US10571701B2 - Display device - Google Patents

Display device Download PDF

Info

Publication number
US10571701B2
US10571701B2 US16/068,393 US201716068393A US10571701B2 US 10571701 B2 US10571701 B2 US 10571701B2 US 201716068393 A US201716068393 A US 201716068393A US 10571701 B2 US10571701 B2 US 10571701B2
Authority
US
United States
Prior art keywords
image
pedestrian
displayed
display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/068,393
Other versions
US20190018250A1 (en
Inventor
Ken'ichi Kasazumi
Toshiya Mori
Kosuke Kubota
Masahito OGATA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Automotive Systems Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Assigned to PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. reassignment PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORI, TOSHIYA, KUBOTA, KOSUKE, KASAZUMI, KEN'ICHI, OGATA, MASAHITO
Publication of US20190018250A1 publication Critical patent/US20190018250A1/en
Application granted granted Critical
Publication of US10571701B2 publication Critical patent/US10571701B2/en
Assigned to PANASONIC AUTOMOTIVE SYSTEMS CO., LTD. reassignment PANASONIC AUTOMOTIVE SYSTEMS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/37Details of the operation on graphic patterns
    • G09G5/377Details of the operation on graphic patterns for mixing or overlaying two or more graphic patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/177Augmented reality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/33Illumination features
    • B60K2360/334Projection means
    • B60K2370/1529
    • B60K2370/177
    • B60K2370/193
    • B60K2370/334
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3632Guidance using simplified or iconic instructions, e.g. using arrows
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0141Head-up displays characterised by optical features characterised by the informative content of the display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/10Automotive applications

Definitions

  • the present disclosure relates to a display device for displaying an image.
  • a vehicular head-up display As a display device for displaying an image, a vehicular head-up display (HUD) has been known, for example (refer to PTL 1, for example).
  • the head-up display employs so-called augmented reality (AR), and displays a virtual image of an image, which is formed on a screen, in a space in front of a windshield of a vehicle in a two-dimensional (2D) manner.
  • AR augmented reality
  • 2D two-dimensional
  • an image indicating the presence of a pedestrian in front of the vehicle is displayed superimposed on the pedestrian.
  • the driver cannot easily ascertain the distance from the windshield to the pedestrian in a depth direction (that is, in a travel direction of the vehicle when viewed from the driver) just by the display of such an image.
  • the present disclosure provides a display device that enables a driver to easily ascertain a distance from a display medium to an object ahead.
  • a display device includes: a display unit that projects a light beam onto a display medium so as to be reflected from the display medium and that displays a virtual image in a space further than the display medium in a depth direction; and a controller that controls the display unit so that a reference pattern to be superimposed on a subject present in the space is displayed as the virtual image so as to correspond to the position of the subject.
  • a distance from a display medium to an object ahead can be easily ascertained.
  • FIG. 1 is a view illustrating a usage example of a display device according to an exemplary embodiment.
  • FIG. 2 is a view illustrating an area of an image displayed by the display device according to the exemplary embodiment.
  • FIG. 3 is a view illustrating an example of the image displayed by the display device according to the exemplary embodiment.
  • FIG. 4 is a view illustrating a configuration of the display device according to the exemplary embodiment.
  • FIG. 5 is a block diagram illustrating a functional configuration of the display device according to the exemplary embodiment.
  • FIG. 6 is a flowchart illustrating a flow of operation of the display device according to the exemplary embodiment.
  • FIG. 7 is a view for describing a method for forming a first screen image and a second screen image performed by the display device according to the exemplary embodiment.
  • FIG. 8 is a graph illustrating a temporal change of positions of a first end and a second end of a movable screen in the display device according to the exemplary embodiment.
  • FIG. 9A is a view illustrating an example of a first vertical image displayed by the display device in a first display example.
  • FIG. 9B is a view illustrating an example of a second vertical image displayed by the display device in the first display example.
  • FIG. 10 is a flowchart illustrating a flow of operation of the display device in the first display example.
  • FIG. 11 is a view for describing the operation of the display device in the first display example.
  • FIG. 12 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a second display example.
  • FIG. 13 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a third display example.
  • FIG. 14 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a fourth display example.
  • FIG. 15 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a fifth display example.
  • FIG. 16 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a sixth display example.
  • FIG. 17 is a view illustrating one example of a reference pattern and a vehicle image which are displayed by the display device in the second display example.
  • FIG. 18 is a view illustrating one example of superimposition of a reference pattern over a pedestrian image and a vehicle image which are displayed by the display device in the second display example.
  • FIG. 19 is a view illustrating one example of superimposition of a reference pattern over a pedestrian image and a vehicle image which are displayed by the display device in the fourth display example.
  • FIG. 20 is a view illustrating one example of a reference pattern and a vehicle image displayed by the display device in the fourth display example.
  • a display device includes: a display unit that projects a light beam onto a display medium so as to be reflected from the display medium and that displays a virtual image in a space further than the display medium in a depth direction; and a controller that controls the display unit so that a reference pattern to be superimposed on a subject present in the space is displayed as the virtual image so as to correspond to the position of the subject.
  • the reference pattern to be superimposed on the subject present in the space is displayed so as to correspond to the position of the subject, whereby, when a marker or the like indicating an object in front of the display medium is superimposed on the reference pattern, the distance from the display medium to the object in front of the display medium can be easily ascertained based on the reference pattern.
  • the display medium may be a vehicular windshield
  • the space may be a space in front of the vehicular windshield.
  • the display device can be used as a vehicular head-up display.
  • the subject may be a pedestrian
  • the reference pattern may be a grid pattern superimposed on the pedestrian
  • the controller may be configured to display a pedestrian image superimposed on the pedestrian as the virtual image such that the pedestrian image is superimposed on the grid pattern, and to display a part of the grid pattern corresponding to the position of the pedestrian image in a highlighted manner.
  • the pedestrian image superimposed on the pedestrian is displayed superimposed on the grid pattern, and a part of the grid pattern corresponding to the position of the pedestrian image is displayed in a highlighted manner, whereby a distance from the display medium to the pedestrian can be easily ascertained.
  • the subject may also be a vehicle
  • the reference pattern may be a grid pattern superimposed on the vehicle
  • the controller may be configured to further display a vehicle image superimposed on the vehicle as the virtual image such that the vehicle image is superimposed on the grid pattern, and to display a part of the grid pattern corresponding to the position of the vehicle image in a highlighted manner.
  • the vehicle image superimposed on the vehicle is displayed superimposed on the grid pattern, and a part of the grid pattern corresponding to the position of the vehicle image is displayed in a highlighted manner, whereby a distance from the display medium to the vehicle can be easily ascertained.
  • the controller may display the pedestrian image so as to be superimposed on a predetermined area in the grid pattern, and display a part of the grid pattern corresponding to the position of the pedestrian image in a highlighted manner.
  • the subject may be a guard rail
  • the reference pattern may include a guard rail image superimposed on the guard rail
  • the reference pattern includes the guard rail image superimposed on the guard rail, whereby the distance from the display medium to an object (for example, pedestrian) in front of the display medium can be easily ascertained based on the guard rail image.
  • the subject may be a traffic lane line
  • the reference pattern may include a traffic lane line image superimposed on the traffic lane line image.
  • the reference pattern includes the traffic lane line image superimposed on the traffic lane line, whereby the distance from the display medium to an object (for example, pedestrian) in front of the display medium can be easily ascertained based on the traffic lane line image.
  • FIG. 1 is a view illustrating a usage example of display device 2 according to the exemplary embodiment.
  • FIG. 2 is a view illustrating area 11 of image 8 displayed by display device 2 according to the exemplary embodiment.
  • FIG. 3 is a view illustrating an example of image 8 displayed by display device 2 according to the exemplary embodiment.
  • display device 2 is, for example, a vehicular head-up display, and is disposed in dashboard 6 of vehicle 4 (an example of a vehicle).
  • display device 2 projects a laser light beam (an example of a light beam) for displaying image 8 that is a virtual image toward, for example, area 11 that locates at a lower part in windshield 10 (an example of a display medium) and is close to a driver seat in vehicle 4 .
  • the laser light beam is reflected by windshield 10 toward driver 12 . Therefore, as illustrated in FIG. 3 , driver 12 can view image 8 that is the virtual image superimposed on scene 14 in front of windshield 10 .
  • display device 2 displays (projects) image 8 that is the virtual image in space 16 in front of windshield 10 in a three-dimensional (3D) manner.
  • image 8 displayed by display device 2 includes vertical image 18 and depth image 20 .
  • Vertical image 18 is a virtual image displayed in a vertical direction (up-and-down direction in FIG. 1 ) in space 16 in front of windshield 10 .
  • Vertical image 18 is, for example, a marker having a substantially elliptical shape that is vertically long, and is displayed superimposed on pedestrian 22 present in front of vehicle 4 . This configuration allows driver 12 to easily notice the presence of pedestrian 22 .
  • depth image 20 is a virtual image displayed in a depth direction (right-and-left direction in FIG. 1 and the direction perpendicular to the sheet surface of FIG. 3 ) that is a direction intersecting the vertical direction in space 16 in front of windshield 10 .
  • Depth image 20 is, for example, an arrow for guiding a traveling route to a destination (an arrow for instructing to turn right at an intersection, in an example in FIG. 3 ), and is displayed superimposed on road 24 present in front of vehicle 4 . This configuration allows driver 12 to easily find the traveling route to the destination.
  • FIG. 4 is a view illustrating the configuration of display device 2 according to the exemplary embodiment.
  • FIG. 5 is a block diagram illustrating a functional configuration of display device 2 according to the exemplary embodiment.
  • display device 2 includes light projection unit 26 , movable screen 28 , drive unit 30 , image projection unit 32 (an example of an optical system), and controller 34 .
  • Light projection unit 26 , movable screen 28 , drive unit 30 , and image projection unit 32 constitute display unit 35 .
  • Light projection unit 26 includes light source 36 and scanner 38 .
  • Light source 36 includes a red laser diode that emits a laser light beam having a red component (R), a green laser diode that emits a laser light beam having a green component (G), and a blue laser diode that emits a laser light beam having a blue component (B).
  • the laser light beam having the red component, the laser light beam having the green component, and the laser light beam having the blue component that are emitted from light source 36 are synthesized by, for example, a dichroic mirror (not illustrated) and then enter scanner 38 .
  • Scanner 38 is configured with a micro electro mechanical systems (MEMS) mirror, for example.
  • Scanner 38 reflects the entering laser light beam toward a direction according to a deflection angle thereof, and therefore causes the laser light beam from light source 36 to raster-scan movable screen 28 in a two-dimensional manner.
  • Scanner 38 causes the laser light beam to raster-scan from first end 28 a (a lower end in FIG. 5 ) toward second end 28 b (an upper end in FIG. 5 ) of movable screen 28 , for example.
  • first end 28 a is an end farther from scanner 38
  • second end 28 b is an end closer to scanner 38 .
  • Movable screen 28 is a rectangular screen having translucency (for example, semitransparency). As illustrated in FIG. 5 , movable screen 28 is disposed so as to reciprocate in a first direction and in a second direction on an optical path of the laser light beam from scanner 38 .
  • the first direction is a direction away from scanner 38 (a direction indicated by arrow X in FIG. 5 ), and the second direction is a direction approaching scanner 38 (a direction indicated by arrow Y in FIG. 5 ).
  • movable screen 28 reciprocates in a posture inclined to moving directions (first and second directions) of movable screen 28 .
  • first screen image 40 (refer to FIG. 7 described later) is formed in movable screen 28 .
  • second screen image 42 (refer to FIG. 7 described later) is formed in movable screen 28 . Note that methods for forming first screen image 40 and second screen image 42 will be described in detail later.
  • Drive unit 30 is configured with an actuator, for example.
  • Drive unit 30 causes movable screen 28 to reciprocate (vibrate) in the first and second directions at a constant frequency (for example, 60 Hz) and with constant amplitude (for example, 1 mm), based on a drive signal from controller 34 .
  • a constant frequency for example, 60 Hz
  • constant amplitude for example, 1 mm
  • drive unit 30 causes movable screen 28 to reciprocate such that a period of time during which movable screen 28 moves in the first direction (or the second direction) is, for example, 25 msec or less, based on the drive signal from controller 34 .
  • Image projection unit 32 includes magnifying lens 44 , first reflecting plate 46 , second reflecting plate 48 , and windshield 10 .
  • Magnifying lens 44 is disposed on the optical path of the laser light beam transmitting through movable screen 28 . Magnifying lens 44 magnifies first screen image 40 or second screen image 42 formed in movable screen 28 .
  • First reflecting plate 46 and second reflecting plate 48 are disposed on the optical path of the laser light beam from magnifying lens 44 , and reflect the laser light beam from magnifying lens 44 toward windshield 10 . With this configuration, first reflecting plate 46 and second reflecting plate 48 project first screen image 40 or second screen image 42 magnified by magnifying lens 44 toward windshield 10 .
  • Windshield 10 is disposed on the optical path of the laser light beam from second reflecting plate 48 , and reflects the laser light beam from second reflecting plate 48 toward driver 12 .
  • first screen image 40 is formed in movable screen 28
  • vertical image 18 that is the virtual image of first screen image 40 is displayed in space 16 in front of windshield 10 .
  • second screen image 42 is formed in movable screen 28
  • depth image 20 that is the virtual image of second screen image 42 is displayed in space 16 in front of windshield 10 .
  • movable screen 28 reciprocates at a relatively high speed, and therefore driver 12 views first screen image 40 and second screen image 42 as if the two images are displayed simultaneously.
  • Controller 34 has a function of outputting the drive signal to drive unit 30 , a function of controlling a drive current supplied to light source 36 , and a function of controlling a deflection angle of scanner 38 .
  • Controller 34 is configured with, for example, a central processing unit (CPU) or a processor, and reads and executes a computer program stored in a memory (not illustrated) to perform the above-described functions.
  • CPU central processing unit
  • a processor reads and executes a computer program stored in a memory (not illustrated) to perform the above-described functions.
  • FIG. 6 is a flowchart illustrating a flow of operation of display device 2 according to the exemplary embodiment.
  • FIG. 7 is a view for describing a method for forming first screen image 40 and second screen image 42 performed by display device 2 according to the exemplary embodiment.
  • FIG. 8 is a graph illustrating a temporal change of positions of first end 28 a and second end 28 b of movable screen 28 in display device 2 according to the exemplary embodiment.
  • FIG. 6 display of image 8 is started (S 1 ), and then movable screen 28 starts reciprocating in the first direction and the second direction.
  • FIG. 7 when movable screen 28 moves from position P 1 to position P 5 in the second direction (a direction indicated by arrow Y in FIG. 7 ) (S 2 ), the laser light beam from scanner 38 raster-scans movable screen 28 and transmits through movable screen 28 , whereby second screen image 42 is formed in movable screen 28 (S 3 ).
  • FIG. 7 illustrates the laser light beam from scanner 38 raster-scans movable screen 28 and transmits through movable screen 28 , whereby second screen image 42 is formed in movable screen 28 (S 3 ).
  • a position of the laser light beam transmitting through movable screen 28 moves from first end 28 a toward second end 28 b of movable screen 28 .
  • a moving speed of movable screen 28 is constant at first speed V 1 .
  • second screen image 42 formed in movable screen 28 is magnified by magnifying lens 44 , and therefore, second intermediate image 42 a that is the virtual image of second screen image 42 is formed on the light-emitting side of magnifying lens 44 .
  • Second intermediate image 42 a described above is reflected by first reflecting plate 46 and second reflecting plate 48 to be projected on windshield 10 . Therefore, depth image 20 that is the virtual image of second screen image 42 is displayed in space 16 in front of windshield 10 .
  • a display direction of depth image 20 is a direction corresponding to the forming direction of second screen image 42 , that is, the above-described depth direction.
  • first screen image 40 is formed in movable screen 28 .
  • first screen image 40 formed in movable screen 28 is magnified by magnifying lens 44 , and therefore, first intermediate image 40 a that is the virtual image of first screen image 40 is formed on the light-emitting side of magnifying lens 44 .
  • First intermediate image 40 a described above is reflected by first reflecting plate 46 and second reflecting plate 48 to be projected on windshield 10 . Therefore, vertical image 18 that is the virtual image of first screen image 40 is displayed in space 16 in front of windshield 10 .
  • a display direction of vertical image 18 is a direction corresponding to the forming direction of first screen image 40 , that is, the above-described vertical direction.
  • FIG. 9A is a view illustrating one example of first vertical image 18 a displayed by display device 2 in the first display example.
  • FIG. 9B is a view illustrating one example of second vertical image 18 b displayed by display device 2 in the first display example.
  • FIG. 10 is a flowchart illustrating a flow of operation of display device 2 in the first display example.
  • FIG. 11 is a view for describing the operation of display device 2 in the first display example.
  • first vertical image 18 a (an example of a first image) and second vertical image 18 b (an example of a second image) are displayed in a time-division manner.
  • first vertical image 18 a is displayed superimposed on pedestrian 22 a present in front of vehicle 4 at a position distant from vehicle 4 by about 25 m.
  • second vertical image 18 b is displayed superimposed on pedestrian 22 b present in front of vehicle 4 at a position distant from vehicle 4 by about 64 m.
  • first vertical image 18 a and second vertical image 18 b have different distance from windshield 10 in the depth direction (direction perpendicular to the sheet surface of FIG. 9A and FIG. 9B ). It is to be noted that, because first vertical image 18 a and second vertical image 18 b are alternately displayed at a relatively high speed, driver 12 views first vertical image 18 a and second vertical image 18 b as if the two images are displayed simultaneously.
  • Controller 34 controls display unit 35 so that first vertical image 18 a and second vertical image 18 b are displayed in a time-division manner based on image data acquired from an image data generator (not illustrated).
  • the image data is data in which odd-numbered frames and even-numbered frames are alternately displayed at 60 frames per second.
  • Controller 34 displays first vertical image 18 a in the odd-numbered frame and displays second vertical image 18 b in the even-numbered frame.
  • first vertical image 18 a and second vertical image 18 b are displayed in a time-division manner.
  • first vertical image 18 a and second vertical image 18 b is started (S 21 ), and then movable screen 28 starts reciprocating in the first direction and the second direction.
  • movable screen 28 moves from position P 1 to position P 5 in the second direction (direction indicated by arrow Y in FIG. 11 ) (S 22 ), and then, moves from position P 5 to position P 1 in the first direction (direction indicated by arrow X in FIG. 11 ) (S 23 ).
  • the laser light beam from scanner 38 raster-scans movable screen 28 and transmits through movable screen 28 , whereby first screen image 50 a is formed in movable screen 28 .
  • first screen image 50 a is formed in movable screen 28 .
  • First vertical image 18 a that is the virtual image of first screen image 50 a is projected on windshield 10 in the same manner as described above, thereby being displayed in space 16 in front of windshield 10 (S 24 ).
  • movable screen 28 moves from position P 1 to position P 5 in the second direction (S 25 ), and then, moves from position P 5 to position P 1 in the first direction (S 26 ).
  • the laser light beam from scanner 38 raster-scans movable screen 28 and transmits through movable screen 28 , whereby second screen image 50 b is formed in movable screen 28 .
  • second screen image 50 b is formed in movable screen 28 .
  • Second vertical image 18 b that is the virtual image of second screen image 50 b is projected on windshield 10 in the same manner as described above, thereby being displayed in space 16 in front of windshield 10 (S 27 ).
  • steps S 22 to S 27 described above are executed again.
  • movable screen 28 stops reciprocating (S 29 ).
  • first vertical image 18 a is displayed in the odd-numbered frame
  • second vertical image 18 b is displayed in the even-numbered frame.
  • first vertical image 18 a and second vertical image 18 b may be alternately displayed every two or more frames (for example, every ten frames). That is, first vertical image 18 a is displayed in the first to tenth frames, and second vertical image 18 b is displayed in the eleventh to twentieth frames.
  • movable screen 28 reciprocates in this display example, the whole of display device 2 may reciprocate.
  • FIG. 12 is a view illustrating one example of reference pattern 52 and pedestrian image 56 which are displayed by display device 2 in the second display example.
  • controller 34 controls display unit 35 so that reference pattern 52 superimposed on pedestrian 22 (an example of a subject) present in space 16 in front of windshield 10 is displayed.
  • Reference pattern 52 is a grid pattern in which a plurality of vertical lines 52 a and a plurality of horizontal lines 52 b intersect at right angles.
  • Reference pattern 52 is displayed superimposed on road 24 present in front of vehicle 4 as the above-described depth image.
  • reference pattern 52 is displayed such that the position of pedestrian 22 is at intersection point 54 between vertical lines 52 a and horizontal lines 52 b (that is, reference pattern 52 is displayed so as to correspond to the position of pedestrian 22 ).
  • controller 34 displays pedestrian image 56 to be superimposed on pedestrian 22 as the above-described vertical image such that pedestrian image 56 is superimposed on reference pattern 52 .
  • Pedestrian image 56 is, for example, a human-shaped marker.
  • a part of reference pattern 52 corresponding to the position of pedestrian image 56 that is, both two lines which are vertical line 52 a ′ and horizontal line 52 b ′ intersecting at intersection point 54 , are displayed in a highlighted manner. Examples of conceivable methods for providing a highlighted display include displaying both vertical line 52 a ′ and horizontal line 52 b ′ in a thick line, and displaying both two lines in an eye-catching color.
  • Driver 12 can ascertain the position of pedestrian 22 by viewing pedestrian image 56 .
  • Controller 34 controls display unit 35 so that reference pattern 52 and pedestrian image 56 described above are displayed based on image data generated by capturing an image of scene 14 (including pedestrian 22 and road 24 ) in front of vehicle 4 with a camera (not illustrated) mounted to vehicle 4 .
  • reference pattern 52 and pedestrian image 56 are displayed in a 3D manner in the present display example, reference pattern 52 and pedestrian image 56 may be displayed in a 2D manner.
  • controller 34 controls display unit 35 so that reference pattern 52 to be superimposed on vehicle (preceding vehicle) 75 (an example of the subject) present in space 16 in front of windshield 10 is displayed.
  • controller 34 may display vehicle image 76 to be superimposed on vehicle 75 as the above-described vertical image such that vehicle image 76 is superimposed on reference pattern 52 .
  • controller 34 may display, in addition to pedestrian image 56 , vehicle image 76 to be superimposed on vehicle 75 as the above-described vertical image such that vehicle image 76 is superimposed on reference pattern 52 , as illustrated in FIG. 18 .
  • FIG. 13 is a view illustrating one example of reference pattern 52 and pedestrian image 56 which are displayed by display device 2 in the third display example.
  • controller 34 controls display unit 35 so that reference pattern 52 to be superimposed on pedestrian 22 present in space 16 in front of windshield 10 is displayed, as in the second display example.
  • Reference pattern 52 is displayed such that the position of pedestrian 22 is within section 58 (that is, in an area enclosed by a pair of adjacent vertical lines 52 a and a pair of adjacent horizontal lines 52 b ) of the grid pattern (that is, reference pattern 52 is displayed so as to correspond to the position of pedestrian 22 ).
  • controller 34 displays pedestrian image 56 to be superimposed on pedestrian 22 as the above-described vertical image such that pedestrian image 56 is superimposed on reference pattern 52 .
  • a part of reference pattern 52 corresponding to the position of pedestrian image 56 is displayed in a highlighted manner as illustrated in FIG. 13 .
  • Examples of conceivable methods for providing a highlighted display include displaying section 58 in an eye-catching color, or displaying a pair of vertical lines 52 a and a pair of horizontal lines 52 b enclosing section 58 in a thick line.
  • Driver 12 can ascertain the position of pedestrian 22 by viewing pedestrian image 56 .
  • reference pattern 52 and pedestrian image 56 are displayed in a 3D manner in the present display example, reference pattern 52 and pedestrian image 56 may be displayed in a 2D manner.
  • FIG. 14 is a view illustrating one example of reference pattern 52 and pedestrian image 56 which are displayed by display device 2 in the fourth display example.
  • controller 34 controls display unit 35 so that reference pattern 52 to be superimposed on pedestrian 22 present in space 16 in front of windshield 10 is displayed, as in the second display example.
  • Reference pattern 52 is displayed such that the position of pedestrian 22 is at intersection point 54 between vertical lines 52 a and horizontal lines 52 b of the grid pattern.
  • controller 34 displays pedestrian image 56 to be superimposed on pedestrian 22 as the above-described vertical image such that pedestrian image 56 is superimposed on reference pattern 52 .
  • controller 34 displays pedestrian image 56 so as to be superimposed on a predetermined area (for example, an area nearest to the position of pedestrian 22 as viewed from driver 12 ) of reference pattern 52 , as illustrated in FIG. 14 .
  • a part of reference pattern 52 corresponding to the position of pedestrian 22 at the outside of reference pattern 52 that is, two lines which are vertical line 52 a ′ and horizontal line 52 b ′ intersecting at intersection point 54 , are displayed in a highlighted manner.
  • Examples of conceivable methods for providing a highlighted display include displaying both vertical line 52 a ′ and horizontal line 52 b ′ in a thick line, and displaying both two lines in an eye-catching color.
  • Driver 12 can ascertain the position of pedestrian 22 by viewing pedestrian image 56 , even when the position of pedestrian 22 is not superimposed on reference pattern 52 .
  • reference pattern 52 and pedestrian image 56 are displayed in a 3D manner in the present display example, reference pattern 52 and pedestrian image 56 may be displayed in a 2D manner.
  • controller 34 may display, in addition to pedestrian image 56 , vehicle image 76 to be superimposed on vehicle 75 as the above-described vertical image such that vehicle image 76 is superimposed on reference pattern 52 .
  • controller 34 controls display unit 35 so that reference pattern 52 to be superimposed on vehicle (preceding vehicle) 75 (an example of the subject) present in space 16 in front of windshield 10 is displayed.
  • controller 34 may display vehicle image 76 to be superimposed on vehicle 75 as the above-described vertical image such that vehicle image 76 is superimposed on reference pattern 52 .
  • FIG. 15 is a view illustrating one example of reference pattern 62 and pedestrian image 56 which are displayed by display device 2 in the fifth display example.
  • controller 34 controls display unit 35 so that reference pattern 62 including a plurality of guard rail images 60 is displayed.
  • Guard rail images 60 are images to be respectively superimposed on a plurality of guard rails 64 (an example of the subject) present in space 16 in front of windshield 10 .
  • Reference pattern 62 is a pattern including these guard rail images 60 and horizontal lines 66 , each of horizontal lines 66 connecting lower ends of a pair of guard rail images 60 facing each other across road 24 .
  • Reference pattern 62 is displayed superimposed on road 24 present in front of vehicle 4 as the above-described depth image.
  • Reference pattern 62 is also displayed such that guard rail images 60 are respectively superimposed on guard rails 64 (such that guard rail images 60 correspond to positions of guard rails 64 , respectively).
  • controller 34 displays pedestrian image 56 to be superimposed on pedestrian 22 as the above-described vertical image such that pedestrian image 56 is superimposed on reference pattern 62 .
  • marker 68 extending substantially parallel to horizontal lines 66 is displayed under the feet of pedestrian image 56 .
  • Marker 68 is a marker indicating the position of pedestrian 22 in the depth direction.
  • Driver 12 can ascertain the position of pedestrian 22 in the depth direction by viewing the space between marker 68 and horizontal lines 66 .
  • reference pattern 62 and pedestrian image 56 are displayed in a 3D manner in the present display example, reference pattern 62 and pedestrian image 56 may be displayed in a 2D manner.
  • reference pattern 62 may include a roadside tree image superimposed on a roadside tree present in space 16 in front of windshield 10 , in place of guard rail image 60 .
  • FIG. 16 is a view illustrating one example of reference pattern 72 and pedestrian images 56 a and 56 b which are displayed by display device 2 in the sixth display example.
  • controller 34 controls display unit 35 so that reference pattern 72 including a plurality of traffic lane line images 70 is displayed.
  • Traffic lane line images 70 are images to be respectively superimposed on a plurality of traffic lane lines 74 (an example of the subject) present in space 16 in front of windshield 10 .
  • Reference pattern 72 is a pattern including these traffic lane line images 70 and pairs of horizontal lines 76 , each pair of horizontal lines 76 connecting both ends of a pair of traffic lane line images 70 and facing each other across road 24 .
  • Reference pattern 72 is displayed superimposed on road 24 present in front of vehicle 4 as the above-described depth image.
  • Reference pattern 72 is also displayed such that traffic lane line images 70 are respectively superimposed on traffic lane lines 74 (such that traffic lane line images 70 correspond to positions of traffic lane lines 74 , respectively).
  • controller 34 displays pedestrian images 56 a and 56 b to be respectively superimposed on pedestrians 22 a and 22 b as the above-described vertical image such that pedestrian images 56 a and 56 b are superimposed on reference pattern 72 .
  • markers 68 a and 68 b extending substantially parallel to horizontal lines 76 are displayed under the feet of pedestrian images 56 a and 56 b .
  • Driver 12 can ascertain the positions of pedestrians 22 a and 22 b in the depth direction by viewing the space between each of markers 68 a and 68 b and horizontal lines 66 .
  • reference pattern 72 and pedestrian images 56 a and 56 b are displayed in a 3D manner in the present display example, reference pattern 72 and pedestrian images 56 a and 56 b may be displayed in a 2D manner.
  • reference patterns 52 , 62 , and 72 to be superimposed on a subject (such as pedestrian 22 ) present in space 16 are displayed so as to correspond to the position of the subject. Accordingly, pedestrian image 56 a to be superimposed on pedestrian 22 present in space 16 , for example, is superimposed on reference patterns 52 , 62 , and 72 , whereby driver 12 can easily ascertain the distance from windshield 10 to pedestrian 22 , for example, based on reference patterns 52 , 62 , and 72 .
  • display device 2 is mounted on vehicle 4 .
  • present disclosure is not limited thereto, and display device 2 may be mounted on motorcycles, airplanes, trains, or ships, for example.
  • Display device 2 may be mounted on, for example, glasses configured as wearable devices.
  • the moving directions of movable screen 28 when first screen image 40 and second screen image 42 are formed may be reverse to the directions described in the above exemplary embodiment. That is, when movable screen 28 moves in the second direction, the laser light beam from scanner 38 may raster-scan movable screen 28 to form first screen image 40 in movable screen 28 . Meanwhile, when movable screen 28 moves in the first direction, the laser light beam from scanner 38 may raster-scan movable screen 28 to form second screen image 42 in movable screen 28 .
  • movable screen 28 reciprocates in a posture inclined to moving directions of movable screen 28 .
  • movable screen 28 may reciprocate in a posture substantially perpendicular to the moving directions of movable screen 28 .
  • first vertical image 18 a or second vertical image 18 b is displayed.
  • pedestrian image 56 ( 56 a , 56 b ) superimposed on pedestrian 22 ( 22 a , 22 b ) is displayed.
  • the present disclosure is not limited thereto.
  • a preceding vehicle image superimposed on a preceding vehicle or a bicycle image superimposed on a bicycle may be displayed.
  • the constituent elements may be implemented in dedicated hardware or with execution of software programs individually suitable for those constituent elements.
  • the constituent elements may be implemented by a program execution section, such as a CPU or a processor, reading and executing software programs stored in a recording medium, such as a hard disk or a semiconductor memory.
  • the above-described devices can be implemented using a computer system configured with a microprocessor, a read only memory (ROM), a random access memory (RAM), a hard disk unit, display unit, keyboard, mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • the microprocessor operates according to the computer program, and therefore the devices achieve the respective functions.
  • the computer program is configured by combining a plurality of instruction codes that indicate instructions to a computer, in order to achieve predetermined functions.
  • a part or all of the constituent elements configuring the above-described devices may be configured with a single-chip system large-scale-integration (LSI).
  • the system LSI is a super multi-functional LSI manufactured such that a plurality of constituent units is integrated into a single chip, and specifically, is a computer system including the microprocessor, the ROM, the RAM, and the like.
  • the ROM stores the computer program.
  • the microprocessor loads the computer program from the ROM to the RAM, and performs operation such as computation according to the loaded computer program, and thus the system LSI achieves its functions.
  • a part or all of the constituent elements configuring the above-described devices may be configured with an integrated circuit (IC) card detachable from each of the devices, or a single module.
  • the IC card or the module is the computer system configured with the microprocessor, the ROM, the RAM, and the like.
  • the IC card or the module may include the above-described super multi-functional LSI.
  • the microprocessor operates according to the computer program, and thus the IC card or the module achieves its functions.
  • the IC card or the module may have tamper resistance.
  • the present invention may be implemented by using the above-described methods. Those methods may be implemented by using the computer program that is implemented by the computer, or may be implemented by using digital signals according to the computer program.
  • the present invention may be implemented by using a configuration that stores the computer program or the digital signals into a computer-readable recording medium such as a flexible disk, a hard disk, a compact disc (CD)-ROM, a magneto-optical disc (MO), a digital versatile disc (DVD), a DVD-ROM, a DVD-RAM, a Blu-ray (registered trademark) disc (BD), and a semiconductor memory.
  • a computer-readable recording medium such as a flexible disk, a hard disk, a compact disc (CD)-ROM, a magneto-optical disc (MO), a digital versatile disc (DVD), a DVD-ROM, a DVD-RAM, a Blu-ray (registered trademark) disc (BD), and a semiconductor memory.
  • a computer-readable recording medium such as a flexible disk, a hard disk, a compact disc (CD)-ROM, a magneto-optical disc (MO), a digital versatile disc (DVD), a DVD-ROM, a DVD-RAM, a Blu-
  • the present invention may transmit the computer program or the digital signals via a network represented by a telecommunications line, a wireless or wired communication line, and the Internet, data broadcasting, and the like.
  • the present invention may be the computer system including the microprocessor and the memory.
  • the memory may store the computer program, and the microprocessor may operate according to the computer program.
  • the program or the digital signals may be performed by another computer system that is independently provided, by being stored into a recording medium to be transported to the other computer, or by being transported to the other computer via networks and the like.
  • a display device is applicable to a vehicle-mounted head-up display, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

Provided is a display device that allows a distance from a display medium to an object ahead to be easily ascertained. The display device includes a display unit that projects a light beam onto a windshield so as to be reflected from the windshield such that a virtual image is displayed in a space further than the windshield in the depth direction, and a controller that controls the display unit so that a reference pattern to be superimposed on a pedestrian present in the space is displayed so as to correspond to the position of the pedestrian.

Description

This application is a U.S. national stage application of the PCT International Application No. PCT/JP2017/000379 filed on Jan. 10, 2017 which claims the benefit of foreign priority of Japanese patent application No. 2016-009270 filed on Jan. 20, 2016, the contents all of which are incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to a display device for displaying an image.
BACKGROUND ART
As a display device for displaying an image, a vehicular head-up display (HUD) has been known, for example (refer to PTL 1, for example). The head-up display employs so-called augmented reality (AR), and displays a virtual image of an image, which is formed on a screen, in a space in front of a windshield of a vehicle in a two-dimensional (2D) manner. With this configuration, a driver can view information about driving (for example, car navigation information) superimposed on a scene in front of the windshield.
CITATION LIST Patent Literature
PTL 1: Unexamined Japanese Patent Publication No. 2006-118963
SUMMARY OF THE INVENTION
In the conventional display device described above, an image (marker) indicating the presence of a pedestrian in front of the vehicle is displayed superimposed on the pedestrian. However, there is a problem in which the driver cannot easily ascertain the distance from the windshield to the pedestrian in a depth direction (that is, in a travel direction of the vehicle when viewed from the driver) just by the display of such an image.
In view of this, the present disclosure provides a display device that enables a driver to easily ascertain a distance from a display medium to an object ahead.
A display device according to one aspect of the present disclosure includes: a display unit that projects a light beam onto a display medium so as to be reflected from the display medium and that displays a virtual image in a space further than the display medium in a depth direction; and a controller that controls the display unit so that a reference pattern to be superimposed on a subject present in the space is displayed as the virtual image so as to correspond to the position of the subject.
It should be noted that those comprehensive, specific aspects may be implemented by a system, a method, an integrated circuit, a computer program, or a computer-readable recording medium such as a CD-ROM, or may be implemented by any combination of the system, the method, the integrated circuit, the computer program, and the recording medium.
According to the display device in the invention (present invention) of the present disclosure, a distance from a display medium to an object ahead can be easily ascertained.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a view illustrating a usage example of a display device according to an exemplary embodiment.
FIG. 2 is a view illustrating an area of an image displayed by the display device according to the exemplary embodiment.
FIG. 3 is a view illustrating an example of the image displayed by the display device according to the exemplary embodiment.
FIG. 4 is a view illustrating a configuration of the display device according to the exemplary embodiment.
FIG. 5 is a block diagram illustrating a functional configuration of the display device according to the exemplary embodiment.
FIG. 6 is a flowchart illustrating a flow of operation of the display device according to the exemplary embodiment.
FIG. 7 is a view for describing a method for forming a first screen image and a second screen image performed by the display device according to the exemplary embodiment.
FIG. 8 is a graph illustrating a temporal change of positions of a first end and a second end of a movable screen in the display device according to the exemplary embodiment.
FIG. 9A is a view illustrating an example of a first vertical image displayed by the display device in a first display example.
FIG. 9B is a view illustrating an example of a second vertical image displayed by the display device in the first display example.
FIG. 10 is a flowchart illustrating a flow of operation of the display device in the first display example.
FIG. 11 is a view for describing the operation of the display device in the first display example.
FIG. 12 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a second display example.
FIG. 13 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a third display example.
FIG. 14 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a fourth display example.
FIG. 15 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a fifth display example.
FIG. 16 is a view illustrating one example of a reference pattern and a pedestrian image which are displayed by the display device in a sixth display example.
FIG. 17 is a view illustrating one example of a reference pattern and a vehicle image which are displayed by the display device in the second display example.
FIG. 18 is a view illustrating one example of superimposition of a reference pattern over a pedestrian image and a vehicle image which are displayed by the display device in the second display example.
FIG. 19 is a view illustrating one example of superimposition of a reference pattern over a pedestrian image and a vehicle image which are displayed by the display device in the fourth display example.
FIG. 20 is a view illustrating one example of a reference pattern and a vehicle image displayed by the display device in the fourth display example.
DESCRIPTION OF EMBODIMENT
To address the foregoing problem, a display device according to one aspect of the present disclosure includes: a display unit that projects a light beam onto a display medium so as to be reflected from the display medium and that displays a virtual image in a space further than the display medium in a depth direction; and a controller that controls the display unit so that a reference pattern to be superimposed on a subject present in the space is displayed as the virtual image so as to correspond to the position of the subject.
According to this aspect, the reference pattern to be superimposed on the subject present in the space is displayed so as to correspond to the position of the subject, whereby, when a marker or the like indicating an object in front of the display medium is superimposed on the reference pattern, the distance from the display medium to the object in front of the display medium can be easily ascertained based on the reference pattern.
For example, the display medium may be a vehicular windshield, and the space may be a space in front of the vehicular windshield.
According to this aspect, the display device can be used as a vehicular head-up display.
For example, the subject may be a pedestrian, the reference pattern may be a grid pattern superimposed on the pedestrian, and the controller may be configured to display a pedestrian image superimposed on the pedestrian as the virtual image such that the pedestrian image is superimposed on the grid pattern, and to display a part of the grid pattern corresponding to the position of the pedestrian image in a highlighted manner.
According to this aspect, the pedestrian image superimposed on the pedestrian is displayed superimposed on the grid pattern, and a part of the grid pattern corresponding to the position of the pedestrian image is displayed in a highlighted manner, whereby a distance from the display medium to the pedestrian can be easily ascertained.
For example, the subject may also be a vehicle, the reference pattern may be a grid pattern superimposed on the vehicle, and the controller may be configured to further display a vehicle image superimposed on the vehicle as the virtual image such that the vehicle image is superimposed on the grid pattern, and to display a part of the grid pattern corresponding to the position of the vehicle image in a highlighted manner.
According to this aspect, the vehicle image superimposed on the vehicle (preceding vehicle) is displayed superimposed on the grid pattern, and a part of the grid pattern corresponding to the position of the vehicle image is displayed in a highlighted manner, whereby a distance from the display medium to the vehicle can be easily ascertained.
For example, when the position of the pedestrian is not superimposed on the grid pattern, the controller may display the pedestrian image so as to be superimposed on a predetermined area in the grid pattern, and display a part of the grid pattern corresponding to the position of the pedestrian image in a highlighted manner.
According to this aspect, even when the position of the pedestrian is not superimposed on the grid pattern, a driver can easily ascertain the position of the pedestrian by viewing the pedestrian image and the grid pattern.
For example, the subject may be a guard rail, and the reference pattern may include a guard rail image superimposed on the guard rail.
According to this aspect, the reference pattern includes the guard rail image superimposed on the guard rail, whereby the distance from the display medium to an object (for example, pedestrian) in front of the display medium can be easily ascertained based on the guard rail image.
For example, the subject may be a traffic lane line, and the reference pattern may include a traffic lane line image superimposed on the traffic lane line image.
According to this aspect, the reference pattern includes the traffic lane line image superimposed on the traffic lane line, whereby the distance from the display medium to an object (for example, pedestrian) in front of the display medium can be easily ascertained based on the traffic lane line image.
It should be noted that those comprehensive, specific aspects may be implemented by a system, a method, an integrated circuit, a computer program, or a computer-readable recording medium such as a CD-ROM, or may be implemented by any combination of the system, the method, the integrated circuit, the computer program, and the recording medium.
Hereinafter, an exemplary embodiment will specifically be described with reference to the drawings.
Note that the following exemplary embodiment provides comprehensive, specific examples of the present disclosure. Numerical values, shapes, materials, constituent elements, arrangement positions and connection modes of the constituent elements, steps, and order of the steps, for example, illustrated in the following exemplary embodiment are merely examples, and therefore are not intended to limit the present invention. Furthermore, among constituent elements in the following exemplary embodiment, constituent elements not recited in the independent claim indicating the broadest concept are described as optional constituent elements.
(Exemplary Embodiment)
[1. Schematic Configuration of Display Device]
First, a schematic configuration of display device 2 according to an exemplary embodiment will now be described herein with reference to FIGS. 1 to 3. FIG. 1 is a view illustrating a usage example of display device 2 according to the exemplary embodiment. FIG. 2 is a view illustrating area 11 of image 8 displayed by display device 2 according to the exemplary embodiment. FIG. 3 is a view illustrating an example of image 8 displayed by display device 2 according to the exemplary embodiment.
As illustrated in FIG. 1, display device 2 according to the exemplary embodiment is, for example, a vehicular head-up display, and is disposed in dashboard 6 of vehicle 4 (an example of a vehicle).
As illustrated in FIGS. 1 and 2, display device 2 projects a laser light beam (an example of a light beam) for displaying image 8 that is a virtual image toward, for example, area 11 that locates at a lower part in windshield 10 (an example of a display medium) and is close to a driver seat in vehicle 4. With this, the laser light beam is reflected by windshield 10 toward driver 12. Therefore, as illustrated in FIG. 3, driver 12 can view image 8 that is the virtual image superimposed on scene 14 in front of windshield 10. In other words, display device 2 displays (projects) image 8 that is the virtual image in space 16 in front of windshield 10 in a three-dimensional (3D) manner.
In an example illustrated in FIG. 3, image 8 displayed by display device 2 includes vertical image 18 and depth image 20. Vertical image 18 is a virtual image displayed in a vertical direction (up-and-down direction in FIG. 1) in space 16 in front of windshield 10. Vertical image 18 is, for example, a marker having a substantially elliptical shape that is vertically long, and is displayed superimposed on pedestrian 22 present in front of vehicle 4. This configuration allows driver 12 to easily notice the presence of pedestrian 22.
Meanwhile, depth image 20 is a virtual image displayed in a depth direction (right-and-left direction in FIG. 1 and the direction perpendicular to the sheet surface of FIG. 3) that is a direction intersecting the vertical direction in space 16 in front of windshield 10. Depth image 20 is, for example, an arrow for guiding a traveling route to a destination (an arrow for instructing to turn right at an intersection, in an example in FIG. 3), and is displayed superimposed on road 24 present in front of vehicle 4. This configuration allows driver 12 to easily find the traveling route to the destination.
[2. Specific Configuration of Display Device]
Next, specific configurations of display device 2 according to the exemplary embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a view illustrating the configuration of display device 2 according to the exemplary embodiment. FIG. 5 is a block diagram illustrating a functional configuration of display device 2 according to the exemplary embodiment.
As illustrated in FIGS. 4 and 5, display device 2 includes light projection unit 26, movable screen 28, drive unit 30, image projection unit 32 (an example of an optical system), and controller 34. Light projection unit 26, movable screen 28, drive unit 30, and image projection unit 32 constitute display unit 35.
Light projection unit 26 includes light source 36 and scanner 38. Light source 36 includes a red laser diode that emits a laser light beam having a red component (R), a green laser diode that emits a laser light beam having a green component (G), and a blue laser diode that emits a laser light beam having a blue component (B). The laser light beam having the red component, the laser light beam having the green component, and the laser light beam having the blue component that are emitted from light source 36 are synthesized by, for example, a dichroic mirror (not illustrated) and then enter scanner 38.
Scanner 38 is configured with a micro electro mechanical systems (MEMS) mirror, for example. Scanner 38 reflects the entering laser light beam toward a direction according to a deflection angle thereof, and therefore causes the laser light beam from light source 36 to raster-scan movable screen 28 in a two-dimensional manner. Scanner 38 causes the laser light beam to raster-scan from first end 28 a (a lower end in FIG. 5) toward second end 28 b (an upper end in FIG. 5) of movable screen 28, for example. Note that first end 28 a is an end farther from scanner 38, and second end 28 b is an end closer to scanner 38.
Movable screen 28 is a rectangular screen having translucency (for example, semitransparency). As illustrated in FIG. 5, movable screen 28 is disposed so as to reciprocate in a first direction and in a second direction on an optical path of the laser light beam from scanner 38. The first direction is a direction away from scanner 38 (a direction indicated by arrow X in FIG. 5), and the second direction is a direction approaching scanner 38 (a direction indicated by arrow Y in FIG. 5). Further, movable screen 28 reciprocates in a posture inclined to moving directions (first and second directions) of movable screen 28.
When movable screen 28 moves in the first direction, the laser light beam from scanner 38 raster-scans movable screen 28, whereby first screen image 40 (refer to FIG. 7 described later) is formed in movable screen 28. Meanwhile, when movable screen 28 moves in the second direction, the laser light beam from scanner 38 raster-scans movable screen 28, whereby second screen image 42 (refer to FIG. 7 described later) is formed in movable screen 28. Note that methods for forming first screen image 40 and second screen image 42 will be described in detail later.
Drive unit 30 is configured with an actuator, for example. Drive unit 30 causes movable screen 28 to reciprocate (vibrate) in the first and second directions at a constant frequency (for example, 60 Hz) and with constant amplitude (for example, 1 mm), based on a drive signal from controller 34. Note that drive unit 30 causes movable screen 28 to reciprocate such that a period of time during which movable screen 28 moves in the first direction (or the second direction) is, for example, 25 msec or less, based on the drive signal from controller 34.
Image projection unit 32 includes magnifying lens 44, first reflecting plate 46, second reflecting plate 48, and windshield 10.
Magnifying lens 44 is disposed on the optical path of the laser light beam transmitting through movable screen 28. Magnifying lens 44 magnifies first screen image 40 or second screen image 42 formed in movable screen 28.
First reflecting plate 46 and second reflecting plate 48 are disposed on the optical path of the laser light beam from magnifying lens 44, and reflect the laser light beam from magnifying lens 44 toward windshield 10. With this configuration, first reflecting plate 46 and second reflecting plate 48 project first screen image 40 or second screen image 42 magnified by magnifying lens 44 toward windshield 10.
Windshield 10 is disposed on the optical path of the laser light beam from second reflecting plate 48, and reflects the laser light beam from second reflecting plate 48 toward driver 12. With this configuration, when first screen image 40 is formed in movable screen 28, vertical image 18 that is the virtual image of first screen image 40 is displayed in space 16 in front of windshield 10. Meanwhile, when second screen image 42 is formed in movable screen 28, depth image 20 that is the virtual image of second screen image 42 is displayed in space 16 in front of windshield 10. It is to be noted that movable screen 28 reciprocates at a relatively high speed, and therefore driver 12 views first screen image 40 and second screen image 42 as if the two images are displayed simultaneously.
Controller 34 has a function of outputting the drive signal to drive unit 30, a function of controlling a drive current supplied to light source 36, and a function of controlling a deflection angle of scanner 38. Controller 34 is configured with, for example, a central processing unit (CPU) or a processor, and reads and executes a computer program stored in a memory (not illustrated) to perform the above-described functions.
[3. Operation of Display Device]
Subsequently, operation of display device 2 according to the exemplary embodiment will now be described with reference to FIGS. 5 to 8. FIG. 6 is a flowchart illustrating a flow of operation of display device 2 according to the exemplary embodiment. FIG. 7 is a view for describing a method for forming first screen image 40 and second screen image 42 performed by display device 2 according to the exemplary embodiment. FIG. 8 is a graph illustrating a temporal change of positions of first end 28 a and second end 28 b of movable screen 28 in display device 2 according to the exemplary embodiment.
As illustrated in FIG. 6, display of image 8 is started (S1), and then movable screen 28 starts reciprocating in the first direction and the second direction. As illustrated in FIG. 7, when movable screen 28 moves from position P1 to position P5 in the second direction (a direction indicated by arrow Y in FIG. 7) (S2), the laser light beam from scanner 38 raster-scans movable screen 28 and transmits through movable screen 28, whereby second screen image 42 is formed in movable screen 28 (S3). Specifically, as illustrated in FIG. 7, while movable screen 28 moves from position P1 to position P5 through position P2, position P3, and position P4, a position of the laser light beam transmitting through movable screen 28 moves from first end 28 a toward second end 28 b of movable screen 28. This causes a forming direction of second screen image 42 to be a direction inclined to the moving directions of movable screen 28. As illustrated in FIG. 8, while movable screen 28 moves in the second direction, a moving speed of movable screen 28 is constant at first speed V1.
As illustrated in FIG. 7, second screen image 42 formed in movable screen 28 is magnified by magnifying lens 44, and therefore, second intermediate image 42 a that is the virtual image of second screen image 42 is formed on the light-emitting side of magnifying lens 44. Second intermediate image 42 a described above is reflected by first reflecting plate 46 and second reflecting plate 48 to be projected on windshield 10. Therefore, depth image 20 that is the virtual image of second screen image 42 is displayed in space 16 in front of windshield 10. At this time, a display direction of depth image 20 is a direction corresponding to the forming direction of second screen image 42, that is, the above-described depth direction.
Meanwhile, as illustrated in FIG. 7, when movable screen 28 moves from position P5 to position P1 in the first direction (a direction indicated by arrow X in FIG. 7) (S4), the laser light beam from scanner 38 raster-scans movable screen 28 and transmits through movable screen 28, whereby first screen image 40 is formed in movable screen 28 (S5). Specifically, as illustrated in FIG. 7, while movable screen 28 moves from position P3 to position P2, the position of the laser light beam transmitting through movable screen 28 moves in a direction from first end 28 a toward second end 28 b of movable screen 28. With this configuration, a forming direction of first screen image 40 is made perpendicular to the moving directions of movable screen 28, as indicated by arrow U in FIG. 5.
As illustrated in FIG. 8, at timing when the moving speed of movable screen 28 shifts from second speed V2 to third speed V3, first screen image 40 is formed in movable screen 28.
As illustrated in FIG. 7, first screen image 40 formed in movable screen 28 is magnified by magnifying lens 44, and therefore, first intermediate image 40 a that is the virtual image of first screen image 40 is formed on the light-emitting side of magnifying lens 44. First intermediate image 40 a described above is reflected by first reflecting plate 46 and second reflecting plate 48 to be projected on windshield 10. Therefore, vertical image 18 that is the virtual image of first screen image 40 is displayed in space 16 in front of windshield 10. At this time, a display direction of vertical image 18 is a direction corresponding to the forming direction of first screen image 40, that is, the above-described vertical direction.
When the display of image 8 is performed continuously (NO in S6), steps S2 to S5 described above are executed again. When the display of image 8 is to be finished (YES in S6), movable screen 28 stops reciprocating (S7).
[4. First Display Example]
Subsequently, a first display example of display device 2 according to the exemplary embodiment will be described with reference to FIGS. 9A to 11. FIG. 9A is a view illustrating one example of first vertical image 18 a displayed by display device 2 in the first display example. FIG. 9B is a view illustrating one example of second vertical image 18 b displayed by display device 2 in the first display example. FIG. 10 is a flowchart illustrating a flow of operation of display device 2 in the first display example. FIG. 11 is a view for describing the operation of display device 2 in the first display example.
As illustrated in FIGS. 9A and 9B, in the first display example, first vertical image 18 a (an example of a first image) and second vertical image 18 b (an example of a second image) are displayed in a time-division manner. For example, first vertical image 18 a is displayed superimposed on pedestrian 22 a present in front of vehicle 4 at a position distant from vehicle 4 by about 25 m. Further, second vertical image 18 b is displayed superimposed on pedestrian 22 b present in front of vehicle 4 at a position distant from vehicle 4 by about 64 m. Accordingly, first vertical image 18 a and second vertical image 18 b have different distance from windshield 10 in the depth direction (direction perpendicular to the sheet surface of FIG. 9A and FIG. 9B). It is to be noted that, because first vertical image 18 a and second vertical image 18 b are alternately displayed at a relatively high speed, driver 12 views first vertical image 18 a and second vertical image 18 b as if the two images are displayed simultaneously.
Controller 34 controls display unit 35 so that first vertical image 18 a and second vertical image 18 b are displayed in a time-division manner based on image data acquired from an image data generator (not illustrated). The image data is data in which odd-numbered frames and even-numbered frames are alternately displayed at 60 frames per second. Controller 34 displays first vertical image 18 a in the odd-numbered frame and displays second vertical image 18 b in the even-numbered frame. Thus, first vertical image 18 a and second vertical image 18 b are displayed in a time-division manner.
Next, the operation of display device 2 in the first display example will be described. As illustrated in FIG. 10, display of first vertical image 18 a and second vertical image 18 b is started (S21), and then movable screen 28 starts reciprocating in the first direction and the second direction.
As illustrated in part (a) of FIG. 11, in the odd-numbered frame of the image data, movable screen 28 moves from position P1 to position P5 in the second direction (direction indicated by arrow Y in FIG. 11) (S22), and then, moves from position P5 to position P1 in the first direction (direction indicated by arrow X in FIG. 11) (S23). When movable screen 28 moves in the first direction, the laser light beam from scanner 38 raster-scans movable screen 28 and transmits through movable screen 28, whereby first screen image 50 a is formed in movable screen 28. Specifically, as illustrated in part (a) of FIG. 11, while movable screen 28 moves from position P6 to position P4, the position of the laser light beam transmitting through movable screen 28 moves in a direction from first end 28 a toward second end 28 b of movable screen 28. First vertical image 18 a that is the virtual image of first screen image 50 a is projected on windshield 10 in the same manner as described above, thereby being displayed in space 16 in front of windshield 10 (S24).
Thereafter, as illustrated in part (b) of FIG. 11, in the even-numbered frame of the image data, movable screen 28 moves from position P1 to position P5 in the second direction (S25), and then, moves from position P5 to position P1 in the first direction (S26). When movable screen 28 moves in the first direction, the laser light beam from scanner 38 raster-scans movable screen 28 and transmits through movable screen 28, whereby second screen image 50 b is formed in movable screen 28. Specifically, as illustrated in part (b) of FIG. 11, while movable screen 28 moves from position P7 to position P2, the position of the laser light beam transmitting through movable screen 28 moves in a direction from first end 28 a toward second end 28 b of movable screen 28. Second vertical image 18 b that is the virtual image of second screen image 50 b is projected on windshield 10 in the same manner as described above, thereby being displayed in space 16 in front of windshield 10 (S27).
When the display of first vertical image 18 a and second vertical image 18 b is performed continuously (NO in S28), steps S22 to S27 described above are executed again. When the display of first vertical image 18 a and second vertical image 18 b is to be finished (YES in S28), movable screen 28 stops reciprocating (S29).
In the present display example, first vertical image 18 a is displayed in the odd-numbered frame, and second vertical image 18 b is displayed in the even-numbered frame. However, the method for displaying first vertical image 18 a and second vertical image 18 b in a time-division manner is not limited thereto. For example, first vertical image 18 a and second vertical image 18 b may be alternately displayed every two or more frames (for example, every ten frames). That is, first vertical image 18 a is displayed in the first to tenth frames, and second vertical image 18 b is displayed in the eleventh to twentieth frames.
While the method for displaying two images at different distances using movable screen 28 has been described above, a method for displaying two images at different distances using a parallax image may be employed, in place of the above-described method, to display first vertical image 18 a and second vertical image 18 b.
Moreover, although movable screen 28 reciprocates in this display example, the whole of display device 2 may reciprocate.
[5. Second Display Example]
Subsequently, a second display example of display device 2 according to the exemplary embodiment will be described with reference to FIG. 12. FIG. 12 is a view illustrating one example of reference pattern 52 and pedestrian image 56 which are displayed by display device 2 in the second display example.
As illustrated in FIG. 12, in the second display example, controller 34 controls display unit 35 so that reference pattern 52 superimposed on pedestrian 22 (an example of a subject) present in space 16 in front of windshield 10 is displayed. Reference pattern 52 is a grid pattern in which a plurality of vertical lines 52 a and a plurality of horizontal lines 52 b intersect at right angles. Reference pattern 52 is displayed superimposed on road 24 present in front of vehicle 4 as the above-described depth image. In addition, reference pattern 52 is displayed such that the position of pedestrian 22 is at intersection point 54 between vertical lines 52 a and horizontal lines 52 b (that is, reference pattern 52 is displayed so as to correspond to the position of pedestrian 22).
Further, controller 34 displays pedestrian image 56 to be superimposed on pedestrian 22 as the above-described vertical image such that pedestrian image 56 is superimposed on reference pattern 52. Pedestrian image 56 is, for example, a human-shaped marker. In this case, a part of reference pattern 52 corresponding to the position of pedestrian image 56, that is, both two lines which are vertical line 52 a′ and horizontal line 52 b′ intersecting at intersection point 54, are displayed in a highlighted manner. Examples of conceivable methods for providing a highlighted display include displaying both vertical line 52 a′ and horizontal line 52 b′ in a thick line, and displaying both two lines in an eye-catching color. Driver 12 can ascertain the position of pedestrian 22 by viewing pedestrian image 56.
Controller 34 controls display unit 35 so that reference pattern 52 and pedestrian image 56 described above are displayed based on image data generated by capturing an image of scene 14 (including pedestrian 22 and road 24) in front of vehicle 4 with a camera (not illustrated) mounted to vehicle 4.
Note that, although reference pattern 52 and pedestrian image 56 are displayed in a 3D manner in the present display example, reference pattern 52 and pedestrian image 56 may be displayed in a 2D manner.
Further, as illustrated in FIG. 17, controller 34 controls display unit 35 so that reference pattern 52 to be superimposed on vehicle (preceding vehicle) 75 (an example of the subject) present in space 16 in front of windshield 10 is displayed. In this case, controller 34 may display vehicle image 76 to be superimposed on vehicle 75 as the above-described vertical image such that vehicle image 76 is superimposed on reference pattern 52. Further, in this case, controller 34 may display, in addition to pedestrian image 56, vehicle image 76 to be superimposed on vehicle 75 as the above-described vertical image such that vehicle image 76 is superimposed on reference pattern 52, as illustrated in FIG. 18.
[6. Third Display Example]
Subsequently, a third display example of display device 2 according to the exemplary embodiment will be described with reference to FIG. 13. FIG. 13 is a view illustrating one example of reference pattern 52 and pedestrian image 56 which are displayed by display device 2 in the third display example.
As illustrated in FIG. 13, in the third display example, controller 34 controls display unit 35 so that reference pattern 52 to be superimposed on pedestrian 22 present in space 16 in front of windshield 10 is displayed, as in the second display example. Reference pattern 52 is displayed such that the position of pedestrian 22 is within section 58 (that is, in an area enclosed by a pair of adjacent vertical lines 52 a and a pair of adjacent horizontal lines 52 b) of the grid pattern (that is, reference pattern 52 is displayed so as to correspond to the position of pedestrian 22). Further, controller 34 displays pedestrian image 56 to be superimposed on pedestrian 22 as the above-described vertical image such that pedestrian image 56 is superimposed on reference pattern 52.
Moreover, in the third display example, a part of reference pattern 52 corresponding to the position of pedestrian image 56, that is, section 58 of the grid pattern where pedestrian image 56 is located, is displayed in a highlighted manner as illustrated in FIG. 13. Examples of conceivable methods for providing a highlighted display include displaying section 58 in an eye-catching color, or displaying a pair of vertical lines 52 a and a pair of horizontal lines 52 b enclosing section 58 in a thick line. Driver 12 can ascertain the position of pedestrian 22 by viewing pedestrian image 56.
Note that, although reference pattern 52 and pedestrian image 56 are displayed in a 3D manner in the present display example, reference pattern 52 and pedestrian image 56 may be displayed in a 2D manner.
[7. Fourth Display Example]
Subsequently, a fourth display example of display device 2 according to the exemplary embodiment will be described with reference to FIG. 14. FIG. 14 is a view illustrating one example of reference pattern 52 and pedestrian image 56 which are displayed by display device 2 in the fourth display example.
As illustrated in FIG. 14, in the fourth display example, controller 34 controls display unit 35 so that reference pattern 52 to be superimposed on pedestrian 22 present in space 16 in front of windshield 10 is displayed, as in the second display example. Reference pattern 52 is displayed such that the position of pedestrian 22 is at intersection point 54 between vertical lines 52 a and horizontal lines 52 b of the grid pattern. Further, controller 34 displays pedestrian image 56 to be superimposed on pedestrian 22 as the above-described vertical image such that pedestrian image 56 is superimposed on reference pattern 52.
In addition, in the fourth display example, when the position of pedestrian 22 is not superimposed on reference pattern 52, controller 34 displays pedestrian image 56 so as to be superimposed on a predetermined area (for example, an area nearest to the position of pedestrian 22 as viewed from driver 12) of reference pattern 52, as illustrated in FIG. 14. In this case, a part of reference pattern 52 corresponding to the position of pedestrian 22 at the outside of reference pattern 52, that is, two lines which are vertical line 52 a′ and horizontal line 52 b′ intersecting at intersection point 54, are displayed in a highlighted manner. Examples of conceivable methods for providing a highlighted display include displaying both vertical line 52 a′ and horizontal line 52 b′ in a thick line, and displaying both two lines in an eye-catching color. Driver 12 can ascertain the position of pedestrian 22 by viewing pedestrian image 56, even when the position of pedestrian 22 is not superimposed on reference pattern 52.
Note that, although reference pattern 52 and pedestrian image 56 are displayed in a 3D manner in the present display example, reference pattern 52 and pedestrian image 56 may be displayed in a 2D manner.
Further, as illustrated in FIG. 19, controller 34 may display, in addition to pedestrian image 56, vehicle image 76 to be superimposed on vehicle 75 as the above-described vertical image such that vehicle image 76 is superimposed on reference pattern 52.
Further, as illustrated in FIG. 20, controller 34 controls display unit 35 so that reference pattern 52 to be superimposed on vehicle (preceding vehicle) 75 (an example of the subject) present in space 16 in front of windshield 10 is displayed. In this case, controller 34 may display vehicle image 76 to be superimposed on vehicle 75 as the above-described vertical image such that vehicle image 76 is superimposed on reference pattern 52.
[8. Fifth Display Example]
Subsequently, a fifth display example of display device 2 according to the exemplary embodiment will be described with reference to FIG. 15. FIG. 15 is a view illustrating one example of reference pattern 62 and pedestrian image 56 which are displayed by display device 2 in the fifth display example.
As illustrated in FIG. 15, in the fifth display example, controller 34 controls display unit 35 so that reference pattern 62 including a plurality of guard rail images 60 is displayed. Guard rail images 60 are images to be respectively superimposed on a plurality of guard rails 64 (an example of the subject) present in space 16 in front of windshield 10. Reference pattern 62 is a pattern including these guard rail images 60 and horizontal lines 66, each of horizontal lines 66 connecting lower ends of a pair of guard rail images 60 facing each other across road 24. Reference pattern 62 is displayed superimposed on road 24 present in front of vehicle 4 as the above-described depth image. Reference pattern 62 is also displayed such that guard rail images 60 are respectively superimposed on guard rails 64 (such that guard rail images 60 correspond to positions of guard rails 64, respectively).
Further, controller 34 displays pedestrian image 56 to be superimposed on pedestrian 22 as the above-described vertical image such that pedestrian image 56 is superimposed on reference pattern 62. In this case, marker 68 extending substantially parallel to horizontal lines 66 is displayed under the feet of pedestrian image 56. Marker 68 is a marker indicating the position of pedestrian 22 in the depth direction. Driver 12 can ascertain the position of pedestrian 22 in the depth direction by viewing the space between marker 68 and horizontal lines 66.
Note that, although reference pattern 62 and pedestrian image 56 are displayed in a 3D manner in the present display example, reference pattern 62 and pedestrian image 56 may be displayed in a 2D manner. In addition, reference pattern 62 may include a roadside tree image superimposed on a roadside tree present in space 16 in front of windshield 10, in place of guard rail image 60.
[9. Sixth Display Example]
Subsequently, a sixth display example of display device 2 according to the exemplary embodiment will be described with reference to FIG. 16. FIG. 16 is a view illustrating one example of reference pattern 72 and pedestrian images 56 a and 56 b which are displayed by display device 2 in the sixth display example.
As illustrated in FIG. 16, in the sixth display example, controller 34 controls display unit 35 so that reference pattern 72 including a plurality of traffic lane line images 70 is displayed. Traffic lane line images 70 are images to be respectively superimposed on a plurality of traffic lane lines 74 (an example of the subject) present in space 16 in front of windshield 10. Reference pattern 72 is a pattern including these traffic lane line images 70 and pairs of horizontal lines 76, each pair of horizontal lines 76 connecting both ends of a pair of traffic lane line images 70 and facing each other across road 24. Reference pattern 72 is displayed superimposed on road 24 present in front of vehicle 4 as the above-described depth image. Reference pattern 72 is also displayed such that traffic lane line images 70 are respectively superimposed on traffic lane lines 74 (such that traffic lane line images 70 correspond to positions of traffic lane lines 74, respectively).
Further, controller 34 displays pedestrian images 56 a and 56 b to be respectively superimposed on pedestrians 22 a and 22 b as the above-described vertical image such that pedestrian images 56 a and 56 b are superimposed on reference pattern 72. In this case, markers 68 a and 68 b extending substantially parallel to horizontal lines 76 are displayed under the feet of pedestrian images 56 a and 56 b. Driver 12 can ascertain the positions of pedestrians 22 a and 22 b in the depth direction by viewing the space between each of markers 68 a and 68 b and horizontal lines 66.
Note that, although reference pattern 72 and pedestrian images 56 a and 56 b are displayed in a 3D manner in the present display example, reference pattern 72 and pedestrian images 56 a and 56 b may be displayed in a 2D manner.
[10. Effects]
Subsequently, effects obtained from display device 2 according to the exemplary embodiment will be described. As described in the second to sixth display examples, reference patterns 52, 62, and 72 to be superimposed on a subject (such as pedestrian 22) present in space 16 are displayed so as to correspond to the position of the subject. Accordingly, pedestrian image 56 a to be superimposed on pedestrian 22 present in space 16, for example, is superimposed on reference patterns 52, 62, and 72, whereby driver 12 can easily ascertain the distance from windshield 10 to pedestrian 22, for example, based on reference patterns 52, 62, and 72.
(Modifications)
While the display device according to one or more aspects has been described above based on the exemplary embodiment, the present disclosure is not limited to the exemplary embodiment. Configurations in which various variations conceived by those skilled in the art are applied to the present exemplary embodiment, and configurations established by combining components in different exemplary embodiments or modifications may also fall within the scope of one or more aspects, without departing from the gist of the present invention.
For example, the above exemplary embodiment has described a case where display device 2 is mounted on vehicle 4. However, the present disclosure is not limited thereto, and display device 2 may be mounted on motorcycles, airplanes, trains, or ships, for example.
Although the above exemplary embodiment has described a case where display device 2 is mounted on the vehicle, the present disclosure is not limited thereto. Display device 2 may be mounted on, for example, glasses configured as wearable devices.
Further, the moving directions of movable screen 28 when first screen image 40 and second screen image 42 are formed may be reverse to the directions described in the above exemplary embodiment. That is, when movable screen 28 moves in the second direction, the laser light beam from scanner 38 may raster-scan movable screen 28 to form first screen image 40 in movable screen 28. Meanwhile, when movable screen 28 moves in the first direction, the laser light beam from scanner 38 may raster-scan movable screen 28 to form second screen image 42 in movable screen 28.
In the above exemplary embodiment, movable screen 28 reciprocates in a posture inclined to moving directions of movable screen 28. However, movable screen 28 may reciprocate in a posture substantially perpendicular to the moving directions of movable screen 28. In this case, when movable screen 28 makes a sudden stop, first vertical image 18 a or second vertical image 18 b is displayed.
In the above exemplary embodiment, pedestrian image 56 (56 a, 56 b) superimposed on pedestrian 22 (22 a, 22 b) is displayed. However, the present disclosure is not limited thereto. For example, a preceding vehicle image superimposed on a preceding vehicle or a bicycle image superimposed on a bicycle may be displayed.
In the foregoing exemplary embodiment, the constituent elements may be implemented in dedicated hardware or with execution of software programs individually suitable for those constituent elements. The constituent elements may be implemented by a program execution section, such as a CPU or a processor, reading and executing software programs stored in a recording medium, such as a hard disk or a semiconductor memory.
Furthermore, the following cases are also involved in the present invention.
(1) Specifically, the above-described devices can be implemented using a computer system configured with a microprocessor, a read only memory (ROM), a random access memory (RAM), a hard disk unit, display unit, keyboard, mouse, and the like. A computer program is stored in the RAM or the hard disk unit. The microprocessor operates according to the computer program, and therefore the devices achieve the respective functions. Herein, the computer program is configured by combining a plurality of instruction codes that indicate instructions to a computer, in order to achieve predetermined functions.
(2) A part or all of the constituent elements configuring the above-described devices may be configured with a single-chip system large-scale-integration (LSI). The system LSI is a super multi-functional LSI manufactured such that a plurality of constituent units is integrated into a single chip, and specifically, is a computer system including the microprocessor, the ROM, the RAM, and the like. The ROM stores the computer program. The microprocessor loads the computer program from the ROM to the RAM, and performs operation such as computation according to the loaded computer program, and thus the system LSI achieves its functions.
(3) A part or all of the constituent elements configuring the above-described devices may be configured with an integrated circuit (IC) card detachable from each of the devices, or a single module. The IC card or the module is the computer system configured with the microprocessor, the ROM, the RAM, and the like. The IC card or the module may include the above-described super multi-functional LSI. The microprocessor operates according to the computer program, and thus the IC card or the module achieves its functions. The IC card or the module may have tamper resistance.
(4) The present invention may be implemented by using the above-described methods. Those methods may be implemented by using the computer program that is implemented by the computer, or may be implemented by using digital signals according to the computer program.
Furthermore, the present invention may be implemented by using a configuration that stores the computer program or the digital signals into a computer-readable recording medium such as a flexible disk, a hard disk, a compact disc (CD)-ROM, a magneto-optical disc (MO), a digital versatile disc (DVD), a DVD-ROM, a DVD-RAM, a Blu-ray (registered trademark) disc (BD), and a semiconductor memory. In addition, the present invention may be implemented by using the digital signals stored in those recording media.
The present invention may transmit the computer program or the digital signals via a network represented by a telecommunications line, a wireless or wired communication line, and the Internet, data broadcasting, and the like.
The present invention may be the computer system including the microprocessor and the memory. The memory may store the computer program, and the microprocessor may operate according to the computer program.
The program or the digital signals may be performed by another computer system that is independently provided, by being stored into a recording medium to be transported to the other computer, or by being transported to the other computer via networks and the like.
(5) The above-described exemplary embodiment and the above-described modifications may be combined.
INDUSTRIAL APPLICABILITY
A display device according to the present invention is applicable to a vehicle-mounted head-up display, for example.
REFERENCE MARKS IN THE DRAWINGS
2: display device
4: vehicle
6: dashboard
8: image
10: windshield
11: area
12: driver
14: scene
16: space
18: vertical image
18 a: first vertical image
18 b: second vertical image
20: depth image
22, 22 a, 22 b: pedestrian
24: road
26: light projection unit
28: movable screen
28 a: first end
28 b: second end
30: drive unit
32: image projection unit
34: controller
35: display unit
36: light source
38: scanner
40, 50 a: first screen image
40 a: first intermediate image
42, 50 b: second screen image
42 a: second intermediate image
44: magnifying lens
46: first reflecting plate
48: second reflecting plate
52, 62, 72: reference pattern
52 a, 52 a ′: vertical line
52 b, 52 b′, 66, 76: horizontal line
54: intersection point
56, 56 a, 56 b: pedestrian image
58: section
60: guard rail image
64: guard rail
68, 68 a, 68 b: marker
70: traffic lane line image
74: traffic lane line

Claims (5)

The invention claimed is:
1. A display device comprising:
an optical system configured to project an image on a vehicular windshield, the image projected on the vehicular windshield being displayed as a virtual image in a space in front of the vehicular windshield, the image including at least a grid pattern image and a subject image;
a processor; and
a memory including a program which, when executed, causes the processor to perform operations including projecting the grid pattern image and the subject image such that the grid pattern image is superimposed on the space such that the subject image is superimposed on a subject that is present in the space, wherein a part of the grid pattern image corresponding to a position of the subject image is highlighted.
2. The display device according to claim 1, wherein
the subject is a pedestrian, and
a pedestrian image is projected such that the pedestrian image is superimposed on the pedestrian.
3. The display device according to claim 1, wherein
the subject is a vehicle, and
a vehicle image is projected such that the vehicle image is superimposed on the vehicle.
4. The display device according to claim 1, wherein
the grid pattern image has a plurality of vertical line images and a plurality of horizontal line images which intersect the plurality of vertical line images,
the subject image is positioned at an intersection point where a vertical line image included in the plurality of vertical line images and a horizontal line image included in the plurality of horizontal line images intersect, and
the vertical line image and the horizontal line image are highlighted.
5. The display device according to claim 1, wherein
the grid pattern image has a plurality of areas which enclosed by a plurality of vertical line images and a plurality of horizontal line images which intersect the plurality of vertical line images,
the subject image is positioned at an area included in the plurality of areas, and the area is highlighted.
US16/068,393 2016-01-20 2017-01-10 Display device Active US10571701B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016009270A JP6512449B2 (en) 2016-01-20 2016-01-20 Display device
JP2016-009270 2016-01-20
PCT/JP2017/000379 WO2017126352A1 (en) 2016-01-20 2017-01-10 Display device

Publications (2)

Publication Number Publication Date
US20190018250A1 US20190018250A1 (en) 2019-01-17
US10571701B2 true US10571701B2 (en) 2020-02-25

Family

ID=59361747

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/068,393 Active US10571701B2 (en) 2016-01-20 2017-01-10 Display device

Country Status (4)

Country Link
US (1) US10571701B2 (en)
JP (1) JP6512449B2 (en)
DE (1) DE112017000437B4 (en)
WO (1) WO2017126352A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569999B2 (en) * 2016-09-14 2019-09-04 パナソニックIpマネジメント株式会社 Display device
WO2018180856A1 (en) * 2017-03-31 2018-10-04 コニカミノルタ株式会社 Head-up display apparatus
JP6846638B2 (en) * 2017-06-12 2021-03-24 パナソニックIpマネジメント株式会社 Image display device
JP6855350B2 (en) * 2017-08-08 2021-04-07 アルパイン株式会社 Head-up display device, navigation device, display method
JP6626069B2 (en) * 2017-11-10 2019-12-25 矢崎総業株式会社 Display device for vehicles
DE102019217250A1 (en) * 2019-11-07 2021-05-12 Volkswagen Aktiengesellschaft Identification of a driving maneuver to be carried out by means of additional floor markings
CN111076742A (en) * 2019-12-17 2020-04-28 百度国际科技(深圳)有限公司 Display method and device of AR navigation, electronic equipment and storage medium
JP2022142932A (en) * 2021-03-17 2022-10-03 ラピステクノロジー株式会社 Head-up display, image correction method, and image correction program
US20230100857A1 (en) * 2021-09-25 2023-03-30 Kipling Martin Vehicle remote control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118963A (en) 2004-10-21 2006-05-11 Nippon Seiki Co Ltd Display device for vehicle
JP2007030673A (en) 2005-07-26 2007-02-08 Fujitsu Ten Ltd Display device for vehicle
JP2015219782A (en) 2014-05-19 2015-12-07 株式会社リコー Image display device, image display method, and image display control program
US20160217625A1 (en) * 2013-12-16 2016-07-28 Sony Corporation Image processing apparatus, image processing method, and program
US9449518B2 (en) * 2014-03-06 2016-09-20 Panasonic Intellectual Property Management Co., Ltd. Display control device, method, and non-transitory storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559083B2 (en) * 1994-12-26 2004-08-25 本田技研工業株式会社 Driving support device
WO2013113500A1 (en) 2012-02-02 2013-08-08 Audi Ag Driver assistance system and method for virtual representation of a road layout under obscured visibility and/or poor visibility conditions
JP5999032B2 (en) 2013-06-14 2016-09-28 株式会社デンソー In-vehicle display device and program
JP6273976B2 (en) 2014-03-31 2018-02-07 株式会社デンソー Display control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118963A (en) 2004-10-21 2006-05-11 Nippon Seiki Co Ltd Display device for vehicle
JP2007030673A (en) 2005-07-26 2007-02-08 Fujitsu Ten Ltd Display device for vehicle
US20160217625A1 (en) * 2013-12-16 2016-07-28 Sony Corporation Image processing apparatus, image processing method, and program
US9449518B2 (en) * 2014-03-06 2016-09-20 Panasonic Intellectual Property Management Co., Ltd. Display control device, method, and non-transitory storage medium
JP2015219782A (en) 2014-05-19 2015-12-07 株式会社リコー Image display device, image display method, and image display control program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report of PCT application No. PCT/JP2017/000379 dated Mar. 28, 2017.

Also Published As

Publication number Publication date
JP2017128234A (en) 2017-07-27
JP6512449B2 (en) 2019-05-15
US20190018250A1 (en) 2019-01-17
WO2017126352A1 (en) 2017-07-27
DE112017000437B4 (en) 2021-12-30
DE112017000437T5 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US10571701B2 (en) Display device
US10663722B2 (en) Display device
US10591725B2 (en) Display device
JP7065383B2 (en) Display systems, information presentation systems, display system control methods, programs, and moving objects
JP6861375B2 (en) Display system, information presentation system, display system control method, program, and mobile
JP6569999B2 (en) Display device
JP6516223B2 (en) Display device
US20170054973A1 (en) Display device and display method
WO2016052186A1 (en) Vehicular display device
US10670780B2 (en) Fresnel lens, Fresnel lens unit, and head-up display
JP6883759B2 (en) Display systems, display system control methods, programs, and mobiles
US10649207B1 (en) Display system, information presentation system, method for controlling display system, recording medium, and mobile body
US10642032B2 (en) Head-up display
KR20190011944A (en) 3d head-up display apparatus for vehicle and display method using the same
JP2018054715A (en) On-vehicle head-up display device
JP7266257B2 (en) DISPLAY SYSTEM AND METHOD OF CONTROLLING DISPLAY SYSTEM

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASAZUMI, KEN'ICHI;MORI, TOSHIYA;KUBOTA, KOSUKE;AND OTHERS;SIGNING DATES FROM 20180627 TO 20180702;REEL/FRAME:047362/0649

Owner name: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASAZUMI, KEN'ICHI;MORI, TOSHIYA;KUBOTA, KOSUKE;AND OTHERS;SIGNING DATES FROM 20180627 TO 20180702;REEL/FRAME:047362/0649

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: PANASONIC AUTOMOTIVE SYSTEMS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.;REEL/FRAME:066703/0113

Effective date: 20240207