US10502085B2 - Angled reverse core gas turbine engine with widened nozzle - Google Patents

Angled reverse core gas turbine engine with widened nozzle Download PDF

Info

Publication number
US10502085B2
US10502085B2 US14/265,856 US201414265856A US10502085B2 US 10502085 B2 US10502085 B2 US 10502085B2 US 201414265856 A US201414265856 A US 201414265856A US 10502085 B2 US10502085 B2 US 10502085B2
Authority
US
United States
Prior art keywords
trailing end
duct
propulsor
axis
duct opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/265,856
Other versions
US20150240745A1 (en
Inventor
Wesley K. Lord
Jesse M. Chandler
Gabriel L. Suciu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US14/265,856 priority Critical patent/US10502085B2/en
Assigned to UNITED TECHNOLOGIES CORPORATION reassignment UNITED TECHNOLOGIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANDLER, JESSE M., LORD, WESLEY K., SUCIU, GABRIEL L.
Publication of US20150240745A1 publication Critical patent/US20150240745A1/en
Application granted granted Critical
Publication of US10502085B2 publication Critical patent/US10502085B2/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS. Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RTX CORPORATION reassignment RTX CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RAYTHEON TECHNOLOGIES CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/003Combinations of two or more machines or engines with at least two independent shafts, i.e. cross-compound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/006Combinations of two or more machines or engines one being a reverse turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other

Definitions

  • Conventional aircraft architecture includes wing-mounted gas turbine engines.
  • gas turbine engines are mounted on top of the fuselage, or on opposite sides of the aircraft fuselage.
  • gas turbine engines typically utilize gas turbine engines that in include a fan section driven by an engine core or gas generator.
  • the engine core includes a compressor section, a combustor section and a turbine section. Air entering the compressor section is compressed and delivered into the combustion section where it is mixed with fuel and ignited to generate a high-speed exhaust gas flow. The high-speed exhaust gas expands through the turbine section to drive the compressor and the fan section through a driven shaft.
  • Alternate aircraft architectures may require alternate mounting locations of the gas turbine engines to enable specific wing and fuselage configurations.
  • conventional gas turbine engine configurations have been developed to operate with conventional aircraft architectures.
  • a propulsion system for an aircraft includes a first turbine engine that has a first engine core with a first intake duct.
  • a second turbine engine includes a second engine core having a second intake duct.
  • a first propulsor is coupled to be driven by the first turbine engine.
  • the first propulsor is disposed about a first propulsor axis and the first engine core is disposed about a first core axis that is skewed from the first propulsor axis.
  • a second propulsor is coupled to be driven by the second turbine engine.
  • the second propulsor is disposed about a second propulsor axis parallel to the first propulsor axis.
  • the second engine core is disposed about a second core axis that is skewed from the second propulsor axis.
  • a furcated nozzle has at least a first duct extending from the first propulsor to a first trailing end duct opening and a second duct extending from the second propulsor to a second trailing end duct opening.
  • first trailing end duct opening and the second trailing end duct opening are each elongated
  • the first intake duct is within the first duct of the furcated nozzle
  • the second intake duct is within the second duct of the furcated nozzle
  • first duct and the second duct share a common wall there between.
  • first trailing end duct opening and the second trailing end duct opening are symmetric with respect to a plane between the first duct and the second duct.
  • first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is coaxial with the first direction.
  • first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is non-coaxial with the first direction.
  • At least the first trailing end duct opening includes four quadrants with regard to the first propulsor axis that are equal in cross-sectional area.
  • first core axis, the second core axis, the first propulsor axis, and the second propulsor axis are non-coplanar.
  • first core axis, the second core axis, the first propulsor axis, and the second propulsor axis are coplanar.
  • the first core axis is skewed from the second core axis.
  • first turbine engine and the second turbine engine are respective reverse flow turbine engines.
  • a nozzle for a multi-engine propulsion system includes a furcated nozzle that has a first duct that extends from a first forward end duct opening to a first trailing end duct opening and a second duct that extends from a second forward end duct opening to a second trailing end duct opening.
  • the first trailing end duct opening and the second trailing end duct opening are elongated.
  • first duct and the second duct share a common wall there between.
  • first trailing end duct opening and the second trailing end duct opening are symmetric with respect to a plane between the first duct and the second duct.
  • first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is coaxial with the first direction.
  • first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is non-coaxial with the first direction.
  • a propulsion system for an aircraft includes a reverse flow turbine engine that has an engine core with an intake duct.
  • a propulsor is coupled to be driven by the turbine engine.
  • the propulsor is disposed about a propulsor axis and the engine core is disposed about a core axis that is skewed from the propulsor axis.
  • a nozzle has at least one duct extending from the propulsor to a trailing end duct opening. The trailing end duct opening is elongated.
  • the trailing end duct opening is elongated in a direction with respect to the core axis.
  • the trailing end duct opening includes four quadrants with regard to the propulsor axis that are equal in cross-sectional area.
  • FIG. 1 is a schematic view of an aircraft including a propulsion system mounted within the fuselage.
  • FIG. 2 illustrates an example propulsion system
  • FIG. 3 illustrates the propulsion system of FIG. 2 according to the perspective shown in FIG. 1 .
  • FIGS. 4A and 4B illustrate RELATED ART.
  • FIG. 5 illustrates an example propulsion system with equal-sized quadrants.
  • FIG. 6 illustrates another example propulsion system with downwardly elongated trailing end openings.
  • FIG. 7 illustrates a perspective view of blast zones.
  • an aircraft 10 includes a fuselage 12 having a tail 14 and wings 16 .
  • a propulsion system 18 is mounted at the aft end of the fuselage 12 .
  • the propulsion system 18 includes first and second engine cores 20 a - b , which are reverse core gas turbine engines that drive corresponding first and second propulsors that include respective fan sections 22 a - b .
  • the first and second fan sections 22 a - b provide the propulsive thrust of the disclosed propulsion system 18 .
  • Terms such as “aft,” “trailing,” “reverse,” and “forward” are with reference to the normal operational attitude of an aircraft and turbine engines.
  • the fan sections 22 a - b are disposed about respective corresponding propulsor axes A 1 and A 2 .
  • the first and second engine cores 20 a - b are disposed about respective corresponding first and second engine axes B 1 and B 2 . That is, the first engine core 20 a is disposed about the first engine axis B 1 and drives the first fan section 22 a about the first propulsor axis A 1 , and the second engine core 20 b is disposed about the second engine axis B 2 and drives the second fan section 22 b about the second propulsor axis A 2 .
  • the reverse engine cores 20 a - b are gas generators that each include a compressor 24 , a combustor 26 , and a turbine 28 . Air is drawn in through respective inlet ducts 32 a - b to the compressors 24 . The compressors 24 provide compressed air to respective combustors 26 . In the combustors 26 air is mixed with fuel and ignited to generate an exhaust gas stream that expands through the respective turbines 28 , which extract energy to drive the corresponding compressors 24 and first and second fan sections 22 a - b . In this example, the engine cores 20 a - b drive the corresponding first and second fan sections 22 a - b through respective geared architectures 30 a - b.
  • Each of the first and second fan sections 22 a - b and related geared architectures 30 a - b are mounted substantially parallel to each other about the respective propulsor axes A 1 and A 2 .
  • the first and second engine axes B 1 and B 2 are disposed at skewed angles relative to the corresponding propulsor axes A 1 and A 2 .
  • the angle can be greater than about thirty (30) degrees, but is not limited to such angles.
  • the first and second engine axes B 1 and B 2 are also skewed from each other, and the skewed angles relative to the corresponding propulsor axes A 1 and A 2 can be the same or different.
  • the propulsor axes A 1 and A 2 and the first and second engine axes B 1 and B 2 are coplanar, as shown in FIG. 3 , with respect to plane PL 1 .
  • Gas turbine engines are not mounted next to each other due to practical limitations related to overall aircraft survivability in the event of engine failure.
  • a burst zone is defined between gas turbine engines within which another gas turbine engine is not permitted due to possible fragmentation from one failed engine disabling the second engine.
  • the disclosed engine cores 20 a - b are disposed at the angle relative to the corresponding propulsor axes A 1 and A 2 .
  • the angle is selected such that neither engine core 20 a - b is located within a corresponding burst zone 36 a - b of the other engine core 20 a - b . Therefore, the angles are selected to orient the respective burst zones 36 a - b away from the other engine core 20 a - b .
  • the angle can be greater than about ninety (90) degrees.
  • other angles can alternatively be utilized, depending on a defined shape of the respective burst zones 34 a - b.
  • the burst zones 34 a - b can be defined as respective annular regions about the corresponding engine cores 20 a - b .
  • the annular region is disposed at an angle outward from a line that is perpendicular to the engine axes B 1 and B 2 .
  • An example angle is at least fifteen (15) degrees and can be determined based on application specific considerations.
  • airframe regulations may also define an angular span of the burst zones 34 a - b .
  • the angles disclosed herein are given with regard to particular reference axes. However, the angles can also be equivalently represented with regard to other reference axes of choice.
  • the relative orientation between the first and second engine cores 20 a - b defines the corresponding burst zones 34 a - b .
  • Each burst zone 34 a - b is non-intersecting with the other engine core 20 a - b , and the angles and burst zones 34 a - b can be selected to comply with application specific survivability requirements. Accordingly, because the gas generators are mounted in a configuration placing each outside of the burst zone 34 a - b of the other, fuselage and substantially adjacent mounted propulsors are feasible within desired limitations.
  • the side-by-side adjacent mounting configuration further enables alternate aircraft architectures.
  • FIG. 3 illustrates a view of the propulsion system 18 from behind the aircraft 10 , as indicated in FIG. 1 .
  • the aft end of the fan sections 22 a - b includes a furcated nozzle 40 (hereafter “nozzle 40 ”).
  • the nozzle 40 in this example is a bi-furcated nozzle, although the examples herein can also be applied to other multi-furcated nozzles or even a single nozzle.
  • the nozzle 40 has a first duct 40 a and a second duct 40 b that are divided, for at least a portion of the axial length of the ducts, by a common wall 41 .
  • the first ducts 40 a and the second duct 40 b extend from the respective fan sections 22 a - b to respective trailing end duct openings 42 a and 42 b .
  • the trailing end duct openings 42 a and 42 b are openings that are circumscribed by the trailing edge of the nozzle 40 .
  • the first and second engine cores 20 a - b (shrouded in respective outer aerodynamic fairings), which as described above extend at an angle to the respective axes A 1 and A 2 , block a portion of the nozzle 40 cross-sectional area.
  • the RELATED ART examples shown in FIGS. 4A and 4B include a bi-furcated nozzle that has round exit areas that are partially blocked by the engine cores.
  • portions of the engine cores and/or intake inlets extend laterally, outside of the nozzle.
  • FIG. 4A and 4B include a bi-furcated nozzle that has round exit areas that are partially blocked by the engine cores.
  • portions of the engine cores and/or intake inlets extend laterally, outside of the nozzle.
  • the trailing end duct openings 42 a and 42 b of the nozzle 40 are each elongated such that the engine cores 20 a - b and inlet ducts 32 a - b are enclosed within the nozzle 40 .
  • the cross-sectional areas of the trailing end duct openings 42 a and 42 b are non-circular, to maintain smooth flow through the nozzle 40 given the blockage of the engine cores 20 a - b .
  • the trailing end duct openings 42 a and 42 b are symmetric with respect to a plane PL 2 between the ducts 40 a and 40 b.
  • FIG. 5 shows a further example nozzle 140 , in which the cross-sectional areas of the trailing end duct opening 142 a , relative to center point P 1 that is coaxial with A 1 , includes four quadrants, shown at Q 1 , Q 2 , Q 3 , and Q 4 .
  • the quadrants are equal in cross-sectional area, to further enhance flow smoothness.
  • the trailing end duct opening 142 b can also have quadrants that are equal in cross-sectional area.
  • FIG. 6 shows another example in which the first and second engine cores 20 a - b , and thus also the first and second engine axes B 1 and B 2 , are circumferentially repositioned around the respective axes A 1 and A 2 in comparison to the example of FIG. 3 .
  • the propulsor axes A 1 and A 2 and the first and second engine axes B 1 and B 2 are coplanar with respect to plane PL ( FIG. 3 )
  • the propulsor axes A 1 and A 2 and the first and second engine axes B 1 and B 2 are non-coplanar in FIG. 6 because of the circumferential positioning of the first and second engine axes B 1 and B 2 with respect to the axes A 1 and A 2 .
  • the engine cores 20 a - b and axes B 1 and B 2 are circumferentially located at, respectively, 3 o'clock and 9 o'clock positions in FIG. 3 (parallel axes B 1 /B 2 ), the engine cores 20 a - b and axes B 1 and B 2 are circumferentially located closer together in the example of FIG. 6 .
  • the positions of the first and second engine cores 20 a - b can each be represented by an angle of the axes B 1 and B 2 relative to the respective axes A 1 and A 2 as well as circumferential angles of the axes B 1 and B 2 about the respective axes A 1 and A 2 with regard to a reference circumferential position.
  • each of the circumferential positions CP 1 and CP 2 of the axes B 1 and B 2 , relative to vertical twelve o'clock positions, is greater than 90°, and in further examples are equal to or greater than 120°.
  • trailing end duct openings 242 a and 242 b are elongated with respect to the first and second engine cores 20 a - b .
  • circumferential positions of greater than 90° orients the blast zones 34 a - b away from aircraft structures, such as vertical/horizontal stabilizers and/or the tail 14 .
  • fans may be placed side-by-side, but the cores (gas generators) must be angled to comply with the 1:20 rule.
  • Each core engine must lie outside of the burst zone or the other, so the engines cannot be placed parallel to each other. In such a configuration, a portion of the core and inlet duct would be outside the normal nacelle/nozzle lines.
  • the engine core represents a blockage that must be shrouded by an abnormally large bifurcating duct.
  • the present disclosure can allow better area distribution and may also provide the design space necessary for the core and inlet duct to be fully contained within the nozzle. This may eliminate the need to have an aerodynamic fairing protruding from the side of the aircraft/nacelle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A propulsion system for an aircraft includes a furcated nozzle that has at least a first duct that extends from a first propulsor to a first trailing end duct opening and a second duct that extends from a second propulsor to a second trailing end duct opening.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to US. Provisional Patent Application No. 61/944,451, filed Feb. 25, 2014.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with government support under Contract No. NNX11AB35A, awarded by NASA. The Government has certain rights in this invention.
BACKGROUND
Conventional aircraft architecture includes wing-mounted gas turbine engines. In some aircraft architectures, gas turbine engines are mounted on top of the fuselage, or on opposite sides of the aircraft fuselage.
Commercial aircraft typically utilize gas turbine engines that in include a fan section driven by an engine core or gas generator. The engine core includes a compressor section, a combustor section and a turbine section. Air entering the compressor section is compressed and delivered into the combustion section where it is mixed with fuel and ignited to generate a high-speed exhaust gas flow. The high-speed exhaust gas expands through the turbine section to drive the compressor and the fan section through a driven shaft.
Alternate aircraft architectures may require alternate mounting locations of the gas turbine engines to enable specific wing and fuselage configurations. However, conventional gas turbine engine configurations have been developed to operate with conventional aircraft architectures.
Accordingly, alternate gas turbine engine configurations may be required and developed to enable implementation of favorable aspects of alternate engine architectures.
SUMMARY
A propulsion system for an aircraft according to an example of the present disclosure includes a first turbine engine that has a first engine core with a first intake duct. A second turbine engine includes a second engine core having a second intake duct. A first propulsor is coupled to be driven by the first turbine engine. The first propulsor is disposed about a first propulsor axis and the first engine core is disposed about a first core axis that is skewed from the first propulsor axis. A second propulsor is coupled to be driven by the second turbine engine. The second propulsor is disposed about a second propulsor axis parallel to the first propulsor axis. The second engine core is disposed about a second core axis that is skewed from the second propulsor axis. A furcated nozzle has at least a first duct extending from the first propulsor to a first trailing end duct opening and a second duct extending from the second propulsor to a second trailing end duct opening.
In a further embodiment of any of the foregoing embodiments, the first trailing end duct opening and the second trailing end duct opening are each elongated
In a further embodiment of any of the foregoing embodiments, the first intake duct is within the first duct of the furcated nozzle, and the second intake duct is within the second duct of the furcated nozzle.
In a further embodiment of any of the foregoing embodiments, the first duct and the second duct share a common wall there between.
In a further embodiment of any of the foregoing embodiments, the first trailing end duct opening and the second trailing end duct opening are symmetric with respect to a plane between the first duct and the second duct.
In a further embodiment of any of the foregoing embodiments, the first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is coaxial with the first direction.
In a further embodiment of any of the foregoing embodiments, the first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is non-coaxial with the first direction.
In a further embodiment of any of the foregoing embodiments, at least the first trailing end duct opening includes four quadrants with regard to the first propulsor axis that are equal in cross-sectional area.
In a further embodiment of any of the foregoing embodiments, the first core axis, the second core axis, the first propulsor axis, and the second propulsor axis are non-coplanar.
In a further embodiment of any of the foregoing embodiments, the first core axis, the second core axis, the first propulsor axis, and the second propulsor axis are coplanar.
In a further embodiment of any of the foregoing embodiments, the first core axis is skewed from the second core axis.
In a further embodiment of any of the foregoing embodiments, the first turbine engine and the second turbine engine are respective reverse flow turbine engines.
A nozzle for a multi-engine propulsion system according to an example of the present disclosure includes a furcated nozzle that has a first duct that extends from a first forward end duct opening to a first trailing end duct opening and a second duct that extends from a second forward end duct opening to a second trailing end duct opening. The first trailing end duct opening and the second trailing end duct opening are elongated.
In a further embodiment of any of the foregoing embodiments, the first duct and the second duct share a common wall there between.
In a further embodiment of any of the foregoing embodiments, the first trailing end duct opening and the second trailing end duct opening are symmetric with respect to a plane between the first duct and the second duct.
In a further embodiment of any of the foregoing embodiments, the first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is coaxial with the first direction.
In a further embodiment of any of the foregoing embodiments, first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is non-coaxial with the first direction.
A propulsion system for an aircraft according to an example of the present disclosure includes a reverse flow turbine engine that has an engine core with an intake duct. A propulsor is coupled to be driven by the turbine engine. The propulsor is disposed about a propulsor axis and the engine core is disposed about a core axis that is skewed from the propulsor axis. A nozzle has at least one duct extending from the propulsor to a trailing end duct opening. The trailing end duct opening is elongated.
In a further embodiment of any of the foregoing embodiments, the trailing end duct opening is elongated in a direction with respect to the core axis.
In a further embodiment of any of the foregoing embodiments, the trailing end duct opening includes four quadrants with regard to the propulsor axis that are equal in cross-sectional area.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic view of an aircraft including a propulsion system mounted within the fuselage.
FIG. 2 illustrates an example propulsion system.
FIG. 3 illustrates the propulsion system of FIG. 2 according to the perspective shown in FIG. 1.
FIGS. 4A and 4B illustrate RELATED ART.
FIG. 5 illustrates an example propulsion system with equal-sized quadrants.
FIG. 6 illustrates another example propulsion system with downwardly elongated trailing end openings.
FIG. 7 illustrates a perspective view of blast zones.
DETAILED DESCRIPTION
Referring to the FIGS. 1 and 2, an aircraft 10 includes a fuselage 12 having a tail 14 and wings 16. A propulsion system 18 is mounted at the aft end of the fuselage 12. The propulsion system 18 includes first and second engine cores 20 a-b, which are reverse core gas turbine engines that drive corresponding first and second propulsors that include respective fan sections 22 a-b. The first and second fan sections 22 a-b provide the propulsive thrust of the disclosed propulsion system 18. Terms such as “aft,” “trailing,” “reverse,” and “forward” are with reference to the normal operational attitude of an aircraft and turbine engines.
The fan sections 22 a-b are disposed about respective corresponding propulsor axes A1 and A2. The first and second engine cores 20 a-b are disposed about respective corresponding first and second engine axes B1 and B2. That is, the first engine core 20 a is disposed about the first engine axis B1 and drives the first fan section 22 a about the first propulsor axis A1, and the second engine core 20 b is disposed about the second engine axis B2 and drives the second fan section 22 b about the second propulsor axis A2.
The reverse engine cores 20 a-b are gas generators that each include a compressor 24, a combustor 26, and a turbine 28. Air is drawn in through respective inlet ducts 32 a-b to the compressors 24. The compressors 24 provide compressed air to respective combustors 26. In the combustors 26 air is mixed with fuel and ignited to generate an exhaust gas stream that expands through the respective turbines 28, which extract energy to drive the corresponding compressors 24 and first and second fan sections 22 a-b. In this example, the engine cores 20 a-b drive the corresponding first and second fan sections 22 a-b through respective geared architectures 30 a-b.
Each of the first and second fan sections 22 a-b and related geared architectures 30 a-b are mounted substantially parallel to each other about the respective propulsor axes A1 and A2. The first and second engine axes B1 and B2 are disposed at skewed angles relative to the corresponding propulsor axes A1 and A2. For example, the angle can be greater than about thirty (30) degrees, but is not limited to such angles. In this example, the first and second engine axes B1 and B2 are also skewed from each other, and the skewed angles relative to the corresponding propulsor axes A1 and A2 can be the same or different. Further, the propulsor axes A1 and A2 and the first and second engine axes B1 and B2 are coplanar, as shown in FIG. 3, with respect to plane PL1.
Gas turbine engines are not mounted next to each other due to practical limitations related to overall aircraft survivability in the event of engine failure. A burst zone is defined between gas turbine engines within which another gas turbine engine is not permitted due to possible fragmentation from one failed engine disabling the second engine.
The disclosed engine cores 20 a-b are disposed at the angle relative to the corresponding propulsor axes A1 and A2. The angle is selected such that neither engine core 20 a-b is located within a corresponding burst zone 36 a-b of the other engine core 20 a-b. Therefore, the angles are selected to orient the respective burst zones 36 a-b away from the other engine core 20 a-b. In a further example, the angle can be greater than about ninety (90) degrees. As can be appreciated given this disclosure, other angles can alternatively be utilized, depending on a defined shape of the respective burst zones 34 a-b.
The burst zones 34 a-b can be defined as respective annular regions about the corresponding engine cores 20 a-b. For example, the annular region is disposed at an angle outward from a line that is perpendicular to the engine axes B1 and B2. An example angle is at least fifteen (15) degrees and can be determined based on application specific considerations. Moreover, airframe regulations may also define an angular span of the burst zones 34 a-b. As can be appreciated given this disclosure, the angles disclosed herein are given with regard to particular reference axes. However, the angles can also be equivalently represented with regard to other reference axes of choice.
The relative orientation between the first and second engine cores 20 a-b defines the corresponding burst zones 34 a-b. Each burst zone 34 a-b is non-intersecting with the other engine core 20 a-b, and the angles and burst zones 34 a-b can be selected to comply with application specific survivability requirements. Accordingly, because the gas generators are mounted in a configuration placing each outside of the burst zone 34 a-b of the other, fuselage and substantially adjacent mounted propulsors are feasible within desired limitations. The side-by-side adjacent mounting configuration further enables alternate aircraft architectures.
FIG. 3 illustrates a view of the propulsion system 18 from behind the aircraft 10, as indicated in FIG. 1. The aft end of the fan sections 22 a-b includes a furcated nozzle 40 (hereafter “nozzle 40”). The nozzle 40 in this example is a bi-furcated nozzle, although the examples herein can also be applied to other multi-furcated nozzles or even a single nozzle. The nozzle 40 has a first duct 40 a and a second duct 40 b that are divided, for at least a portion of the axial length of the ducts, by a common wall 41. The first ducts 40 a and the second duct 40 b extend from the respective fan sections 22 a-b to respective trailing end duct openings 42 a and 42 b. For example, the trailing end duct openings 42 a and 42 b are openings that are circumscribed by the trailing edge of the nozzle 40.
As shown, the first and second engine cores 20 a-b (shrouded in respective outer aerodynamic fairings), which as described above extend at an angle to the respective axes A1 and A2, block a portion of the nozzle 40 cross-sectional area. As a comparison, the RELATED ART examples shown in FIGS. 4A and 4B include a bi-furcated nozzle that has round exit areas that are partially blocked by the engine cores. In this regard, portions of the engine cores and/or intake inlets extend laterally, outside of the nozzle. However, referring again to FIG. 3, the trailing end duct openings 42 a and 42 b of the nozzle 40 are each elongated such that the engine cores 20 a-b and inlet ducts 32 a-b are enclosed within the nozzle 40. As a result, the cross-sectional areas of the trailing end duct openings 42 a and 42 b are non-circular, to maintain smooth flow through the nozzle 40 given the blockage of the engine cores 20 a-b. Further, in the example shown, the trailing end duct openings 42 a and 42 b are symmetric with respect to a plane PL2 between the ducts 40 a and 40 b.
FIG. 5 shows a further example nozzle 140, in which the cross-sectional areas of the trailing end duct opening 142 a, relative to center point P1 that is coaxial with A1, includes four quadrants, shown at Q1, Q2, Q3, and Q4. In this example, the quadrants are equal in cross-sectional area, to further enhance flow smoothness. The trailing end duct opening 142 b can also have quadrants that are equal in cross-sectional area.
FIG. 6 shows another example in which the first and second engine cores 20 a-b, and thus also the first and second engine axes B1 and B2, are circumferentially repositioned around the respective axes A1 and A2 in comparison to the example of FIG. 3. Whereas the propulsor axes A1 and A2 and the first and second engine axes B1 and B2 are coplanar with respect to plane PL (FIG. 3), the propulsor axes A1 and A2 and the first and second engine axes B1 and B2 are non-coplanar in FIG. 6 because of the circumferential positioning of the first and second engine axes B1 and B2 with respect to the axes A1 and A2.
The engine cores 20 a-b and axes B1 and B2 are circumferentially located at, respectively, 3 o'clock and 9 o'clock positions in FIG. 3 (parallel axes B1/B2), the engine cores 20 a-b and axes B1 and B2 are circumferentially located closer together in the example of FIG. 6. Thus, the positions of the first and second engine cores 20 a-b can each be represented by an angle of the axes B1 and B2 relative to the respective axes A1 and A2 as well as circumferential angles of the axes B1 and B2 about the respective axes A1 and A2 with regard to a reference circumferential position. For example, as shown in FIG. 6, each of the circumferential positions CP1 and CP2 of the axes B1 and B2, relative to vertical twelve o'clock positions, is greater than 90°, and in further examples are equal to or greater than 120°. In this example, trailing end duct openings 242 a and 242 b are elongated with respect to the first and second engine cores 20 a-b. As shown in FIG. 7, circumferential positions of greater than 90° orients the blast zones 34 a-b away from aircraft structures, such as vertical/horizontal stabilizers and/or the tail 14.
In configurations using a reversed-flow angled core, fans may be placed side-by-side, but the cores (gas generators) must be angled to comply with the 1:20 rule. Each core engine must lie outside of the burst zone or the other, so the engines cannot be placed parallel to each other. In such a configuration, a portion of the core and inlet duct would be outside the normal nacelle/nozzle lines. In addition, the engine core represents a blockage that must be shrouded by an abnormally large bifurcating duct. The present disclosure can allow better area distribution and may also provide the design space necessary for the core and inlet duct to be fully contained within the nozzle. This may eliminate the need to have an aerodynamic fairing protruding from the side of the aircraft/nacelle.
Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the scope and content of this disclosure.

Claims (17)

What is claimed is:
1. A propulsion system for an aircraft, comprising:
a first turbine engine including a first engine core having a first compressor, a first combustor, a first turbine, and a first intake duct leading into the first compressor;
a second turbine engine including a second engine core having a second compressor, a second combustor, a second turbine, and a second intake duct leading into the second compressor;
a first propulsor coupled to be driven by the first turbine engine, the first propulsor being disposed about a first propulsor axis and the first engine core being disposed about a first core axis that is skewed from the first propulsor axis;
a second propulsor coupled to be driven by the second turbine engine, the second propulsor being disposed about a second propulsor axis parallel to the first propulsor axis, and the second engine core being disposed about a second core axis that is skewed from the second propulsor axis; and
a furcated nozzle having at least a first duct extending from the first propulsor to a first trailing end duct opening and a second duct extending from the second propulsor to a second trailing end duct opening, wherein the first trailing end duct opening and the second trailing end duct opening are each laterally elongated.
2. The propulsion system as recited in claim 1, wherein the first intake duct is within the first duct of the furcated nozzle, and the second intake duct is within the second duct of the furcated nozzle.
3. The propulsion system as recited in claim 1, wherein the first duct and the second duct share a common wall there between.
4. The propulsion system as recited in claim 1, wherein the first trailing end duct opening and the second trailing end duct opening are symmetric with respect to a plane between the first duct and the second duct.
5. The propulsion system as recited in claim 1, wherein the first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is coaxial with the first direction.
6. The propulsion system as recited in claim 1, wherein the first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is non-coaxial with the first direction.
7. The propulsion system as recited in claim 1, wherein at least the first trailing end duct opening includes four quadrants with regard to the first propulsor axis that are equal in cross-sectional area.
8. The propulsion system as recited in claim 1, wherein the first core axis, the second core axis, the first propulsor axis, and the second propulsor axis are non-coplanar.
9. The propulsion system as recited in claim 1, wherein the first core axis, the second core axis, the first propulsor axis, and the second propulsor axis are coplanar.
10. The propulsion system as recited in claim 1, wherein the first core axis is skewed from the second core axis.
11. The propulsion system as recited in claim 1, wherein the first turbine engine and the second turbine engine are respective reverse flow turbine engines.
12. A nozzle for a multi-engine propulsion system, comprising:
a furcated nozzle including a first duct extending from a first forward end duct opening to a first trailing end duct opening and a second duct extending from a second forward end duct opening to a second trailing end duct opening, the first trailing end duct opening and the second trailing end duct opening being laterally elongated.
13. The nozzle as recited in claim 12, wherein the first duct and the second duct share a common wall there between.
14. The nozzle as recited in claim 12, wherein the first trailing end duct opening and the second trailing end duct opening are symmetric with respect to a plane between the first duct and the second duct.
15. The nozzle as recited in claim 12, wherein the first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is coaxial with the first direction.
16. The nozzle as recited in claim 12, wherein the first trailing end duct opening is elongated along a first direction and the second trailing end duct opening is elongated along a second direction that is non-coaxial with the first direction.
17. The propulsion system as recited in claim 1, wherein the first core axis and the second core axis diverge in an aft direction.
US14/265,856 2014-02-25 2014-04-30 Angled reverse core gas turbine engine with widened nozzle Active 2038-01-04 US10502085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/265,856 US10502085B2 (en) 2014-02-25 2014-04-30 Angled reverse core gas turbine engine with widened nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461944451P 2014-02-25 2014-02-25
US14/265,856 US10502085B2 (en) 2014-02-25 2014-04-30 Angled reverse core gas turbine engine with widened nozzle

Publications (2)

Publication Number Publication Date
US20150240745A1 US20150240745A1 (en) 2015-08-27
US10502085B2 true US10502085B2 (en) 2019-12-10

Family

ID=53881754

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/265,856 Active 2038-01-04 US10502085B2 (en) 2014-02-25 2014-04-30 Angled reverse core gas turbine engine with widened nozzle

Country Status (1)

Country Link
US (1) US10502085B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845159B2 (en) * 2013-03-07 2017-12-19 United Technologies Corporation Conjoined reverse core flow engine arrangement
US9540113B2 (en) * 2013-03-11 2017-01-10 United Technologies Corporation De-couple geared turbo-fan engine and aircraft

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972490A (en) 1975-03-07 1976-08-03 Mcdonnell Douglas Corporation Trifan powered VSTOL aircraft
US4500055A (en) 1982-05-21 1985-02-19 Dornier Gmbh Aircraft propulsion system arrangement
US5699662A (en) * 1996-05-28 1997-12-23 Lockheed Martin Corporation Infrared suppression exhaust duct system for a turboprop propulsion system for an aircraft
US20010011691A1 (en) 2000-02-09 2001-08-09 Provost Michael J. Engine arrangement
US20020190158A1 (en) 2001-06-14 2002-12-19 Snecma Moteurs Variable cycle propulsion system with mechanical transmission for a supersonic airplane
US20060185346A1 (en) * 2003-04-10 2006-08-24 Rolt Andrew M Turbofan arrangement
US20080245925A1 (en) * 2007-01-09 2008-10-09 Rolls-Royce Plc Aircraft configuration
US20100155526A1 (en) 2008-12-23 2010-06-24 Rolls-Royce Deutschland Ltd & Co Kg Aircraft with tail propeller-engine layout
US20120272656A1 (en) * 2011-04-29 2012-11-01 United Technologies Corporation Multiple core variable cycle gas turbine engine and method of operation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972490A (en) 1975-03-07 1976-08-03 Mcdonnell Douglas Corporation Trifan powered VSTOL aircraft
US4500055A (en) 1982-05-21 1985-02-19 Dornier Gmbh Aircraft propulsion system arrangement
US5699662A (en) * 1996-05-28 1997-12-23 Lockheed Martin Corporation Infrared suppression exhaust duct system for a turboprop propulsion system for an aircraft
US20010011691A1 (en) 2000-02-09 2001-08-09 Provost Michael J. Engine arrangement
US20020190158A1 (en) 2001-06-14 2002-12-19 Snecma Moteurs Variable cycle propulsion system with mechanical transmission for a supersonic airplane
US20060185346A1 (en) * 2003-04-10 2006-08-24 Rolt Andrew M Turbofan arrangement
US20080245925A1 (en) * 2007-01-09 2008-10-09 Rolls-Royce Plc Aircraft configuration
US20100155526A1 (en) 2008-12-23 2010-06-24 Rolls-Royce Deutschland Ltd & Co Kg Aircraft with tail propeller-engine layout
US20120272656A1 (en) * 2011-04-29 2012-11-01 United Technologies Corporation Multiple core variable cycle gas turbine engine and method of operation

Also Published As

Publication number Publication date
US20150240745A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
US9567062B2 (en) Box wing with angled gas turbine engine cores
US10829232B2 (en) Aircraft comprising a propulsion assembly including a fan on the rear of the fuselage
US9845159B2 (en) Conjoined reverse core flow engine arrangement
US7162859B2 (en) Variable cycle propulsion system with gas tapping for a supersonic airplane, and a method of operation
US9062609B2 (en) Symmetric fuel injection for turbine combustor
US9719465B2 (en) Reverse core engine with thrust reverser
US9644537B2 (en) Free stream intake with particle separator for reverse core engine
CA3021411C (en) Fan cowl with a serrated trailing edge providing attached flow in reverse thrust mode
US10975803B2 (en) Aircraft comprising a rear fairing propulsion system with inlet stator comprising a blowing function
US20100212288A1 (en) Jet Engine Exhaust Nozzle and Associated System and Method of Use
US10001063B2 (en) Angled core gas turbine engine mounting
US8622340B2 (en) Air inlet of an aeroengine having unducted pusher propellers
EP3282117B1 (en) Exhaust duct for turbine forward of fan
US10677158B2 (en) Method and system for in-line distributed propulsion
US20150284067A1 (en) Stabilizer with structural box and sacrificial surfaces
EP2963276B1 (en) Compact nacelle with contoured fan nozzle
US10502085B2 (en) Angled reverse core gas turbine engine with widened nozzle
US20090217643A1 (en) Gas discharge device for a vehicle engine
EP3778402B1 (en) Pusher turboprop powerplant installation
US20170057649A1 (en) Integrated aircraft propulsion system
US9488103B2 (en) Variable cycle intake for reverse core engine
US20150354501A1 (en) Non-Axisymmetric Exit Guide Vane Design
US20190120138A1 (en) Turbofan engine
US9435292B2 (en) Turbine engine with thrust vectoring exhaust nozzle

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LORD, WESLEY K.;CHANDLER, JESSE M.;SUCIU, GABRIEL L.;REEL/FRAME:032789/0828

Effective date: 20140429

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001

Effective date: 20200403

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001

Effective date: 20200403

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: RTX CORPORATION, CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:RAYTHEON TECHNOLOGIES CORPORATION;REEL/FRAME:064714/0001

Effective date: 20230714