteristic(s) of the wind farm 28 may differ from that of the source side converter 24 .
  • a difference in frequency characteristic(s) between the wind farm 28 and the source side converter 24 may arise as a result of, for example, the application of different control strategies in operating the wind farm 28 and the source side converter 24 .
  • the controller (not shown) for the wind farm 28 may be designed independently of the first local controller 32 a , thus potentially resulting in a difference in frequency characteristic(s) between the wind farm 28 and the source side converter 24 .
  • the relative electrical proximity between the wind farm 28 and the source side converter 24 allows a frequency component generated by the wind farm 28 to influence the source side converter 24 , and a frequency component generated by the source side converter 24 to influence the wind farm 28 .
  • the interaction between the source side converter 24 and the AC transmission link 26 allows a frequency component generated by the source side converter 24 to influence the AC transmission link 26 , and the AC transmission link 26 has a frequency-dependent impedance characteristic that may include peaks and trough representing resonances that can be excited by an active element, such as the source side converter 24 or the wind farm 28 .
  • the frequency component may be a frequency component of a power oscillation between the source side converter 24 and the wind farm 28 , a power oscillation between the AC transmission link 26 and the source side converter 24 , or a power oscillation between two or more of a plurality of electrical elements (e.g. wind turbine clusters) of the wind farm 28 .
  • the first local controller 32 a is further configured, either as shown in FIG. 2A or FIG. 2B , to operate the source side converter 24 in a frequency damping mode during its operation in the AC voltage control mode.
  • the first local controller 32 a When the first local controller 32 a is configured as shown in FIG. 2A , the first local controller 32 a is configured to passively modify the magnitude reference value V AC,ref for the AC voltage for the AC transmission link 26 and the converter AC voltage reference value V HVDC,ref for an AC voltage of the source side converter 24 , and to operate the source side converter 24 in the frequency damping mode in accordance with each modified reference value.
  • the first local controller 32 a includes first and second sets of band-stop filters 200 , 202 .
  • the first set of band-stop filters 200 is tuned to at least one predefined frequency and is arranged to filter the error signal between the magnitude reference value V AC,ref and the measured AC voltage V AC,meas of the AC transmission link 26 .
  • the filtered error signal is then processed using a proportional-integral control block and then combined with the frequency reference value f ref (which is processed using a controlled oscillator) in a voltage reference generation block 206 to generate a converter AC voltage reference value V HVDC,ref .
  • the second set of band-stop filters 202 is tuned to at least one predefined frequency and is arranged to filter the converter AC voltage reference value V HVDC,ref .
  • the first local controller 32 a filters the magnitude reference value V AC,ref and the converter AC voltage reference value V HVDC,ref and generates filtered magnitude and converter AC voltage reference values.
  • a set of band-stop filters may be used to filter an error signal between the frequency reference value f ref and the measured frequency f meas of the AC transmission link 26 so that the error signal, instead of the frequency reference value f ref , can be used to generate the converter AC voltage reference value V HVDC,ref .
  • the filtered converter AC voltage reference value is then sent to a firing pulse generation block 208 to generate the required firing pulses to operate the source side converter 24 in the frequency damping mode in accordance with each filtered reference value.
  • the generation of the filtered magnitude and converter AC voltage reference values enables the first local controller 32 a to operate the source side converter 24 to attenuate one or more predefined frequencies in the AC voltage at the AC connecting point of the source side converter 24 by inhibiting generation of at least one frequency component by the source side converter 24 that could adversely impact the operation of the wind farm 28 .
  • the first local controller 32 a When the first local controller 32 a is configured as shown in FIG. 2 b , the first local controller 32 a is configured to actively modify the magnitude and frequency reference values V AC,ref ,f ref for the AC voltage for the AC transmission link 26 , and to operate the source side converter 24 in the frequency damping mode in accordance with each modified reference value.
  • the first local controller 32 a includes a frequency damping control block 210 that is configured to receive measurements IN POD1 ,IN POD2 , . . . , IN PODn .
  • the frequency damping control block 210 is further configured to process each of the received measurements IN POD1 ,IN POD2 , . . . , IN PODn to generate modulating signals OUT POD1 , OUT POD2 . More specifically, in an exemplary implementation of the frequency damping control block 210 as shown in FIG.
  • the frequency damping control block 210 is divided into two parallel branches, where the output OUT POD1 of the first parallel branch is fed back to the main part of the first local controller 32 a to modulate the frequency reference value f ref , and the output OUT POD2 of the second parallel branch is fed back to the main part of the first local controller 32 a to modulate the magnitude reference value V AC,ref .
  • each of the individual input signals i.e. the received measurements IN POD1 ,IN POD2 , . . . , IN PODn , is scaled before it is added to other input signals to formulate a single input signal (IN POD,C1 , IN POD,C2 ) to a given parallel branch.
  • the input signals to the parallel branches are then processed through band-pass filters to extract the frequency components to be damped by the source side converter 24 .
  • the phases and magnitudes of the modulating signals OUT POD1 , OUT POD2 are shaped by phase compensation blocks and by proportional gains.
  • the first local controller 32 a then modulates the magnitude and frequency reference values V AC,ref ,f ref through their respective combination with the modulating signals OUT POD1 , OUT POD2 in order to generate modulated magnitude and frequency reference values that permit operation of the source side converter 24 to inject at least one additional frequency component into its AC connecting point and/or the AC transmission link 26 .
  • frequency damping control block 210 may be configured to receive and process other electrical measurements.
  • the frequency damping control block 210 may be configured to receive and process an electrical measurement that corresponds to any electrical quantity belonging to the AC transmission link 26 between the wind farm 28 and the source side converter 24 .
  • Such an electrical quantity may be, but is not limited to, the AC frequency of the AC transmission link 26 , the magnitude of alternating current flowing in the AC transmission link 26 , active power transmitted in the AC transmission link 26 or reactive power being transmitted in the AC transmission link 26 .
  • the frequency damping control block 210 may be configured to receive and process an electrical measurement corresponding to an internal electrical quantity of the wind farm 28 , e.g. active power on one of the wind turbine strings of the wind farm 28 .
  • the modulated magnitude reference value V AC,ref which may be first altered through combination with a measured AC voltage V AC,meas of the AC transmission link 26 , is then processed using a proportional-integral control block and then combined with the modulated frequency reference value f ref (which is processed using a controlled oscillator) in a voltage reference generation block 206 to generate a converter AC voltage reference value V HVDC,ref .
  • the converter AC voltage reference value V HVDC,ref is then sent to a firing pulse generation block 208 to generate the required firing pulses to operate the source side converter 24 in the frequency damping mode in accordance with each modulated reference value.
  • the generation of the modulated magnitude and frequency reference values enables the first local controller 32 a to operate the source side converter 24 to inject at least one additional frequency component into its AC connecting point and/or the AC transmission link 26 during its operation in the AC voltage mode.
  • the source side converter 24 is operated to provide an active damping power at one or more predefined frequencies to damp at least one frequency component at its AC connecting point and/or in the AC transmission link 26 .
  • the source converter 24 can be operated to provide the active damping power to provide stable power transmission in the first power transmission network.
  • the inclusion of the control system in the first power transmission network permits control of the source side converter 24 to damp at least one frequency component at the AC connecting point of the source side converter 24 and/or in the AC transmission link 26 and thereby permits damping of at least one undesirable frequency that could destabilise the operation of the wind farm 28 and/or the source side converter 24 .
  • configuration of the control system as set out above enables damping of at least one frequency component to provide stable power transmission in the first power transmission network during the operation of the source side converter 24 in the AC voltage control mode to accommodate a variation in power generated by the wind farm 28 .
  • the ability of the control system to operate the source side converter 24 in a frequency damping mode to damp at least one frequency component at the AC connecting point of the source side converter 24 and/or in the AC transmission link 26 therefore results in a more reliable first power transmission network.
  • the frequency damping control block may be configured to generate only one of the modulating signals OUT POD1 , OUT POD2 .
  • the frequency damping control block may include a single branch to provide a single output to the main part of the first local controller.
  • the frequency damping control block may include a plurality of branches, each providing a respective output to the main part of the first local controller.
  • FIG. 4 A second power transmission network according to a second embodiment of the invention is shown in FIG. 4 .
  • the second power transmission network comprises: a plurality of DC transmission links 20 , each DC transmission link 20 being for DC power transmission between a network side converter 22 and a source side converter 24 ; an AC transmission link 26 for AC power transmission from a wind farm 28 to a plurality of source side converters 24 ; a wind farm 28 ; a plurality of source side converters 24 , each source side converter 24 including: a DC connecting point connected to a first end of a respective one of the DC transmission links 20 ; and an AC connecting point connected to the AC transmission link 26 ; a plurality of network side converters 22 , each network side converter 22 including: an AC connecting point for connection to the AC power grid 30 ; and a DC connecting point connected to a second end of a respective one of the DC transmission links 20 .
  • the second power transmission network is configured as a multiple point-to-point power transmission network for interconnecting the wind farm 28 and AC power grid 30 . It is envisaged that, in other embodiments of the invention, an AC connecting point of each network side converter is for connection to a respective one of a plurality of AC power grids.
  • the second power transmission network further includes a control system.
  • the control system includes a plurality of first and second local controllers 32 a, 32 b for controlling the source and network side converters 24 , 22 respectively.
  • Each local controller 32 a, 32 b is located in the vicinity of the corresponding converter 24 , 22 .
  • the configuration of each first local controller 32 a for each network side converter 22 is identical to either of the configurations of the first local controller 32 a shown in FIGS. 2A and 2B .
  • the configuration of each second local controller 32 b for each network side converter 22 is identical to the configuration of the second local controller 32 b shown in FIG. 3 .
  • the wind farm 28 In use, the wind farm 28 generates a power into the AC transmission link 26 .
  • the AC transmission link 26 transmits the generated power to the AC connecting point of each source side converter 24 .
  • Each source side converter 24 transfers the power from its AC connecting point to its DC connecting point, thus transferring power into the respective DC transmission link 20 .
  • Each DC transmission link 20 transmits power from the DC connecting point of the respective source side converter 24 to the DC connecting point of the respective network side converter 22 .
  • Each network side converter 22 transfers the power from its DC connecting point to its AC connecting point, thus transferring power into the AC power grid 30 .
  • a variation in power generated by the wind farm 28 may arise due to its intermittent nature.
  • each source side converter 24 of the second power transmission network applies mutatis mutandis to the operation of each source side converter 24 of the second power transmission network.
  • each network side converter 22 of the second power transmission network applies mutatis mutandis to the operation of each network side converter 22 of the second power transmission network.
  • control system may be configured to operate at least one source side converter 24 in an AC voltage control mode as an AC slack bus to control a magnitude of an AC voltage of the AC transmission link 26 at a steady-state value and to operate at least one other source side converter 24 in an AC voltage control mode as an AC slack bus to control a frequency of an AC voltage of the AC transmission link 26 at a steady-state value, and thereby facilitate variation of a power transfer between the AC and DC connecting points of each source side converter 24 to accommodate a variation in power generated by the wind farm 28 .
  • power transmission in the second power transmission network may be carried out by operating at least one, but not all, of the plurality of source side converters 24 in the AC voltage control mode and/or the frequency damping mode.
  • At least one source side converter 24 in the AC voltage control mode is normally required to control at least one source side converter 24 in the AC voltage control mode as an AC slack bus to establish a stable voltage reference for the AC transmission link 26 in order to facilitate variation of a power transfer between the AC and DC connecting points of each source side converter 24 to accommodate a variation in power generated by the wind farm 28 .
  • each of the plurality of source side converters 24 is operated in the AC voltage control mode as an AC slack bus.
  • at least one first source side converter 24 is operated in the AC voltage control mode
  • at least one second source side converter 24 may be operated as an active and/or reactive power sink or source.
  • the corresponding first local controller 132 a is similar to the first local controller 32 a in FIGS. 2A and 2B , but differs in that the corresponding first local controller 132 a is configured, either as shown in FIG. 5A or FIG. 5B , to operate the or each second source side converter 24 in a frequency damping mode during its operation as an active and/or reactive power sink or source.
  • the first local controller 132 a When the first local controller 132 a is configured as shown in FIG. 5A , the first local controller 132 a is configured to passively modify the active power reference value P ref for the active power of the AC transmission link 26 and the reactive power reference Q ref for the reactive power of the AC transmission link 26 , and to operate the or each second source side converter 24 in the frequency damping mode in accordance with each modified reference value.
  • the first local controller 132 a includes first and second sets of band-stop filters 200 , 202 .
  • the first set of band-stop filters 200 is tuned to at least one predefined frequency and is arranged to filter: a first error signal between the active power reference value P ref and the measured active power P meas of the AC transmission link 26 ; and a second error signal between the reactive power reference value Q ref and the measured reactive power Q meas of the AC transmission link 26 .
  • Each filtered error signal is then processed using a respective proportional-integral control block and then combined with a filtered phase value and a filtered measured current of the AC transmission link 26 in a current controller block 212 to generate a converter AC voltage reference value V HVDC,ref .
  • the second set of band-stop filters 202 is tuned to at least one predefined frequency and is arranged to filter the converter AC voltage reference value V HVDC,ref .
  • the first local controller 132 a filters the active and reactive power reference values P ref ,Q ref and generates filtered power and converter AC voltage reference values.
  • the filtered phase value is generated by using a phased locked loop coupled to the phase voltages V AC,phA ,V AC,phB ,V AC,phC of the AC transmission link 26 and by filtering the output of the phased locked loop using an additional set of band-stop filters.
  • the filtered measured current of the AC transmission link 26 is obtained by filtering the measured current I AC of the AC transmission link 26 using a further additional set of band-stop filters.
  • the filtered converter AC voltage reference value is then sent to a firing pulse generation block 208 to generate the required firing pulses to operate the or each second source side converter 24 in the frequency damping mode in accordance with each filtered reference value.
  • the first local controller 132 a When the first local controller 132 a is configured as shown in FIG. 5B , the first local controller 132 a is configured to actively modify the active and reactive power reference values P ref ,Q ref for the active and reactive power of the AC transmission link 26 , and to operate the or each second source side converter 24 in the frequency damping mode in accordance with each modified reference value.
  • the first local controller 132 a includes a frequency damping control block 210 that is similar in structure and operation to the frequency damping control block 210 of FIG. 2C .
  • the output OUT POD1 of the first parallel branch is fed back to the main part of the first local controller 132 a to modulate the active power reference value P ref
  • the output OUT POD2 of the second parallel branch is fed back to the main part of the first local controller 132 a to modulate the reactive power reference value Q ref .
  • the first local controller 132 a then modulates the active and reactive power reference values P ref ,Q ref through their respective combination with the modulating signals OUT POD1 , OUT POD2 order to generate modulated active and reactive power reference values that permit operation of the or each second source side converter 24 to inject at least one additional frequency component into its AC connecting point and/or the AC transmission link 26 .
  • the modulated active and reactive power reference values which may be first altered through combination with respective measured active and reactive power P meas ,Q meas of the AC transmission link 26 , is then processed using respective proportional-integral control blocks and then combined with a phase value and a measured current I AC of the AC transmission link 26 in a current controller block 212 to generate a converter AC voltage reference value V HVDC,ref .
  • the phase value is generated by using a phased locked loop coupled to the phase voltages V AC,phA ,V AC,phB ,V AC,phC of the AC transmission link 26 .
  • the converter AC voltage reference value V HVDC,ref is then sent to a firing pulse generation block 208 to generate the required firing pulses to operate the or each second source side converter 24 in the frequency damping mode in accordance with each modulated reference value.
  • At least one first source side converter may be operated in the AC voltage control mode without being controlled in the frequency damping mode, while at least one second source side converter may be operated in the frequency damping mode during its operation as an active and/or reactive power sink or source. Further optionally at least one first source side converter may be operated in the frequency damping mode during its operation in the AC voltage control mode, while at least one second source side converter may be operated as an active and/or reactive power sink or source without being controlled in the frequency damping mode.
  • power transmission in the second power transmission network may be controlled by operating at least one, but not all, of the plurality of network side converters 22 in the DC voltage control mode.
  • each consecutive control stage is designed to be adequately faster than the previous control stage to ensure that the overall control system is stable.
  • an outer control loop will be significantly slower (i.e. have lower bandwidth) than an inner control loop.
  • the outputs OUT POD1 ,OUT POD2 of the frequency damping control block 210 can be instead fed back to inner control loops in order to ensure that the required active damping can be provided.
  • FIG. 6 shows, in schematic form, an exemplary inner current controller block 212 for the first local controller 132 a .
  • the current controller block 212 receives: the filtered first error signal between the active power reference value P ref and the measured active power P meas of the AC transmission link 26 , after the filtered first error signal is processed using a proportional-integral control block;
  • the filtered second error signal between the reactive power reference value Q ref and the measured reactive power Q meas of the AC transmission link 26 , after the filtered second error signal is processed using a proportional-integral control block.
  • the filtered first and second error signals then respectively undergo a first combination with direct and quadrature rotating reference frame components of the AC phase currents I AC,phA ,I AC,phB ,I AC,phC of the AC transmission link 26 , which are derived from a three-phase stationary reference frame to direct/quadrature rotating reference frame transformation (abc-to-dq) of the AC phase currents I AC,phA ,I AC,phB ,I AC,phC of the AC transmission link 26 , whereby the abc-to-dq transformation uses the phase value (or filtered phase value) received from the phased locked loop.
  • the outputs of the first combination are then processed using respective proportional-integral control blocks before respectively undergoing a second combination with decoupling terms in the form of reactance values X. More specifically, the quadrature-axis current is scaled by the value of the associated reactance X to produce a resulting signal which is then applied to the second combination for the direct-axis current controller, and the direct-axis current is scaled by the value of the associated reactance X to produce a resulting signal which is then applied to the second combination for the quadrature-axis current controller.
  • the optional decoupling terms are added to improve the decoupling of the direct-axis current controller and the quadrature-axis current controller from each other, in order to improve the dynamic performance of the inner current controller block 212 .
  • This is because any voltage change that the direct-axis current controller exerts on the converter AC voltage (more specifically the direct-axis component of the converter AC voltage) will not only affect the direct-axis current but also to some extent the quadrature-axis current, and any voltage change that the quadrature-axis current controller exerts on the converter AC voltage (more specifically the quadrature-axis component of the converter AC voltage) will not only affect the quadrature-axis current but also to some extent the direct-axis current.
  • the strength of the coupling between the direct-axis and quadrature-axis current controllers depends on the amount of reactance X between the point of control and the source side converter's AC connecting point, which are normally different from one another.
  • the outputs of the second combination undergo a direct/quadrature rotating reference frame to a three-phase stationary reference frame transformation (dq-to-abc) to generate the converter AC voltage reference value V HVDC,ref , whereby the dq-to-abc transformation uses the phase value (or filtered phase value) received from the phased locked loop.
  • dq-to-abc three-phase stationary reference frame transformation
  • the outputs OUT POD1 ,OUT POD2 of the frequency damping control block 210 can be fed back into the current controller block 212 either during the first or second combination.
  • FIG. 6 indicates the feedback of the outputs OUT POD1,a ,OUT POD2,a into the current controller block 212 during the first combination, and the feedback of the outputs OUT POD1,b ,OUT POD2,b into the current controller block 212 during the second combination.
  • embodiments of the invention are applicable to other power transmission networks with a configuration that includes: a variable power source; an AC transmission link for AC power transmission from the variable power source to at least one source side converter; and at least one source side converter including: an AC connecting point operably connected to the AC transmission link; and a DC connecting point for connection to a DC transmission link.
  • the or each wind farm may be replaced by another type of variable power source, such as a tidal or solar farm, and/or the AC power grid may be replaced by another type of AC electrical network.
  • control system may vary depending on specific requirements of each of the first and second power transmission networks.
  • control system may include a global controller for controlling the source and network side converters, and the global controller may be configured to communicate with each converter via telecommunications links.
  • control system in addition to the local controllers, may include the global controller for controlling the source and network side converters, and the global controller may be configured to communicate with at least one local controller via telecommunications links.
  • each of the local controllers may be replaced by another type of controller with a different configuration.
  • the input values received by the local controllers of the control system shown in FIGS. 2 a , 2 b and 3 were merely chosen to help illustrate the operation of embodiments of the invention, that not all of the input values are required for the control system to carry out its function, and that other types of input values may be provided to the control system in order for it to carry out its function.
  • the control system may be configured to receive and use only one feedback signal or a plurality of feedback signals.
  • a set of band-stop filters could be used to filter any input signal of the control system (e.g. measured signals, such as voltage magnitude or frequency).
  • the configuration of the band-stop filters in this manner prevents harmful frequency components, which could be generated by the wind farm, from affecting the control system.
  • Different sets of band-stop filters associated with different input signals may be tuned to identical or different frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)
US15/559,633 2015-03-19 2016-03-17 Power transmission network Active 2036-08-13 US10608434B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP15275080 2015-03-19
EP15275080.8 2015-03-19
EP15275080.8A EP3070805B1 (fr) 2015-03-19 2015-03-19 Réseau de transmission de puissance
PCT/EP2016/055885 WO2016146784A1 (fr) 2015-03-19 2016-03-17 Réseau de transmission de puissance

Publications (2)

Publication Number Publication Date
US20180342871A1 US20180342871A1 (en) 2018-11-29
US10608434B2 true US10608434B2 (en) 2020-03-31

Family

ID=52686293

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/559,633 Active 2036-08-13 US10608434B2 (en) 2015-03-19 2016-03-17 Power transmission network

Country Status (4)

Country Link
US (1) US10608434B2 (fr)
EP (1) EP3070805B1 (fr)
CN (1) CN107408819B (fr)
WO (1) WO2016146784A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200067317A1 (en) * 2016-11-09 2020-02-27 General Electric Technology Gmbh Improvements in or relating to power transmission networks

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10720773B2 (en) * 2018-01-02 2020-07-21 City University Of Hong Kong Electric circuit and associated method for regulating power transfer in a power grid
CN110429632B (zh) * 2019-07-25 2021-05-07 天津大学 含双回柔性直流两区域异步互联系统频率一致性控制方法
JP7522826B2 (ja) 2019-09-11 2024-07-25 ヒタチ・エナジー・リミテッド フレキシブル相互接続デバイスおよびフレキシブル相互接続デバイスを制御する方法
DE102019132336A1 (de) * 2019-11-28 2021-06-02 Sma Solar Technology Ag Wandlervorrichtung und betriebsverfahren
FR3117707A1 (fr) * 2020-12-11 2022-06-17 Electricite De France Procede de pilotage de convertisseurs bidirectionnels courant alternatif/courant continu pour la synchronisation de systemes electriques a courant alternatif raccordes entre eux par liaison a courant continue

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070121353A1 (en) * 2005-11-30 2007-05-31 Zhang Richard S Power converter system and method
US20090322083A1 (en) 2008-06-30 2009-12-31 General Electric Company Optimizing converter protection for wind turbine generators
US20120155125A1 (en) * 2010-12-17 2012-06-21 Yanfeng Zhang Wind turbine generator
WO2014108258A2 (fr) 2013-01-11 2014-07-17 Alstom Technology Ltd Convertisseur
EP2846451A1 (fr) 2013-09-04 2015-03-11 Alstom Technology Ltd Convertisseur de puissance
US20150249413A1 (en) * 2014-02-28 2015-09-03 General Electric Company System and method for adjusting current regulator gains applied within a power generation system
US20150263637A1 (en) * 2014-03-14 2015-09-17 Siemens Aktiengesellschaft Converter system and method for converting alternating current
US20150333648A1 (en) * 2014-05-14 2015-11-19 Lsis Co., Ltd. High voltage direct current transmission system and control method thereof
US20160134114A1 (en) * 2013-06-18 2016-05-12 Vestas Wind Systems A/S Compensating electrical harmonics on the electrical grid
US20170054301A1 (en) * 2014-04-29 2017-02-23 General Electric Technology Gmbh Improvements in or relating to voltage source conventors
US20170250540A1 (en) * 2009-09-15 2017-08-31 Rajiv Kumar Varma Multivariable modulator controller for power generation facility

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593856B (zh) * 2012-02-28 2014-01-29 中国电力科学研究院 一种基于短路比的直流孤岛送电系统次同步振荡评估方法
CN104319801A (zh) * 2014-10-20 2015-01-28 许继电气股份有限公司 一种模块化多电平换流器桥臂环流控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070121353A1 (en) * 2005-11-30 2007-05-31 Zhang Richard S Power converter system and method
US20090322083A1 (en) 2008-06-30 2009-12-31 General Electric Company Optimizing converter protection for wind turbine generators
US20170250540A1 (en) * 2009-09-15 2017-08-31 Rajiv Kumar Varma Multivariable modulator controller for power generation facility
US20120155125A1 (en) * 2010-12-17 2012-06-21 Yanfeng Zhang Wind turbine generator
WO2014108258A2 (fr) 2013-01-11 2014-07-17 Alstom Technology Ltd Convertisseur
US20160134114A1 (en) * 2013-06-18 2016-05-12 Vestas Wind Systems A/S Compensating electrical harmonics on the electrical grid
EP2846451A1 (fr) 2013-09-04 2015-03-11 Alstom Technology Ltd Convertisseur de puissance
US20150249413A1 (en) * 2014-02-28 2015-09-03 General Electric Company System and method for adjusting current regulator gains applied within a power generation system
US20150263637A1 (en) * 2014-03-14 2015-09-17 Siemens Aktiengesellschaft Converter system and method for converting alternating current
US20170054301A1 (en) * 2014-04-29 2017-02-23 General Electric Technology Gmbh Improvements in or relating to voltage source conventors
US20150333648A1 (en) * 2014-05-14 2015-11-19 Lsis Co., Ltd. High voltage direct current transmission system and control method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report and Opinion issued in connection with corresponding EP Application No. 15275080.8 dated Aug. 25, 2015.
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/EP2016/055885 dated May 25, 2016.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200067317A1 (en) * 2016-11-09 2020-02-27 General Electric Technology Gmbh Improvements in or relating to power transmission networks
US10778011B2 (en) * 2016-11-09 2020-09-15 General Electric Technology Gmbh Power transmission networks

Also Published As

Publication number Publication date
CN107408819A (zh) 2017-11-28
CN107408819A8 (zh) 2018-01-12
US20180342871A1 (en) 2018-11-29
EP3070805B1 (fr) 2021-04-28
CN107408819B (zh) 2021-03-09
EP3070805A1 (fr) 2016-09-21
WO2016146784A1 (fr) 2016-09-22

Similar Documents

Publication Publication Date Title
US10608434B2 (en) Power transmission network
Matas et al. An adaptive prefiltering method to improve the speed/accuracy tradeoff of voltage sequence detection methods under adverse grid conditions
He et al. An enhanced microgrid load demand sharing strategy
Givaki et al. Current error based compensations for VSC current control in weak grids for wind farm applications
dos Santos Alonso et al. A selective harmonic compensation and power control approach exploiting distributed electronic converters in microgrids
CN110429611B (zh) 一种静止无功补偿器序阻抗建模及控制参数调整方法
Eriksson A new control structure for multiterminal DC grids to damp interarea oscillations
US20140055182A1 (en) Power control system and method
RU2605446C1 (ru) Ветроэнергетическая установка и способ ввода электрической энергии
US11095124B2 (en) Method for compensating feed-in currents in a wind park
WO2019243055A1 (fr) Amortissement d'oscillations à l'aide de filtres actifs
Lee et al. Performance improvement of grid-connected inverter systems under unbalanced and distorted grid voltage by using a PR controller
Abdalaal et al. Analysis and validations of modularized distributed TL-UPQC systems with supervisory remote management system
CN107196342B (zh) 增强弱电网条件下三相并网逆变器稳定性的电流控制方法
Mastromauro Voltage control of a grid-forming converter for an AC microgrid: A real case study
Arnold et al. Extremum Seeking control of smart inverters for VAR compensation
Shi et al. A Small-AC-Signal Injection Based Decentralized Secondary Voltage Control for Parallel Inverters With Accurate Reactive Power Sharing in Islanded Microgrids
US20130148393A1 (en) Methods and systems for controlling a power converter
Shahparasti et al. Enhanced performance controller for high power wind converters connected to weak grids
Narula et al. Empowering offshore wind with ES-STATCOM for stability margin improvement and provision of grid-forming capabilities
Neumann et al. Response of an AC-DC hybrid transmission system to faults in the AC network
CN110649636A (zh) 抑制多电飞机直流电力系统电压振荡的方法及虚拟同步发电机控制装置
CN105207254B (zh) 一种抑制风力发电机网侧变流器交错并联环流的控制方法
Xu et al. A Closed-loop Global Synchronous PWM Method for Immunizing Parameters Uncertainty in Distributed Parallel-Connected VSIs
Wang et al. Frequency coupling suppression and SISO modelling for VSCs with DC‐link dynamics in weak grids

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADAMCZYK, ANDRZEJ;BARKER, CARL DAVID;WHITEHOUSE, ROBERT STEPHEN;REEL/FRAME:043628/0932

Effective date: 20170823

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4