US10468425B2 - Embedded non-volatile memory with single polysilicon layer memory cells erasable through band to band tunneling induced hot electron and programmable through Fowler-Nordheim tunneling - Google Patents

Embedded non-volatile memory with single polysilicon layer memory cells erasable through band to band tunneling induced hot electron and programmable through Fowler-Nordheim tunneling Download PDF

Info

Publication number
US10468425B2
US10468425B2 US14/605,303 US201514605303A US10468425B2 US 10468425 B2 US10468425 B2 US 10468425B2 US 201514605303 A US201514605303 A US 201514605303A US 10468425 B2 US10468425 B2 US 10468425B2
Authority
US
United States
Prior art keywords
region
well
capacitance
transistor
floating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/605,303
Other versions
US20150221661A1 (en
Inventor
Luca Milani
Fabrizio TORRICELLI
Anna Richelli
Luigi Colalongo
Zsolt Miklos Kovàcs-Vajna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Assigned to STMICROELECTRONICS S.R.L. reassignment STMICROELECTRONICS S.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLALONGO, LUIGI, KOVACS-VAJNA, ZSOLT MIKLOS, MILANI, LUCA, RICHELLI, ANNA, TORRICELLI, FABRIZIO
Publication of US20150221661A1 publication Critical patent/US20150221661A1/en
Application granted granted Critical
Publication of US10468425B2 publication Critical patent/US10468425B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H01L27/11521
    • H01L27/11519
    • H01L27/11558
    • H01L27/1156
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/60Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the control gate being a doped region, e.g. single-poly memory cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Definitions

  • the approach according to one or more embodiments of the present invention relates to the field of electronics. More specifically, this approach relates to non-volatile memory devices.
  • Non-volatile memory devices are used in any application where storage of information has to be maintained even when the memory devices are not powered.
  • emNVM embedded non-volatile memories
  • SoC Systems-on-Chip
  • the emNVM are implemented in the SoC, for example, to allow post-manufacturing calibration/adjustment (e.g., for analog and/or radio-frequency circuits) by the manufacturer and/or post-manufacturing customization/configuration by the final user.
  • the NVM are implemented in SoC where it is desirable to store a limited amount of data in systems such radio frequency identification (RFID) systems.
  • RFID radio frequency identification
  • Some technologic approaches are available to provide an emNVM. Some approaches allow a single programming (or One Time Programmable) of the emNVM, such as poly-fuse or anti-fuse type emNVM.
  • EEPROM Electrical Erasable and Programmable Read-Only Memory
  • FLASH emNVM FLASH emNVM, which store a given datum by trapping electric charges in an insulated terminal, or floating gate, of a storage transistor.
  • CMOS complementary metal oxide semiconductor
  • SoC SoC complementary metal oxide semiconductor
  • the storage transistors use an additional polysilicon layer to define their floating gates regions (in addition to that used to define their control gate regions as in the standard CMOS). This difference adds design complexity, which significantly increases the manufacturing cost of the memory devices.
  • the floating gate is made from a single polysilicon layer shared between a control capacitor, which dominates and controls the potential of the gate terminal of a MOS transistor connected thereto by capacitive coupling.
  • the program and erase of the cell may occur by hot carrier injection (HCI), such as channel hot electron (CHE), or by Fowler-Nordheim (FN) tunneling in the floating gate in the proximity of the drain region of the transistor floating gate.
  • HCI hot carrier injection
  • CHE channel hot electron
  • FN Fowler-Nordheim
  • BBHE band-to-band tunneling-induced hot electron
  • Such memory cells use rather complex (and of considerable size on the chip) control circuitry (e.g., row and column decoders, reading and writing unit, etc.) because they must be able to generate and provide to each cell in a matrix of the emNVM a plurality of different voltages, also of high value (compared with a supply voltage of the SoC in which the emNVM is integrated).
  • control circuitry e.g., row and column decoders, reading and writing unit, etc.
  • the approach according to one or more embodiments provides an emNVM that includes a matrix of memory cells that is compact and simply addressable with reduced voltage values in such a way to simplify a control structure to operate on the matrix of memory cells compared with known emNVMs.
  • emNVM that includes a matrix of memory cells that is compact and simply addressable with reduced voltage values in such a way to simplify a control structure to operate on the matrix of memory cells compared with known emNVMs.
  • the non-volatile memory includes a plurality of memory cells arranged in a plurality of rows and columns. Each memory cell comprises an access portion and a control portion. The access portion and the control portion share an electrically floating layer of conductive material which provides a first capacitive coupling with the access portion and a second capacitive coupling with the control portion, the first capacitive coupling defining a first capacity lower than a second capacity defined by the second capacitive coupling.
  • the access portion of each memory cell is formed in the chip in a first well of semiconductor material having a doping of a first type.
  • the control portion is formed in the chip in a second well of semiconductor material having a doping of a second type.
  • the access portion is configured to be traversed by an electric current, or have an electric current flow therethrough indicative of a logic value stored in the memory cell during a read operation of the memory cell.
  • control portion is configured so that an electric current adapted to extract charge carriers from the electrically floating layer through Fowler-Nordheim tunneling flows therethrough to impose the storing of a first logic value in the memory cell and the access portion is further configured to be traversed by an electric current adapted to inject charge carriers in the electrically floating layer by injection of band-to-band tunneling-induced hot electrons impose the storing of a second logic value, respectively, in the memory cell.
  • FIG. 1 is a block diagram of an emNVM in which the approach according to the present invention may be implemented.
  • FIG. 2A is a schematic plan view of a memory cell according to one embodiment of the present invention.
  • FIG. 2B is a schematic cross-section view of the memory cell of FIG. 2 a.
  • FIG. 3A is a schematic plan view of a memory cell according to a different embodiment of the present invention.
  • FIG. 3B is a schematic cross-section view of the memory cell of FIG. 3A .
  • FIGS. 4A-4K illustrate schematically some steps of a manufacturing process of the memory cell according to one embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a portion or sector of the matrix of memory cells according to an embodiment of the present invention.
  • FIG. 6 is a schematic plan view of a portion of a sector of the matrix of memory cells according to an alternative embodiment of the present invention.
  • FIG. 1 is a block diagram of an emNVM in which an approach according to the present invention may be implemented.
  • the memory device 100 is non-volatile integrated, or emNVM (embedded Non-Volatile Memory).
  • the memory device 100 comprises a matrix 105 , which is formed by a plurality of memory cells (not shown in the figure) that are organized in rows and columns (for example, 128-512 rows and 512-1024 columns).
  • Each memory cell stores a logic value (e.g., corresponding to a bit of information).
  • the memory cell is based on a floating-gate MOS transistor. This transistor has a threshold voltage which depends on an electrical charge in its floating gate. The different levels of the threshold voltage represent corresponding logic values.
  • the memory cell is programmed (to a logic value 0) when it has a high threshold voltage, while the memory cell is erased (to a logic value 1) when it has a low threshold voltage.
  • the memory device 100 may individually erase each memory cell.
  • the programming is performed simultaneously for a set of memory cells (for example, a word or a sector).
  • the reading of the cells of the matrix 105 may be performed for single cell.
  • An address buffer 110 receives an address of a memory cell or a set of memory cells (for example, to a corresponding word) in the matrix 105 .
  • a portion of the address is supplied to a row decoder 115 r , which selects the selected row in the matrix 105 .
  • the other portion of the address is instead supplied to a column decoder 115 c , which selects a column in the matrix 105 among the columns of the matrix 105 . In this way, it is possible to (electrically) access to each memory cell of the matrix 105 .
  • a read/write unit 120 controls the operation of the row decoder 115 r and of the column decoder 115 c .
  • the read/write unit 120 furthermore comprises all the components (such as power management unit with charge pumps, sense amplifiers, comparators, reference cells, pulse generators, and the like) that are used to write (i.e., program, or erase) the memory cells and read their logic values.
  • the read/write unit 120 is also coupled with an input/output (I/O) buffer 125 , the input/output buffer 125 receives data (one or more bits) to be written in the matrix 105 , or provides the data read from the matrix 105 .
  • I/O input/output
  • FIGS. 2A and 2B schematic plan and cross-section views, respectively, of a memory cell 200 according to one embodiment are illustrated.
  • the memory cell 200 is integrated within a portion of substrate 205 of a chip of semiconductor material (e.g., silicon Si).
  • the portion of the substrate may have a doping of p-type (as in the case of silicon doped with boron B).
  • the memory cell 200 comprises a control portion which in turn comprises a capacitive element 210 , and a portion of access which in turn comprises a memory transistor 215 and a selection transistor 220 (e.g., of the type Metal-Oxide-Semiconductor or MOS).
  • An n well 225 with an n-type doping extends from a surface of the chip 228 in the substrate 205 (down to a first depth).
  • the n well 225 comprises a deep region 225 a to n -type doping with a concentration greater than the doping of the n well 225 —n+ doping as indicated in the following. This deep region 225 a defines a (lower) boundary with the substrate 205 .
  • a p well 226 is formed inside the n well 225 .
  • the p well 226 extends from the surface of the chip 228 towards the inside of the n well 225 (down to a second depth lower than the first depth).
  • the plate regions 231 and 234 have a p-type doping with a concentration greater than the doping of the substrate 205 —identified as p+ doping in the following.
  • the plate regions 231 and 234 each comprise an extension portion 231 a and 234 a , which extend towards each other, in the proximity of the surface 228 and have a p-type doping—indicated as p* doping in the following—different from (e.g., lower than) the p+ doping of a main portion 231 b and 234 b of the plate regions 231 and 234 , respectively.
  • p* doping in the following—different from (e.g., lower than) the p+ doping of a main portion 231 b and 234 b of the plate regions 231 and 234 , respectively.
  • n+ contact region 237 Inside the n well 225 is also formed a n+ contact region 237 , having an n+ type doping, in order to electrically contact the n well, and three distinct regions 243 , 246 and 249 of p+ type.
  • a first p+ region is indicated as a source region 243 , as corresponds to the source region of the memory transistor 215
  • a second p+ region is indicated as the shared region 246 , as corresponds to the drain region of the memory transistor 215 and to the source region of the selection transistor 220
  • a third p+ region is indicated as drain region 249 , as corresponds to the drain region of the selection transistor 220 .
  • the source 243 and shared 246 regions each comprise an extension portion 243 a and 246 a , which extend towards each other in the proximity of the surface 228 , and have a p* type doping.
  • the drain region also comprises an extension portion 249 a which extends from a main portion 249 b toward an additional extension portion 246 a ′ of the shared region 246 .
  • a plurality of insulating decoupling elements 253 are formed at the surface 228 so as to extend, with its main portion, towards the inside of the chip and, with a minor portion, above the surface 228 of the chip.
  • the decoupling elements 253 are shaped to define, in plan view, the wells 225 and 226 , thus delimiting and (electrically) insulating the latter between them and other surrounding elements possibly formed in the same chip.
  • a capacitor insulating layer 255 electrically insulating material (e.g., silicon oxide SiO 2 ) is formed on the surface 228 of the chip, in a space thereabove, and substantially delimited by, the plate regions 231 and 234 (with the extension portions 231 a and 234 a which extend in the n well 225 beneath the capacitor insulating layer 255 ).
  • electrically insulating material e.g., silicon oxide SiO 2
  • an cell insulating layer 258 of electrically insulating material is formed on the surface 228 of the chip, in a space thereabove, and substantially delimited by, the regions 243 and 246 (in such a way to form the oxide layer of the memory transistor 215 and with the extension portions 243 a and 246 a which extend in the p well 226 beneath the cell insulating layer 258 ).
  • a selector insulating layer 261 of electrically insulating material is formed on the surface 228 of the chip, in a space thereabove, and substantially delimited by, the regions 246 and 249 (in such a way to form the oxide layer of the selection transistor 220 ).
  • a polysilicon gate layer 264 is formed over the insulating selection layer 261 (in such a way to form the gate region of the selection transistor 220 ).
  • a polysilicon coupling floating layer 267 (hereinafter referred to as the floating layer 267 for sake of simplicity—is formed between the capacitor insulating layer 255 and the cell insulating layer 258 .
  • a capacitor portion 267 a of the floating layer 267 form a second plate of the capacitive element 210 while a transistor portion 267 a of the layer 267 form the floating gate region of the memory transistor 215 .
  • One or more oxide layers 270 are formed so as to cover (and electrically insulate) the floating layer 267 , the gate layer 264 and the insulating layers 255 , 258 and 261 .
  • the floating layer 267 is electrically insulated from what formed in the substrate 205 due to the oxide layers 270 .
  • respective salicide layers 273 of a metallic material are formed to facilitate a subsequent electrical connection with metal elements for electrical connection subsequently formed by means of metallization higher levels.
  • the salicide layer 273 is formed only on a respective (contact) portion of the regions 237 , 231 , 234 , 243 and 249 ; for example, in FIG. 2A such contact portions are indicated by a respective square.
  • the regions 237 , 231 , 234 , 243 , 249 and the gate layer 264 are connected to the upper metallization layers (shown schematically by a line in FIG. 2B ) to form the corresponding capacitor Tc (connected to both regions of armor 231 and 234 ), the source Ts, drain Td, n well Tn and selection Tsel terminals in order to be electrically connected to external elements to the memory cell 200 (e.g., the row decoder 115 r and the column decoder 115 c shown in FIG. 1 ).
  • the memory cell 200 (in particular because of the deep region 225 a ) does not electrically interact significantly with the substrate 205 of the chip in which it is integrated. Therefore, the memory cell 200 is substantially electrically insulated from any other memory cells 200 and/or other devices (not shown) formed in the substrate 205 (and therefore electromagnetic interference between the memory cells 200 formed in the substrate 205 are suppressed or at least substantially attenuated).
  • the floating layer 267 is formed in such a way to define a capacitive coupling factor ⁇ between a predetermined capacity Cc of the capacitive element 210 and a capacitance Ct of the memory transistor 215 .
  • the floating layer 267 is formed with a transistor portion 267 a having a size (area) lower than the size of a capacitive portion 267 b .
  • the size of the portions 267 a and 267 b are designed so as to obtain a capacitive coupling factor ⁇ equal to:
  • the capacitive coupling factor ⁇ makes the floating layer 267 (corresponding to the floating region of a classic floating gate transistor) coupled, from the electrical point of view, predominantly to the regions of the capacitor 231 and 234 rather than to the source 243 and shared 246 regions.
  • an erase operation (imposing the logic 1 value as stored data) of the memory cell 200 by band-to-band tunneling-induced hot electron (BBHE), the phenomenon stimulated at the insulating layer 255 (i.e., in correspondence of the capacitive element 210 ).
  • a program operation (imposing the logic 0 value as data stored) of the memory cell 200 is performed by means of the of Fowler-Nordheim (FN) tunneling stimulated at the insulating layer 258 (i.e., in correspondence of the memory transistor 215 ).
  • FN Fowler-Nordheim
  • the memory cell 200 may be controlled by applying appropriate voltages to the terminals Tc, Ts, Td, Tn and Tsel. According to the value of the applied voltages, the memory cell 200 may be controlled to store the logic 1 value, through the erase operation, to store the logic 0 value, through the program operation, or for detecting a previously stored value, through a read operation.
  • Table 1 below is an example of biasing schemes applicable to terminals Tc, Ts, Td, Tn and Tsel of the memory cell 200 according to the selected operation among erase, program and read operations or the program operation inhibition.
  • Ve erase voltage
  • GND reference voltage
  • an electric potential of the floating layer 267 appears to be close to a potential of the capacitor terminal Tc (i.e., GND in the example considered).
  • the electric potential of the transistor portion 267 a floating layer 267 is substantially differ from the (preferably, is substantially greater than) erase voltage Ve that biases the terminal Ts.
  • a fraction Ibbhe (generated for BBHE) of the electric current Icn flowing between terminals Tn and Ts is injected into the floating layer 267 through the insulating layer of the transistor 258 by means of BBHE (in other words, through the BBHE charge carriers are inject in the floating layer 267 , thereby imposing the logic 1 value in the memory cell 200 ).
  • the injection efficiency of BBHE in other words the ratio between the injected electric current fraction Ibbhe and the electric current generated Icn, appears to be generally better than the efficiency obtainable with CHE or similar phenomena usually used in known memory cells.
  • the current intensity to stimulate the CHE appears to be substantially greater than the current intensity required to stimulate the BBHE.
  • the erase operation by BBHE uses an erase voltage value Ve substantially lower than the values needed to perform an erase by FN tunneling.
  • the voltage Ve is in the order of a value of the supply voltage Vdd (thus Ve may be generated without charge pumps, allowing a reduction of power consumption to manage the emNVM and a complexity in the provision of the electrical connections between the memory cell 200 and other elements of the emNVM 100 , as described hereinbelow).
  • of the erase voltage Ve is the order of a value of a supply voltage Vdd (therefore it is possible to reduce power consumption necessary to manage the erase operation).
  • the potential drop on the transistor insulating layer 258 (substantially corresponding to Vp in the considered example) has an intensity adapted to activate a FN tunneling current, therethrough, of such intensity to extract electrons trapped in the floating layer 267 (thereby imposing the logic 0 value in the memory cell 200 ).
  • the plate regions 243 and 246 through the extension portions 243 a and 246 a , generate an electric field when biased through the capacitor terminal Tc to the program voltage Vp.
  • This electric field extends in the n well region 225 beneath the capacitor insulating layer 258 (also referred to as channel region).
  • the electric field has an intensity such as to determine an extraction of electrons stored in the floating layer 267 substantially uniform in the channel region (in a similar way to what happens in the floating gate transistors implemented in FLASH memories).
  • the current Id provides an indication of the logic value stored in the memory cell 200 .
  • the current Id may provide indication of the logic value stored in an indirect way.
  • the charge carriers injected into the floating layer 267 during the program operation move the threshold voltage of the memory transistor 215 to a program value Vth prog lower than a thermal equilibrium value (i.e., Vth prog >Vth eq ). Otherwise, the charge carriers extracted from the floating layer 267 during the erase operation move the threshold voltage of the memory transistor 215 to a erase value Vth erase greater than the thermal equilibrium value (i.e., Vth erase ⁇ Vth eq ).
  • Vth erase the greater the distance between the erase value Vth erase and program value Vth prog , the greater is the duration for which a logic value remains stored in the memory cell 200 .
  • the selection transistor 220 makes it possible to extract a quantity of charge carriers from the floating layer 267 to determine a program value Vth prog (virtually) negative for the memory transistor 215 without making the memory cell 200 unreadable (as would happen if the transistor selection of 220 was omitted). This allows a distance between the value and the value of cancellation Vth erase programming Vth prog to be obtained such as to ensure high reliability of the memory cell 200 (for example, ensuring a retention of a logic value stored in the order of about ten years).
  • the inhibition of the program operation takes place while maintaining a reduced voltage drop on the capacitor insulating layer 258 when the program voltage Vp is provided to the capacitor terminal Tc. This is achieved by imposing an inhibition voltage Vi of appropriate value to the source terminal Ts.
  • the source region 243 biassed at the inhibition voltage Vi
  • the source region 243 forms with plate regions 231 and 234 (biased to the program voltage Vp) a pn junction (as in the case of a diode) in reverse biased.
  • a voltage value equal to Vp ⁇ Vi is developed sized in such a way that a remaining voltage developed on the capacitor insulating layer 258 is not strong enough to promote the FN tunneling.
  • a matrix 105 of memory cells 200 completely provided with a single polysilicon layer 267 (i.e., by processes comprised in a standard CMOS technology) and, preferably, in which sets of memory cells 200 share a common n well (as described hereinbelow).
  • a complementary memory cell is formed in which the types of doping described above are substantially reversed.
  • a capacitive element is formed with plate regions of p-type and a p-type well, in the latter memory and selection transistors are formed with shared source and drain regions of the n-type, and a well contact region of the p-type.
  • FIGS. 3A and 3B schematic plan and cross-section views, respectively, of a memory cell 300 are illustrated according to an embodiment.
  • the memory cell 300 differs from memory cell 200 as follows (it should be noted that elements of the memory cell 300 corresponding to elements of the memory cell 200 are indicated by similar references and their description is not repeated for sake of brevity).
  • the floating layer 367 is n+ doped, unlike the cell 200 in which it has a p+ doping.
  • a p+ contact region 337 having a p+ type doping is also formed inside the p well 326 .
  • a salicide layer 373 is disposed on a surface portion of the p+ contact region 352 which is then electrically coupled to the control terminal Tc, together with the two plate regions 331 and 334 .
  • the FN tunneling program performance is improved (in particular, it is possible to design the memory cell 300 in such a way to perform a faster programming or at the same speed but with a program voltage Vp lower than the cell memory 200 ) thanks to the optimization of the performance of energy bands (e.g., the conduction and valence bands) of the capacitive element 310 , in particular in correspondence of the capacitor insulating layer 258 (through which the FN tunneling occurs) thanks the n+ type doping of the floating layer 367 .
  • energy bands e.g., the conduction and valence bands
  • FIGS. 4A-4J some steps of a manufacturing process of a memory cell 200 schematically illustrated in these figures will now be described.
  • the decoupling elements 253 at the surface 228 and then the n well 225 are formed.
  • a layer of photosensitive material, or resist is deposited on the surface 228 of the p substrate 205 , a portion of the resist (corresponding to a plan view of the decoupling layer 253 ) is defined by means of a mask (not shown) and is impressed by an electromagnetic radiation (which passes through the mask).
  • the impressed portion of the resist is selectively removed (for example, via a chemical etching) to leave exposed a portion of the surface 228 of the substrate 205 corresponding to the plan view of the decoupling elements 253 to be formed.
  • An insulating layer disposed on the surface 228 is removed from the portion of the surface 228 defined by the mask.
  • the decoupling elements 253 are formed, for example by an etching process, to define the trenches, which are filled with insulating material by chemical vapor deposition (CVD).
  • the n well 225 is formed in the p substrate 205 .
  • the n well 225 may be formed as known by a photolithography process (in a similar way to that described above) followed by a respective chemical vapor deposition (CVD) or a process of ion implantation in a selected portion of the chip not covered by the decoupling layer 253 .
  • the deep region 225 a of the n well 225 is formed by ion implantation.
  • the p well 226 is formed inside the n well 225 in the same manner as just described with respect to the formation of the latter.
  • insulating layers 255 , 258 and 261 are formed ( FIG. 4C ).
  • an oxide layer (or more) by CVD and/or by thermal oxidation is initially formed. Selected portions of the oxide layer (e.g., again through photolithography) are then removed (e.g., again through a chemical etching) to define the insulating layers 255 , 258 and 261 .
  • the layer 267 and the floating gate layer 264 are formed above the insulating layers 255 and 258 , and the insulating selection layer 261 , respectively ( FIG. 4D ).
  • the floating layer 267 and the gate layer 264 can be formed through a CVD step.
  • the p* type extension portions 231 a , 234 a , 243 a and 246 a of the regions 231 , 234 , 243 and 246 (and, optionally, the extension portions 246 a ′ and 249 a ), respectively, are formed ( FIG. 4E ).
  • the extension portions 231 a , 234 a , 243 a and 246 a (and, optionally, the extension portions 246 a ′ and 249 a ) may be formed via an ion implantation having an angle of incidence transversal to the surface 228 (as indicated by the arrows in FIG. 4E ) and exploit the layer 267 and the floating gate layer 264 as self-aligning elements.
  • the n+ well region 237 is formed ( FIG. 4F ).
  • the region may be formed through an ion implantation process in the n well 225 .
  • the n+ contact region 237 may be defined by a dedicated mask 405 .
  • the floating layer 267 , the gate layer 264 and the underlying insulating layers 255 and 258 , respectively, are subjected to an oxidation process (e.g., thermal oxidation) to be coated by an insulating spacer layer (not illustrated in the figures for simplicity) formed on side surfaces thereof.
  • an oxidation process e.g., thermal oxidation
  • the main portions 231 b and 234 b of the regions 231 and armature 234 , respectively, the main portions 243 b and 246 b , of the regions 243 and 246 , respectively, and the drain region 249 (or its main portion 249 b ) of the p+ type are formed ( FIG. 4H ).
  • the main portions 231 b , 234 b , 243 b and 246 b and the drain region 249 may be formed by ion implantation through areas of the surface 228 defined by a single mask 415 (shown in FIG. 4F ) in a similar manner to what described above.
  • the floating element 267 acts as a self-aligning element for defining the main portions 231 b , 234 b , 243 b and 246 b while the gate layer 264 acts as a self-aligning element for defining the main shared portion 246 b and the drain region 249 .
  • the floating layer 267 receives a p+ type doping during this phase of the process.
  • the mask 415 is designed so that the entire floating layer 267 is exposed uniformly the same p+ type doping through ion implantation (in other words, the floating layer 267 has a polysilicon with the same p+ type doping from the transistor portion 267 a to the capacitor portion 267 b ).
  • the surface 228 of the substrate 205 , the floating layer 267 , the gate layer 264 and the insulating layers 255 , 258 and 261 are then coated by one or more oxide layers 270 (e.g., a layer of silicon oxide and/or silicon nitride), for example by thermal oxidation and/or CVD ( FIG. 4I ).
  • oxide layers 270 e.g., a layer of silicon oxide and/or silicon nitride
  • the floating layer 267 is electrically insulated from what formed in the substrate 205 .
  • the oxide layers 270 are selectively removed (e.g., by chemical etching) in correspondence of the regions 237 , 231 , 234 , 243 , and 249 and the gate layer 264 (e.g., in areas defined by a photolithographic process), which are then subjected to a silicidation process ( FIG. 4J ).
  • the silicidation deposits a salicide layer 273 in a transition metal (e.g., cobalt) on the surface 228 in correspondence of the regions 237 , 231 , 234 , 243 , 246 and 249 and on the gate layer 264 to facilitate a subsequent connection electric electrical connection with metal elements subsequently formed by means of higher metallization levels to obtain the terminals Tc, Ts, Td, and Tsel previously described.
  • a transition metal e.g., cobalt
  • the p+ contact region 352 is formed simultaneously with the main portions 243 b and 246 b .
  • the floating layer 367 receives a uniform doping during the manufacturing process.
  • a corresponding mask 420 is designed so that the entire floating layer 367 and the plate regions 331 and 334 uniformly receive the same n+ type doping ion implantation (in other words, the floating layer 367 has a polysilicon with the same n+ type doping from the transistor portion 367 a to the capacitor portion 367 b ) while the regions 343 , 337 and 352 are formed by respective masks 430 , 435 and 440 while the regions 346 , 349 and the gate region 364 are formed through a common mask 450 .
  • FIG. 5 it is a conceptual circuit diagram of a portion, or sector 500 , of a matrix 105 of memory cells 500 i,j according to an embodiment of the present invention.
  • the plurality of memory cells 200 i,j is preferably divided into groups or sectors (of which the sector 500 in FIG. 5 is an example) of memory cells 200 i,j .
  • the memory cells 200 i,j of each sector 500 are formed in a same shared n well 525 (corresponding to the n well 225 illustrated in FIGS. 2A and 2B ).
  • all the memory cells 200 i,j of the matrix 105 are formed in one same shared n well.
  • a p well 526 j (corresponding to the p well 226 illustrated in FIGS. 2A and 2B ) for each row of the matrix 105 comprised in the sector 500 .
  • the access portions of the memory cells 200 i,j i.e., the memory transistors 215 i,j and the selection transistors 220 i,j
  • the control portions of the memory cells 200 i,j i.e., the capacitor elements 210 i,j
  • the terminals of the well Tn i,j (connected to the n+ contact regions 237 i,j ) of the memory cells 200 i,j in the sector are connected to a same well line Ln (for example connected to the row decoder 115 r ).
  • the generic memory transistor 215 i,j of the generic memory cell 200 i,j shares an intercell region and a respective intercell terminal (not shown in FIG. 5 ) with the selection transistor 220 i+1,j of the generic memory cell 215 i+1,j consecutive along the row j.
  • This intercell region corresponds to the shared source region 243 i,j of the transistor cell 215 i,j and to the drain region of 249 i+1,j of the selection transistor 220 i+1,j .
  • the intercell terminal corresponds to the source terminal Ts i,j of the transistor cell 215 i,j and to the drain terminal Td i+1,j of the selection transistor 220 i+1,j .
  • Such intercell terminal shared by memory cells 200 i,1 , 200 i+1,j aligned on row j is connected to a bit line BLa i or BLb i according to whether the second memory cell 200 i,j is aligned on an odd or equal column of the matrix 105 (with the bit line BLa i or BLb i connected, for example, the column decoder 115 c ).
  • each memory cell 200 i,j is connected to a respective word line WLa j or WLb j (e.g., connected to the row decoder 115 r ).
  • each memory cell 200 i,j aligned on the same column i is connected to a word line WLa j or WLb j according to whether the second memory cell is aligned on an odd or even line j, respectively (with each memory cell 200 i,j in odd positions in the column connected to the same word line WLa j and each memory cell 200 i,j in even position in the column connected to the same word line WLb j ).
  • access portions i.e., the transistors 215 i,j e 220 i
  • the capacitor terminal Tc i,j (connected to the regions of armor 231 i,j and 234 i,j ) of each memory cell 200 i,j aligned on a same row j is connected to a control line Lc j (e.g., connected to the row decoder 115 r )
  • Lc j e.g., connected to the row decoder 115 r
  • Table 2 are presented biasing schemes similarly to what indicated in Table 1 but applied to the signal lines Ln, Lc j , BLa/b i and WLa/b j (connected to terminals Tn i,j , Tc i,j , Ts i,j , Td i,j e Tsel i,j of the memory cells 200 i,j ).
  • the erase operation it is possible to perform the erase operation jointly on all memory cells 200 i,j in the sector 500 (as in the case of FLASH type NVM), on a word (i.e., all of memory cells 200 i,j aligned on a same column i of the matrix 105 ) of the sector 500 , or separately on a single memory cell 200 i,j (as in the case of EEPROM type NVM).
  • the erase of the entire sector 500 it is sufficient to apply the biasing scheme for the erase operation to all memory cells 200 i,j in the sector 500 (via the signal lines Ln, Lc j , WLa/b j and BLa i /b i ) Otherwise, to obtain the erase of a single word (i.e. of the memory cells 200 i,j aligned along a same column i) it is sufficient to apply the biasing scheme for the erase operation only to memory cells 200 i,j aligned along the same column i (via the signal lines Ln, Lc j , WLa/b j and BLa/b i ).
  • the program operation has a selectable granularity in the matrix 105 according to one embodiment.
  • the program biasing scheme on a single word of the sector 500 and applying the program inhibition biasing scheme to the remaining memory cells of the matrix 105 it is possible to execute the program in a limited fashion.
  • the reading of the logic values stored in each memory cell 200 i,j in the sector 500 may be performed cell by cell by applying the read biasing scheme to signal lines Ln, Lc j , WLa/b j and BLa/b i connected to a selected memory cell 200 i,j .
  • the emNVM 100 may be configured for storing data in differential mode. This mode allows obtaining a greater reliability of the correctness of the data stored than the normal storage mode.
  • each datum is stored configuring complementary logic values in a pair of memory cells (e.g., the memory cells 200 1,1 and 200 i,j ).
  • the data associated with each pair of memory cells 200 1,1 and 200 i,j is determined by comparing the currents generated by the memory cells 200 1,1 and 200 i,j of the pair during the read operation.
  • the emNVM 100 may effectively implement the differential storage mode thanks to the distance between the erase value Vth erase and the program value Vth prog mentioned above, which allows obtaining currents generated by the memory cells 200 1,1 and 200 i,j of the pair having substantially different intensities. In this way, the comparison between the currents generated by the memory cells 200 1,1 and 200 i,j of a pair is less prone to errors, thereby improving the reading efficiency of the emNVM 100 (at the same time, relaxing the design constraints to which a current comparison element, such as a sense amplifier, is subject).
  • the structure of the memory cell 200 i,j allows using voltages Ve, Vr, Vdr, Vsr and Vi of value lower than or equal to the value of the supply voltage Vdd, thus obtainable without the need to exploit voltage multipliers devices such as charge pumps.
  • the capacitor line Lc j has to be sized in such a way to operate with a program voltage Vp of value greater than the value of the supply voltage Vdd.
  • the line Lc j (of each row of the matrix 105 ) has to be subject to more stringent design constraints, in order to operate properly to the value of the program voltage Vp.
  • control matrix 105 is simple and versatile. It should be noted that it is possible to produce an alternative matrix 105 (not shown) comprising a plurality of memory cells 300 in the same way as just described in relation to FIG. 5 , mutatis mutandis. Also in this case, it is possible to obtain the same advantages described above.
  • FIG. 6 a schematic plan view of a portion of a sector 600 of the matrix of memory cells 200 i,j according to an alternative embodiment is illustrated.
  • the sector 600 differs from the sector 500 just described in what follows.
  • a shared well 625 in which the access portions are formed i.e., the memory 215 i,j and 215 i,j+1 , and selection 220 i,j and 220 i,j+1 transistors
  • control portions i.e., the capacitive elements 210 i,j and 210 i,j+1 ) of the generic memory cells 200 i,j and 200 i,j+1 aligned along pairs of rows j and j+1 row consecutive in the matrix 105 are formed.
  • the generic memory transistor 215 i,j of the generic memory cell 200 i,j shares an intercell region 643 i and a respective intercell terminal (not shown in FIG. 6 ) with the selection transistor 220 i+1,j of the generic memory cell 215 i+1,j consecutive in the row j.
  • This intercell region corresponds to the shared source region 243 i,j of the transistor cell 215 i,j and to the drain region 249 i+1,j of the selection transistor 220 i+1,j .
  • the intercell terminal corresponds to the source terminal Ts i,j of the transistor cell 215 i,j and to the drain terminal Td i+1,j of the selection transistor 220 i+1,j .
  • Such intercell terminal shared by memory cells 200 i,j , 200 i+1,j aligned on row j is connected to a bit line BLa i or BLb i or that the second memory cell 200 i,j is aligned on a column the odd or equal to the matrix 105 (with the bit line Bla i or BLb i connected, for example, the column decoder 115 c ).
  • each memory cell 200 i,j is connected to a respective word line or word line WLa j or WLb j (e.g., connected to the row decoder 115 r ).
  • each memory cell 200 i,j aligned on the same column is connected to a word line WLa j or WLbj according to whether the second memory cell is aligned on an odd or even row j, respectively (with each memory cell 200 i,j in the odd positions in the column connected to the same word line WLa j and each memory cell 200 i,j in even position in the column connected to the same word line WLb j ).
  • access portions i.e., the transistors 215 i,j e 220 i
  • the capacitor terminals Tc i,j and Tc i,j+1 (related to the plate regions 231 i,j and 234 i,j , and 231 i,j+1 and 234 i,j+1 ) of each of the memory cells 200 i,j 200 i,j+1 aligned on adjacent rows j and j+1 formed in the same shared p well 626 x are connected to a shared control line Lc x (e.g., connected to the row decoder 115 r ).
  • the memory cells 200 i,j in the sector 600 are subjected to erase, program, read and program inhibition operations through the same biasing schemes presented in Table 2 for the sector 500 (by replacing the control lines Lc j with the shared control lines Lc x ).
  • the sector 600 allows obtaining a structure of the matrix 105 even more compact compared to the sector 500 previously described, while maintaining the same advantages of the latter.
  • non-volatile memory described above in relation to an embedded non-volatile memory can be implemented in a not embedded non-volatile memory without requiring substantial modifications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A non-volatile memory includes cells arranged in rows and columns. Each memory cell includes an access portion and a control portion. The access and control portions share an electrically floating layer of conductive material defining a first capacitive coupling with the access portion and a second capacitive coupling with the control portion. The first capacitive coupling defines a first capacity lower than a second capacity defined by the second capacitive coupling. The control portion is configured so that an electric current extracts charge carriers from the electrically floating layer through Fowler-Nordheim tunneling to store a first logic value in the memory cell. The access portion is configured so that an electric current injects charge carriers in the electrically floating layer by injection of band-to-band tunneling-induced hot electrons to store a second logic value, respectively, in the memory cell.

Description

TECHNICAL FIELD
The approach according to one or more embodiments of the present invention relates to the field of electronics. More specifically, this approach relates to non-volatile memory devices.
BACKGROUND
Non-volatile memory devices are used in any application where storage of information has to be maintained even when the memory devices are not powered. In recent years, the market for embedded non-volatile memories (emNVM) has undergone a considerable development. The emNVM are implemented with other devices on a single chip to obtain (electronic) Systems-on-Chip (SoC). The emNVM are implemented in the SoC, for example, to allow post-manufacturing calibration/adjustment (e.g., for analog and/or radio-frequency circuits) by the manufacturer and/or post-manufacturing customization/configuration by the final user. Moreover, the NVM are implemented in SoC where it is desirable to store a limited amount of data in systems such radio frequency identification (RFID) systems.
Several technologic approaches are available to provide an emNVM. Some approaches allow a single programming (or One Time Programmable) of the emNVM, such as poly-fuse or anti-fuse type emNVM.
Other technologic approaches allow performing more write cycles on the emNVM, such as in the case of EEPROM (Electrical Erasable and Programmable Read-Only Memory) or FLASH emNVM, which store a given datum by trapping electric charges in an insulated terminal, or floating gate, of a storage transistor.
However, these types of memory cells use technologies and processes that are not included in standard complementary metal oxide semiconductor (CMOS) technology (to providing the floating gate transistors) usually used to implement SoC. In fact, the storage transistors use an additional polysilicon layer to define their floating gates regions (in addition to that used to define their control gate regions as in the standard CMOS). This difference adds design complexity, which significantly increases the manufacturing cost of the memory devices.
In the art, memory cells of the floating gate type obtainable using standard CMOS processes have been developed. For example, single-poly EEPROMs (or single polysilicon EEPROM) were developed, which may be implemented in standard CMOS technology since they require only one level of polysilicon.
In these memory cells, the floating gate is made from a single polysilicon layer shared between a control capacitor, which dominates and controls the potential of the gate terminal of a MOS transistor connected thereto by capacitive coupling. The program and erase of the cell may occur by hot carrier injection (HCI), such as channel hot electron (CHE), or by Fowler-Nordheim (FN) tunneling in the floating gate in the proximity of the drain region of the transistor floating gate. Italian patent application No. MI2009A002349, of the same Applicant, describes an emNVM that implements single-poly type memory cells.
In addition to the most common injection mechanisms of FN tunneling and CHE, also the injection mechanism called band-to-band tunneling-induced hot electron (BBHE) has been used for the program operation in single-poly EEPROM. U.S. Pat. Nos. 5,940,324 and 5,761,126 describe examples of memory cells programmed by BBHE generated in correspondence of the drain region of a MOS transistor of the memory cell.
Such memory cells use rather complex (and of considerable size on the chip) control circuitry (e.g., row and column decoders, reading and writing unit, etc.) because they must be able to generate and provide to each cell in a matrix of the emNVM a plurality of different voltages, also of high value (compared with a supply voltage of the SoC in which the emNVM is integrated).
SUMMARY
In general terms, the approach according to one or more embodiments provides an emNVM that includes a matrix of memory cells that is compact and simply addressable with reduced voltage values in such a way to simplify a control structure to operate on the matrix of memory cells compared with known emNVMs. Particularly, one or more aspects of the approach according to specific embodiments are indicated in the independent claims, with advantageous features of the approach that are indicated in the dependent claims.
More specifically, one aspect of the approach according to an embodiment provides a non-volatile memory integrated in a chip of semiconductor material. The non-volatile memory includes a plurality of memory cells arranged in a plurality of rows and columns. Each memory cell comprises an access portion and a control portion. The access portion and the control portion share an electrically floating layer of conductive material which provides a first capacitive coupling with the access portion and a second capacitive coupling with the control portion, the first capacitive coupling defining a first capacity lower than a second capacity defined by the second capacitive coupling. The access portion of each memory cell is formed in the chip in a first well of semiconductor material having a doping of a first type. The control portion is formed in the chip in a second well of semiconductor material having a doping of a second type. The access portion is configured to be traversed by an electric current, or have an electric current flow therethrough indicative of a logic value stored in the memory cell during a read operation of the memory cell. In the approach according to an embodiment, the control portion is configured so that an electric current adapted to extract charge carriers from the electrically floating layer through Fowler-Nordheim tunneling flows therethrough to impose the storing of a first logic value in the memory cell and the access portion is further configured to be traversed by an electric current adapted to inject charge carriers in the electrically floating layer by injection of band-to-band tunneling-induced hot electrons impose the storing of a second logic value, respectively, in the memory cell.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of an emNVM in which the approach according to the present invention may be implemented.
FIG. 2A is a schematic plan view of a memory cell according to one embodiment of the present invention.
FIG. 2B is a schematic cross-section view of the memory cell of FIG. 2 a.
FIG. 3A is a schematic plan view of a memory cell according to a different embodiment of the present invention.
FIG. 3B is a schematic cross-section view of the memory cell of FIG. 3A.
FIGS. 4A-4K illustrate schematically some steps of a manufacturing process of the memory cell according to one embodiment of the present invention.
FIG. 5 is a circuit diagram of a portion or sector of the matrix of memory cells according to an embodiment of the present invention.
FIG. 6 is a schematic plan view of a portion of a sector of the matrix of memory cells according to an alternative embodiment of the present invention.
DETAILED DESCRIPTION
An approach according to one or more embodiments, as well as additional features and its advantages, will be best understood by reference to the following detailed description, given purely by way of non-limiting example, to be read in conjunction with the accompanying figures (in which corresponding elements are indicated with the same or similar references and their explanation is not repeated for brevity). In this respect, it is expressly understood that the figures are not necessarily to scale (with some details that may be exaggerated and/or simplified) and that, unless otherwise indicated, they are simply used to conceptually illustrate the structures and procedures described.
With reference to the figures, FIG. 1 is a block diagram of an emNVM in which an approach according to the present invention may be implemented. The memory device 100 is non-volatile integrated, or emNVM (embedded Non-Volatile Memory). The memory device 100 comprises a matrix 105, which is formed by a plurality of memory cells (not shown in the figure) that are organized in rows and columns (for example, 128-512 rows and 512-1024 columns). Each memory cell stores a logic value (e.g., corresponding to a bit of information). For this purpose, the memory cell is based on a floating-gate MOS transistor. This transistor has a threshold voltage which depends on an electrical charge in its floating gate. The different levels of the threshold voltage represent corresponding logic values. Conventionally, the memory cell is programmed (to a logic value 0) when it has a high threshold voltage, while the memory cell is erased (to a logic value 1) when it has a low threshold voltage.
In one embodiment, as described in detail below, the memory device 100 may individually erase each memory cell. The programming is performed simultaneously for a set of memory cells (for example, a word or a sector). The reading of the cells of the matrix 105 may be performed for single cell.
An address buffer 110 receives an address of a memory cell or a set of memory cells (for example, to a corresponding word) in the matrix 105. In particular, a portion of the address is supplied to a row decoder 115 r, which selects the selected row in the matrix 105. The other portion of the address is instead supplied to a column decoder 115 c, which selects a column in the matrix 105 among the columns of the matrix 105. In this way, it is possible to (electrically) access to each memory cell of the matrix 105.
A read/write unit 120 controls the operation of the row decoder 115 r and of the column decoder 115 c. The read/write unit 120 furthermore comprises all the components (such as power management unit with charge pumps, sense amplifiers, comparators, reference cells, pulse generators, and the like) that are used to write (i.e., program, or erase) the memory cells and read their logic values. The read/write unit 120 is also coupled with an input/output (I/O) buffer 125, the input/output buffer 125 receives data (one or more bits) to be written in the matrix 105, or provides the data read from the matrix 105.
Turning now to FIGS. 2A and 2B, schematic plan and cross-section views, respectively, of a memory cell 200 according to one embodiment are illustrated. The memory cell 200 is integrated within a portion of substrate 205 of a chip of semiconductor material (e.g., silicon Si). The portion of the substrate may have a doping of p-type (as in the case of silicon doped with boron B).
The memory cell 200 comprises a control portion which in turn comprises a capacitive element 210, and a portion of access which in turn comprises a memory transistor 215 and a selection transistor 220 (e.g., of the type Metal-Oxide-Semiconductor or MOS). An n well 225 with an n-type doping (as in the case of silicon doped with phosphorus P) extends from a surface of the chip 228 in the substrate 205 (down to a first depth). Advantageously, the n well 225 comprises a deep region 225 a to n-type doping with a concentration greater than the doping of the n well 225—n+ doping as indicated in the following. This deep region 225 a defines a (lower) boundary with the substrate 205.
A p well 226 is formed inside the n well 225. The p well 226 extends from the surface of the chip 228 towards the inside of the n well 225 (down to a second depth lower than the first depth).
Inside the p well 226 two plate regions 231 and 234 with a p-type doping corresponding to a first plate of the capacitive element 210 are formed. The plate regions 231 and 234 have a p-type doping with a concentration greater than the doping of the substrate 205—identified as p+ doping in the following.
Preferably, the plate regions 231 and 234 each comprise an extension portion 231 a and 234 a, which extend towards each other, in the proximity of the surface 228 and have a p-type doping—indicated as p* doping in the following—different from (e.g., lower than) the p+ doping of a main portion 231 b and 234 b of the plate regions 231 and 234, respectively.
Inside the n well 225 is also formed a n+ contact region 237, having an n+ type doping, in order to electrically contact the n well, and three distinct regions 243, 246 and 249 of p+ type. In the following, a first p+ region is indicated as a source region 243, as corresponds to the source region of the memory transistor 215, a second p+ region is indicated as the shared region 246, as corresponds to the drain region of the memory transistor 215 and to the source region of the selection transistor 220, while a third p+ region is indicated as drain region 249, as corresponds to the drain region of the selection transistor 220.
Preferably, the source 243 and shared 246 regions each comprise an extension portion 243 a and 246 a, which extend towards each other in the proximity of the surface 228, and have a p* type doping. In one embodiment, the drain region also comprises an extension portion 249 a which extends from a main portion 249 b toward an additional extension portion 246 a′ of the shared region 246.
A plurality of insulating decoupling elements 253 (e.g., a plurality of Shallow Trench Insulation—STI) are formed at the surface 228 so as to extend, with its main portion, towards the inside of the chip and, with a minor portion, above the surface 228 of the chip. Advantageously, the decoupling elements 253 are shaped to define, in plan view, the wells 225 and 226, thus delimiting and (electrically) insulating the latter between them and other surrounding elements possibly formed in the same chip.
A capacitor insulating layer 255 electrically insulating material (e.g., silicon oxide SiO2) is formed on the surface 228 of the chip, in a space thereabove, and substantially delimited by, the plate regions 231 and 234 (with the extension portions 231 a and 234 a which extend in the n well 225 beneath the capacitor insulating layer 255).
Similarly, an cell insulating layer 258 of electrically insulating material is formed on the surface 228 of the chip, in a space thereabove, and substantially delimited by, the regions 243 and 246 (in such a way to form the oxide layer of the memory transistor 215 and with the extension portions 243 a and 246 a which extend in the p well 226 beneath the cell insulating layer 258).
A selector insulating layer 261 of electrically insulating material is formed on the surface 228 of the chip, in a space thereabove, and substantially delimited by, the regions 246 and 249 (in such a way to form the oxide layer of the selection transistor 220). A polysilicon gate layer 264 is formed over the insulating selection layer 261 (in such a way to form the gate region of the selection transistor 220).
A polysilicon coupling floating layer 267—hereinafter referred to as the floating layer 267 for sake of simplicity—is formed between the capacitor insulating layer 255 and the cell insulating layer 258. In this way, a capacitor portion 267 a of the floating layer 267 form a second plate of the capacitive element 210 while a transistor portion 267 a of the layer 267 form the floating gate region of the memory transistor 215.
One or more oxide layers 270 (e.g., a layer of silicon oxide and/or silicon nitride) are formed so as to cover (and electrically insulate) the floating layer 267, the gate layer 264 and the insulating layers 255, 258 and 261. The floating layer 267 is electrically insulated from what formed in the substrate 205 due to the oxide layers 270.
In correspondence of the regions 237, 231, 234, 243 and 249 respective salicide layers 273 of a metallic material (defined transition metal, such as cobalt) are formed to facilitate a subsequent electrical connection with metal elements for electrical connection subsequently formed by means of metallization higher levels. Preferably, the salicide layer 273 is formed only on a respective (contact) portion of the regions 237, 231, 234, 243 and 249; for example, in FIG. 2A such contact portions are indicated by a respective square.
The regions 237, 231, 234, 243, 249 and the gate layer 264 are connected to the upper metallization layers (shown schematically by a line in FIG. 2B) to form the corresponding capacitor Tc (connected to both regions of armor 231 and 234), the source Ts, drain Td, n well Tn and selection Tsel terminals in order to be electrically connected to external elements to the memory cell 200 (e.g., the row decoder 115 r and the column decoder 115 c shown in FIG. 1).
Because of the structure described above, the memory cell 200 (in particular because of the deep region 225 a) does not electrically interact significantly with the substrate 205 of the chip in which it is integrated. Therefore, the memory cell 200 is substantially electrically insulated from any other memory cells 200 and/or other devices (not shown) formed in the substrate 205 (and therefore electromagnetic interference between the memory cells 200 formed in the substrate 205 are suppressed or at least substantially attenuated). In one embodiment, the floating layer 267 is formed in such a way to define a capacitive coupling factor α between a predetermined capacity Cc of the capacitive element 210 and a capacitance Ct of the memory transistor 215.
The floating layer 267 is formed with a transistor portion 267 a having a size (area) lower than the size of a capacitive portion 267 b. Preferably, the size of the portions 267 a and 267 b are designed so as to obtain a capacitive coupling factor α equal to:
α = Cc Cc + Ct 0.5 ( e . g . , α = 0.8 ) . ( 1 )
In other words, the capacitive coupling factor α makes the floating layer 267 (corresponding to the floating region of a classic floating gate transistor) coupled, from the electrical point of view, predominantly to the regions of the capacitor 231 and 234 rather than to the source 243 and shared 246 regions.
Because of the structure described above and the resulting α capacitive coupling, it is possible to perform an erase operation (imposing the logic 1 value as stored data) of the memory cell 200 by band-to-band tunneling-induced hot electron (BBHE), the phenomenon stimulated at the insulating layer 255 (i.e., in correspondence of the capacitive element 210). A program operation (imposing the logic 0 value as data stored) of the memory cell 200 is performed by means of the of Fowler-Nordheim (FN) tunneling stimulated at the insulating layer 258 (i.e., in correspondence of the memory transistor 215).
After having described the structure of the memory cell 200, we turn now to describe an operation thereof according to one embodiment. The memory cell 200 may be controlled by applying appropriate voltages to the terminals Tc, Ts, Td, Tn and Tsel. According to the value of the applied voltages, the memory cell 200 may be controlled to store the logic 1 value, through the erase operation, to store the logic 0 value, through the program operation, or for detecting a previously stored value, through a read operation.
To ensure a control granularity equal to a bit in a matrix (such as the matrix 105 of FIG. 1) of memory cells 200 (i.e., to ensure a control of the data stored in a single memory cell 200 independently from other memory cells 200 that form the matrix 105) is provided the capability to inhibit at least one of the program or erase operations (so as to be able to restrict the program/erase operation to a single memory cell 200 selected).
Table 1 below is an example of biasing schemes applicable to terminals Tc, Ts, Td, Tn and Tsel of the memory cell 200 according to the selected operation among erase, program and read operations or the program operation inhibition.
TABLE 1
Tc Tn Tsel Ts Td
Erase GND GND GND Ve GND
Program Vp GND GND GND GND
Read Vr Vdd GND Vsr Vdr
Program Vp GND GND Vi GND
inhibition
To perform the erase operation, the source terminal Ts is brought to an erase voltage Ve (for example, Ve<0, as Ve=−5V for a technology with a supply voltage Vdd between 3V and 5V), while the other terminals Tc, Td, and Tsel are all maintained at a reference voltage GND (for example, GND=0V). In an alternative embodiment (e.g., in which values are not available negative voltage), in order to promote the BBHE terminals Tc, Td, Tn and Tsel are brought to a erase voltage Ve positive (for example, Ve=+5 V) while the source terminal Ts is maintained at the reference voltage GND (obtaining a configuration substantially complementary to what is indicated in Table 1).
In this configuration, due to the capacitive coupling factor α, an electric potential of the floating layer 267 appears to be close to a potential of the capacitor terminal Tc (i.e., GND in the example considered). The electric potential of the transistor portion 267 a floating layer 267 is substantially differ from the (preferably, is substantially greater than) erase voltage Ve that biases the terminal Ts. In this way, a fraction Ibbhe (generated for BBHE) of the electric current Icn flowing between terminals Tn and Ts is injected into the floating layer 267 through the insulating layer of the transistor 258 by means of BBHE (in other words, through the BBHE charge carriers are inject in the floating layer 267, thereby imposing the logic 1 value in the memory cell 200).
Advantageously, the injection efficiency of BBHE, in other words the ratio between the injected electric current fraction Ibbhe and the electric current generated Icn, appears to be generally better than the efficiency obtainable with CHE or similar phenomena usually used in known memory cells. In fact, the current intensity to stimulate the CHE appears to be substantially greater than the current intensity required to stimulate the BBHE.
In addition, the erase operation by BBHE uses an erase voltage value Ve substantially lower than the values needed to perform an erase by FN tunneling. In one embodiment, the voltage Ve is in the order of a value of the supply voltage Vdd (thus Ve may be generated without charge pumps, allowing a reduction of power consumption to manage the emNVM and a complexity in the provision of the electrical connections between the memory cell 200 and other elements of the emNVM 100, as described hereinbelow).
In one embodiment, the absolute value |Ve| of the erase voltage Ve is the order of a value of a supply voltage Vdd (therefore it is possible to reduce power consumption necessary to manage the erase operation). To execute the program operation, the capacitor terminal Tc is brought to a program voltage Vp (e.g., Vp<0, as Vp=−15V for a technology with a supply voltage Vdd between 3V and 5V), while the other terminals Ts, Td, and Tsel are all maintained at the reference voltage GND (for example, GND=0V).
Consequently, the potential drop on the transistor insulating layer 258 (substantially corresponding to Vp in the considered example) has an intensity adapted to activate a FN tunneling current, therethrough, of such intensity to extract electrons trapped in the floating layer 267 (thereby imposing the logic 0 value in the memory cell 200).
The plate regions 243 and 246, through the extension portions 243 a and 246 a, generate an electric field when biased through the capacitor terminal Tc to the program voltage Vp. This electric field extends in the n well region 225 beneath the capacitor insulating layer 258 (also referred to as channel region). The electric field has an intensity such as to determine an extraction of electrons stored in the floating layer 267 substantially uniform in the channel region (in a similar way to what happens in the floating gate transistors implemented in FLASH memories).
The read operation of the data stored is done by measuring a drain current Id of the memory transistor 215, after having enabled the selection transistor 220 (for example, by biasing the terminal Tsel to the value of the reference voltage), biasing the terminal Tc to a read voltage Vr, the terminal Td to a drain read voltage Vdr (e.g., Vdr=Vdd−1V) and the terminal Ts to a source read voltage Vsr (e.g., Vsr=Vdd). On the basis of the measured value of the current Id, it is possible to determine the value of the threshold voltage of the memory transistor 215, and then the logic value stored in the memory cell 200 (in other words, the current Id provides an indication of the logic value stored in the memory cell 200).
In one embodiment, the current Id may provide indication of the logic value stored in an indirect way. For example, the threshold voltage of the memory transistor 215 may be determined from the value of the voltage Vdr to be applied to the terminal Td to measure a known current Id (e.g., Id=10 μA).
As it may be known, the charge carriers injected into the floating layer 267 during the program operation move the threshold voltage of the memory transistor 215 to a program value Vthprog lower than a thermal equilibrium value (i.e., Vthprog>Vtheq). Otherwise, the charge carriers extracted from the floating layer 267 during the erase operation move the threshold voltage of the memory transistor 215 to a erase value Vtherase greater than the thermal equilibrium value (i.e., Vtherase<Vtheq). The greater the distance between the erase value Vtherase and program value Vthprog, the greater is the duration for which a logic value remains stored in the memory cell 200.
The selection transistor 220 makes it possible to extract a quantity of charge carriers from the floating layer 267 to determine a program value Vthprog (virtually) negative for the memory transistor 215 without making the memory cell 200 unreadable (as would happen if the transistor selection of 220 was omitted). This allows a distance between the value and the value of cancellation Vtherase programming Vthprog to be obtained such as to ensure high reliability of the memory cell 200 (for example, ensuring a retention of a logic value stored in the order of about ten years).
The inhibition of the program operation takes place while maintaining a reduced voltage drop on the capacitor insulating layer 258 when the program voltage Vp is provided to the capacitor terminal Tc. This is achieved by imposing an inhibition voltage Vi of appropriate value to the source terminal Ts.
For example, to inhibit the memory cell 200, a voltage Vi is provided to the source terminal Ts having value greater than the program voltage Vp that is applied to the terminal Tn (e.g., Vp=−15V<Vi=−5V). The source region 243 (biased at the inhibition voltage Vi) forms with plate regions 231 and 234 (biased to the program voltage Vp) a pn junction (as in the case of a diode) in reverse biased. Between the ends of such junction a voltage value equal to Vp−Vi is developed sized in such a way that a remaining voltage developed on the capacitor insulating layer 258 is not strong enough to promote the FN tunneling. Based upon the configuration of the inhibition erase operation just described, it is possible to arrange a matrix 105 of memory cells 200 completely provided with a single polysilicon layer 267 (i.e., by processes comprised in a standard CMOS technology) and, preferably, in which sets of memory cells 200 share a common n well (as described hereinbelow).
In an alternative embodiment (not shown), a complementary memory cell is formed in which the types of doping described above are substantially reversed. In other words, inside a n-type well a capacitive element is formed with plate regions of p-type and a p-type well, in the latter memory and selection transistors are formed with shared source and drain regions of the n-type, and a well contact region of the p-type.
Turning now to FIGS. 3A and 3B, schematic plan and cross-section views, respectively, of a memory cell 300 are illustrated according to an embodiment. The memory cell 300 differs from memory cell 200 as follows (it should be noted that elements of the memory cell 300 corresponding to elements of the memory cell 200 are indicated by similar references and their description is not repeated for sake of brevity).
Inside the p well 326 are formed two plate regions 331 and 334 with a n+ type doping (with extension portions 331 a and 334 a having an n* type doping having a different concentration than the n+ doping, for example, lower) that correspond to a first plate of the capacitive element 310. Also, the floating layer 367 is n+ doped, unlike the cell 200 in which it has a p+ doping.
In addition, inside the p well 326 formed a p+ contact region 337 having a p+ type doping is also formed. In this case, a salicide layer 373 is disposed on a surface portion of the p+ contact region 352 which is then electrically coupled to the control terminal Tc, together with the two plate regions 331 and 334.
Because of the structure just described, the FN tunneling program performance is improved (in particular, it is possible to design the memory cell 300 in such a way to perform a faster programming or at the same speed but with a program voltage Vp lower than the cell memory 200) thanks to the optimization of the performance of energy bands (e.g., the conduction and valence bands) of the capacitive element 310, in particular in correspondence of the capacitor insulating layer 258 (through which the FN tunneling occurs) thanks the n+ type doping of the floating layer 367.
Referring to FIGS. 4A-4J, some steps of a manufacturing process of a memory cell 200 schematically illustrated in these figures will now be described. Initially (FIG. 4A), the decoupling elements 253 at the surface 228, and then the n well 225 are formed. A layer of photosensitive material, or resist, is deposited on the surface 228 of the p substrate 205, a portion of the resist (corresponding to a plan view of the decoupling layer 253) is defined by means of a mask (not shown) and is impressed by an electromagnetic radiation (which passes through the mask). The impressed portion of the resist is selectively removed (for example, via a chemical etching) to leave exposed a portion of the surface 228 of the substrate 205 corresponding to the plan view of the decoupling elements 253 to be formed. An insulating layer disposed on the surface 228 is removed from the portion of the surface 228 defined by the mask. At this point, the decoupling elements 253 are formed, for example by an etching process, to define the trenches, which are filled with insulating material by chemical vapor deposition (CVD).
The n well 225 is formed in the p substrate 205. For example, the n well 225 may be formed as known by a photolithography process (in a similar way to that described above) followed by a respective chemical vapor deposition (CVD) or a process of ion implantation in a selected portion of the chip not covered by the decoupling layer 253. Preferably, the deep region 225 a of the n well 225 is formed by ion implantation.
Next (FIG. 4B), the p well 226 is formed inside the n well 225 in the same manner as just described with respect to the formation of the latter. On the surface 228 of the substrate 205 insulating layers 255, 258 and 261 are formed (FIG. 4C). For example, an oxide layer (or more) by CVD and/or by thermal oxidation is initially formed. Selected portions of the oxide layer (e.g., again through photolithography) are then removed (e.g., again through a chemical etching) to define the insulating layers 255, 258 and 261.
The layer 267 and the floating gate layer 264 are formed above the insulating layers 255 and 258, and the insulating selection layer 261, respectively (FIG. 4D). For example, the floating layer 267 and the gate layer 264 can be formed through a CVD step.
Subsequently, the p* type extension portions 231 a, 234 a, 243 a and 246 a of the regions 231, 234, 243 and 246 (and, optionally, the extension portions 246 a′ and 249 a), respectively, are formed (FIG. 4E). For example, the extension portions 231 a, 234 a, 243 a and 246 a (and, optionally, the extension portions 246 a′ and 249 a) may be formed via an ion implantation having an angle of incidence transversal to the surface 228 (as indicated by the arrows in FIG. 4E) and exploit the layer 267 and the floating gate layer 264 as self-aligning elements.
After the extension portions 231 a, 234 a, 243 a and 246 a, the n+ well region 237 is formed (FIG. 4F). For example, the region may be formed through an ion implantation process in the n well 225. In one embodiment according to the present invention (FIG. 4G), the n+ contact region 237 may be defined by a dedicated mask 405.
At this point, the floating layer 267, the gate layer 264 and the underlying insulating layers 255 and 258, respectively, are subjected to an oxidation process (e.g., thermal oxidation) to be coated by an insulating spacer layer (not illustrated in the figures for simplicity) formed on side surfaces thereof.
Subsequently, the main portions 231 b and 234 b of the regions 231 and armature 234, respectively, the main portions 243 b and 246 b, of the regions 243 and 246, respectively, and the drain region 249 (or its main portion 249 b) of the p+ type are formed (FIG. 4H). For example, the main portions 231 b, 234 b, 243 b and 246 b and the drain region 249 may be formed by ion implantation through areas of the surface 228 defined by a single mask 415 (shown in FIG. 4F) in a similar manner to what described above.
Advantageously, the floating element 267 acts as a self-aligning element for defining the main portions 231 b, 234 b, 243 b and 246 b while the gate layer 264 acts as a self-aligning element for defining the main shared portion 246 b and the drain region 249. It should be noted that in this case, the floating layer 267 receives a p+ type doping during this phase of the process. Advantageously, the mask 415 is designed so that the entire floating layer 267 is exposed uniformly the same p+ type doping through ion implantation (in other words, the floating layer 267 has a polysilicon with the same p+ type doping from the transistor portion 267 a to the capacitor portion 267 b).
The surface 228 of the substrate 205, the floating layer 267, the gate layer 264 and the insulating layers 255, 258 and 261 are then coated by one or more oxide layers 270 (e.g., a layer of silicon oxide and/or silicon nitride), for example by thermal oxidation and/or CVD (FIG. 4I).
In this way, the floating layer 267 is electrically insulated from what formed in the substrate 205. The oxide layers 270 are selectively removed (e.g., by chemical etching) in correspondence of the regions 237, 231, 234, 243, and 249 and the gate layer 264 (e.g., in areas defined by a photolithographic process), which are then subjected to a silicidation process (FIG. 4J). The silicidation deposits a salicide layer 273 in a transition metal (e.g., cobalt) on the surface 228 in correspondence of the regions 237, 231, 234, 243, 246 and 249 and on the gate layer 264 to facilitate a subsequent connection electric electrical connection with metal elements subsequently formed by means of higher metallization levels to obtain the terminals Tc, Ts, Td, and Tsel previously described.
Similar steps are implemented to provide the memory cell 300, mutatis mutandis. In particular, the p+ contact region 352 is formed simultaneously with the main portions 243 b and 246 b. With reference in particular to FIG. 4K, even in the case of the memory cell 300, the floating layer 367 receives a uniform doping during the manufacturing process. Unlike the manufacturing process of the memory cell 200 just described, a corresponding mask 420 is designed so that the entire floating layer 367 and the plate regions 331 and 334 uniformly receive the same n+ type doping ion implantation (in other words, the floating layer 367 has a polysilicon with the same n+ type doping from the transistor portion 367 a to the capacitor portion 367 b) while the regions 343, 337 and 352 are formed by respective masks 430, 435 and 440 while the regions 346, 349 and the gate region 364 are formed through a common mask 450.
With reference now to FIG. 5, it is a conceptual circuit diagram of a portion, or sector 500, of a matrix 105 of memory cells 500 i,j according to an embodiment of the present invention.
The matrix 105 comprises a plurality of memory cells 200 i,j organized in columns i (i=1, . . . , I, I>0) and rows j (j=1, . . . , J, J>0). The plurality of memory cells 200 i,j is preferably divided into groups or sectors (of which the sector 500 in FIG. 5 is an example) of memory cells 200 i,j. The memory cells 200 i,j of each sector 500 are formed in a same shared n well 525 (corresponding to the n well 225 illustrated in FIGS. 2A and 2B).
In an alternative embodiment (not shown), all the memory cells 200 i,j of the matrix 105 are formed in one same shared n well. In the shared n well 525 is formed a p well 526 j (corresponding to the p well 226 illustrated in FIGS. 2A and 2B) for each row of the matrix 105 comprised in the sector 500.
In the generic shared n well 525, the access portions of the memory cells 200 i,j (i.e., the memory transistors 215 i,j and the selection transistors 220 i,j) are formed. In the generic shared p well 526 j, the control portions of the memory cells 200 i,j (i.e., the capacitor elements 210 i,j) are formed aligned along the line j. The terminals of the well Tni,j (connected to the n+ contact regions 237 i,j) of the memory cells 200 i,j in the sector are connected to a same well line Ln (for example connected to the row decoder 115 r).
In a preferred embodiment, the generic memory transistor 215 i,j of the generic memory cell 200 i,j shares an intercell region and a respective intercell terminal (not shown in FIG. 5) with the selection transistor 220 i+1,j of the generic memory cell 215 i+1,j consecutive along the row j. This intercell region corresponds to the shared source region 243 i,j of the transistor cell 215 i,j and to the drain region of 249 i+1,j of the selection transistor 220 i+1,j. The intercell terminal corresponds to the source terminal Tsi,j of the transistor cell 215 i,j and to the drain terminal Tdi+1,j of the selection transistor 220 i+1,j. Such intercell terminal shared by memory cells 200 i,1, 200 i+1,j aligned on row j is connected to a bit line BLai or BLbi according to whether the second memory cell 200 i,j is aligned on an odd or equal column of the matrix 105 (with the bit line BLai or BLbi connected, for example, the column decoder 115 c).
The selection terminal Tseli,j of each memory cell 200 i,j is connected to a respective word line WLaj or WLbj (e.g., connected to the row decoder 115 r). Preferably, each memory cell 200 i,j aligned on the same column i is connected to a word line WLaj or WLbj according to whether the second memory cell is aligned on an odd or even line j, respectively (with each memory cell 200 i,j in odd positions in the column connected to the same word line WLaj and each memory cell 200 i,j in even position in the column connected to the same word line WLbj). In this way, it is possible to independently perform the read/write operations of each memory cell 200 i,j whose access portions (i.e., the transistors 215 i,j e 220 i) are formed in the n well 525.
The capacitor terminal Tci,j (connected to the regions of armor 231 i,j and 234 i,j) of each memory cell 200 i,j aligned on a same row j is connected to a control line Lcj (e.g., connected to the row decoder 115 r) In Table 2 below, are presented biasing schemes similarly to what indicated in Table 1 but applied to the signal lines Ln, Lcj, BLa/bi and WLa/bj (connected to terminals Tni,j, Tci,j, Tsi,j, Tdi,j e Tseli,j of the memory cells 200 i,j).
TABLE 2
Lcj WLa/bj Ln BLai BLbi
Erase GND GND GND Ve Ve
Program Vp GND GND GND GND
Read Vr GND Vdd Vsr Vdr
Program Vp GND GND Vi GND
inhibition
Because of the structure of the matrix 105 described above, it is possible to select a granularity of the program operation. In one embodiment, it is possible to perform the erase operation jointly on all memory cells 200 i,j in the sector 500 (as in the case of FLASH type NVM), on a word (i.e., all of memory cells 200 i,j aligned on a same column i of the matrix 105) of the sector 500, or separately on a single memory cell 200 i,j (as in the case of EEPROM type NVM).
In greater detail, to obtain the erase of the entire sector 500 it is sufficient to apply the biasing scheme for the erase operation to all memory cells 200 i,j in the sector 500 (via the signal lines Ln, Lcj, WLa/bj and BLai/bi) Otherwise, to obtain the erase of a single word (i.e. of the memory cells 200 i,j aligned along a same column i) it is sufficient to apply the biasing scheme for the erase operation only to memory cells 200 i,j aligned along the same column i (via the signal lines Ln, Lcj, WLa/bj and BLa/bi).
The program operation has a selectable granularity in the matrix 105 according to one embodiment. Advantageously, by applying the program biasing scheme on a single word of the sector 500 and applying the program inhibition biasing scheme to the remaining memory cells of the matrix 105 it is possible to execute the program in a limited fashion. Alternatively, it is possible to execute the program on the sector 500 by applying the biasing program scheme to all the words of sector 500. The reading of the logic values stored in each memory cell 200 i,j in the sector 500 may be performed cell by cell by applying the read biasing scheme to signal lines Ln, Lcj, WLa/bj and BLa/bi connected to a selected memory cell 200 i,j.
The emNVM 100 according to one embodiment may be configured for storing data in differential mode. This mode allows obtaining a greater reliability of the correctness of the data stored than the normal storage mode.
According to the differential mode, each datum is stored configuring complementary logic values in a pair of memory cells (e.g., the memory cells 200 1,1 and 200 i,j). The data associated with each pair of memory cells 200 1,1 and 200 i,j is determined by comparing the currents generated by the memory cells 200 1,1 and 200 i,j of the pair during the read operation.
The emNVM 100 may effectively implement the differential storage mode thanks to the distance between the erase value Vtherase and the program value Vthprog mentioned above, which allows obtaining currents generated by the memory cells 200 1,1 and 200 i,j of the pair having substantially different intensities. In this way, the comparison between the currents generated by the memory cells 200 1,1 and 200 i,j of a pair is less prone to errors, thereby improving the reading efficiency of the emNVM 100 (at the same time, relaxing the design constraints to which a current comparison element, such as a sense amplifier, is subject).
Advantageously, the structure of the memory cell 200 i,j allows using voltages Ve, Vr, Vdr, Vsr and Vi of value lower than or equal to the value of the supply voltage Vdd, thus obtainable without the need to exploit voltage multipliers devices such as charge pumps. In this way, only the capacitor line Lcj has to be sized in such a way to operate with a program voltage Vp of value greater than the value of the supply voltage Vdd. In other words, only the line Lcj (of each row of the matrix 105) has to be subject to more stringent design constraints, in order to operate properly to the value of the program voltage Vp. This also enables a general reduction of the complexity of the circuitry comprised in the row decoder 115 r, in the column decoder 115 c and the read/write unit 120 (only each line Lcj has to be connected to an element able to bias them to high voltages such as a High Voltage Driver) thereby allowing a further area saving.
Because of the arrangement of the memory cells 200 i,j within the sector 500, the control matrix 105 is simple and versatile. It should be noted that it is possible to produce an alternative matrix 105 (not shown) comprising a plurality of memory cells 300 in the same way as just described in relation to FIG. 5, mutatis mutandis. Also in this case, it is possible to obtain the same advantages described above.
Turning now to FIG. 6, a schematic plan view of a portion of a sector 600 of the matrix of memory cells 200 i,j according to an alternative embodiment is illustrated. The sector 600 differs from the sector 500 just described in what follows. Within a shared well 625 in which the access portions are formed (i.e., the memory 215 i,j and 215 i,j+1, and selection 220 i,j and 220 i,j+1 transistors) is formed a shared p well 626 x (x=0, . . . , X, X=J/2) in which the control portions (i.e., the capacitive elements 210 i,j and 210 i,j+1) of the generic memory cells 200 i,j and 200 i,j+1 aligned along pairs of rows j and j+1 row consecutive in the matrix 105 are formed.
Preferably, also in the case of the sector 600, the generic memory transistor 215 i,j of the generic memory cell 200 i,j shares an intercell region 643 i and a respective intercell terminal (not shown in FIG. 6) with the selection transistor 220 i+1,j of the generic memory cell 215 i+1,j consecutive in the row j. This intercell region corresponds to the shared source region 243 i,j of the transistor cell 215 i,j and to the drain region 249 i+1,j of the selection transistor 220 i+1,j. The intercell terminal corresponds to the source terminal Tsi,j of the transistor cell 215 i,j and to the drain terminal Tdi+1,j of the selection transistor 220 i+1,j. Such intercell terminal shared by memory cells 200 i,j, 200 i+1,j aligned on row j is connected to a bit line BLai or BLbi or that the second memory cell 200 i,j is aligned on a column the odd or equal to the matrix 105 (with the bit line Blai or BLbi connected, for example, the column decoder 115 c).
The selection terminal Tseli,j of each memory cell 200 i,j is connected to a respective word line or word line WLaj or WLbj (e.g., connected to the row decoder 115 r). Preferably, each memory cell 200 i,j aligned on the same column is connected to a word line WLaj or WLbj according to whether the second memory cell is aligned on an odd or even row j, respectively (with each memory cell 200 i,j in the odd positions in the column connected to the same word line WLaj and each memory cell 200 i,j in even position in the column connected to the same word line WLbj). In this way, it is possible to independently perform the read/write operations of each memory cell 200 i,j whose access portions (i.e., the transistors 215 i,j e 220 i) are formed in the n well 625.
In the sector 600, the capacitor terminals Tci,j and Tci,j+1 (related to the plate regions 231 i,j and 234 i,j, and 231 i,j+1 and 234 i,j+1) of each of the memory cells 200 i,j 200 i,j+1 aligned on adjacent rows j and j+1 formed in the same shared p well 626 x are connected to a shared control line Lcx (e.g., connected to the row decoder 115 r).
The memory cells 200 i,j in the sector 600 are subjected to erase, program, read and program inhibition operations through the same biasing schemes presented in Table 2 for the sector 500 (by replacing the control lines Lcj with the shared control lines Lcx). The sector 600 allows obtaining a structure of the matrix 105 even more compact compared to the sector 500 previously described, while maintaining the same advantages of the latter.
It should be noted that it is possible to provide an alternative matrix 105 (not shown) comprising a plurality of memory cells 300 in the same way as just described in relation to FIG. 6, mutatis mutandis. Also in this case it is possible to obtain the same advantages described above.
Naturally, the structures of non-volatile memory described above in relation to an embedded non-volatile memory can be implemented in a not embedded non-volatile memory without requiring substantial modifications.

Claims (19)

The invention claimed is:
1. A non-volatile memory, comprising:
a first memory cell including:
a first access portion in a first well of semiconductor material having a doping of a first type, the first access portion including a first transistor that includes a first source region abutting the first well;
a first control portion in a second well of semiconductor material having a doping of a second type, the second well being in the first well, the first control portion including a capacitive element that includes:
a first spaced apart region having a doping of the second type, the first spaced apart region including a first base portion and a first extension portion extending away from the first base portion in a first direction, the first extension portion having a dopant concentration that is different than a dopant concentration of the first base portion; and
a second spaced apart region having a doping of the second type, the second spaced apart region including a second base portion and a second extension portion extending away from the second base portion toward the first extension portion, the second extension portion having a dopant concentration that is different than a dopant concentration of the second base portion; and
an electrically floating layer including a conductive material, the electrically floating layer coupling the first access portion and the first control portion, the electrically floating layer coupling the first access portion and the first control portion, the electrically floating layer coupled to the first control portion with a first capacitance and the first access portion with a second capacitance, the first capacitance being greater than the second capacitance, a ratio of the first capacitance to a sum of the first capacitance and the second capacitance being greater than or equal to 0.8; and
a second memory cell adjacent to the first memory cell, the second memory cell including:
a second access portion in the first well; and
a second control portion in the second well.
2. The non-volatile memory according to claim 1, wherein the first access portion includes:
the first transistor including the first source region, a shared region, and a first gate region, the shared gate region is a first drain region of the first transistor; and
a second transistor including the shared region, a second drain region, and a second gate region, the shared region is a second source region of the second transistor.
3. The non-volatile memory according to claim 2, further comprising a first contact region of semiconductor material having a doping of the first type in the first well.
4. The non-volatile memory according to claim 2, wherein the first gate region includes a portion of the electrically floating layer, and the capacitive element includes a second portion of the electrically floating layer.
5. The non-volatile memory according to claim 2, further including:
a row connecting line connected to the second drain region and a word line connected to a conductive material of the second gate region, and
a control connecting line couple to the first and second spaced apart regions.
6. The non-volatile memory according to claim 2, wherein the first transistor includes a first insulating layer of electrically insulating material between the first gate region and the first source and shared regions; and
wherein the second transistor includes a second insulating layer of electrically insulating material between the second gate region and the second drain and shared regions.
7. The non-volatile memory according to claim 1, wherein the first control portion is configured to be traversed by an electric current configured to extract charge carriers from the electrically floating layer through Fowler-Nordheim tunneling to store a first logic in the first memory cell, and the first access portion is further configured to be traversed by an electric current configured to inject charge carriers in the electrically floating layer by injection of band-to-band tunneling-induced hot electronics to store a second logic value.
8. The non-volatile memory comprising:
a plurality of memory cells arranged in a plurality of rows and columns, the plurality of memory cells being divided into a first sector and a second sector, each including at least a portion of the plurality of memory cells, each memory cell including:
an access portion in a first well of semiconductor material implanted with dopants of a first type, the access portion including a first transistor that includes a first drain region that is in direct contact with the first well;
a control portion in a second well of semiconductor material implanted with dopants of a second type, the control portion including a capacitive element that includes:
a first spaced apart region having a doping of the second type, the first spaced apart region including a first base portion and a first extension portion extending away from the first base portion in a first direction, the first extension portion having a dopant concentration that is different than a dopant concentration of the first base portion; and
a second spaced apart region having a doping of the second type, the second spaced apart region including a second base portion and a second extension portion extending away from the second base portion toward the first extension portion, the second extension portion having a dopant concentration that is different than a dopant concentration of the second base portion, the second well extending between the first and the second extension portions; and
an electrically floating layer including conductive material, the electrically floating layer coupling the access portion and the control portion of an individual memory cell of the plurality of memory cells, the electrically floating layer having a first capacitive coupling with the control portion and a second capacitive coupling with the access portion, the first capacitive coupling having a first capacitance that is greater than a second capacitance of the second capacitive coupling, a ratio of the first capacitance to a sum of the first capacitance and the second capacitance being greater than or equal to 0.8, respective control portions of the memory cells of the first sector being in the first well.
9. The non-volatile memory according to claim 8, wherein the access portion includes:
the first transistor including a first source region, a shared region, and a first gate region, the shared region is the first drain region of the first transistor; and
a second transistor including a second drain region, the shared region, and a second gate region, the share region is a second source region of the second transistor.
10. The non-volatile memory according to claim 9, wherein the first gate region includes a portion of the electrically floating layer, and the capacitive element includes a second portion of the electrically floating layer.
11. The non-volatile memory according to claim 8, wherein the respective controls portions of the memory cells of the first sector are in respective second wells, each respective second well being in the first well.
12. The non-volatile memory according to claim 8, wherein the plurality of memory cells aligned on a same row share a shared region corresponding to a source region of a first transistor of a given memory cell and to a drain region of a second transistor of a further memory cell in a next position in the same row of memory cells.
13. A device, comprising:
a first cell including:
a first access portion in a first well of semiconductor material having a doping of first type, the first access portion including a first transistor that includes a first source region in abutting contact with the semiconductor material having the doping of the first type;
a first control portion in a second well of semiconductor material having a doping of second type, the first type being different than the second type, the second well being in the first well, the first control portion including a capacitive element that includes:
a first spaced apart region having doping of the second type in contact with the semiconductor material of the second well, the first spaced apart region including a first base portion and a first extension portion extending toward a second extension portion, the first extension portion having a dopant concentration that is different than a dopant concentration of the first base portion; and
a second spaced apart region having doping of the second type in contact with the semiconductor material of the second well, the second spaced apart region including a second base portion and the second extension portion extending toward the first extension portion, the second extension portion having a dopant concentration that is different than a dopant concentration of the second base portion, the first and second spaced apart regions being aligned on a first axis; and
an electrically floating layer including a conductive material, the electrically floating layer coupling the first access portion and the first control portion, the electrically floating layer coupled to the first control portion with a first capacitance and the first access portion with a second capacitance, the first capacitance being greater than the second capacitance, a ratio of the first capacitance to a sum of the first capacitance and the second capacitance being greater than or equal to 0.8, the electrically floating layer being aligned along a second axis that is transverse to the first axis; and
a second cell including:
a second access portion in the first well; and
a second control portion in the second well.
14. The device according to claim 13, wherein the first access portion includes:
the first transistor including the first source region, a shared region, and a first gate region, the shared region is a first drain region of the first transistor; and
a second transistor including the shared region, a second drain region, and a second gate region, the shared region is a second source region of the second transistor, the first and second transistors being aligned on the first axis.
15. The device according to claim 14, wherein the first gate region includes a portion of the electrically floating layer, and the capacitive element includes a second portion of the electrically floating layer.
16. The device according to claim 14, further including a row connecting line connected to the second drain region and a word line connected to a conductive material of the second gate region.
17. The device according to claim 13, further including a control connecting line coupled to the first and second spaced apart regions.
18. A device, comprising:
a substrate;
a first well of a first doped semiconductor material in the substrate;
a plurality of second wells of a second doped semiconductor material in the first well, the second doped semiconductor material being of a different conductivity type than the first doped semiconductor material;
a plurality of memory cells in the substrate, each memory cell of the plurality of memory cells including:
an access portion in contact with the first doped semiconductor material, the access portion including a first transistor including a first drain region that abuts the first doped semiconductor material; and
a control portion in a respective second well of the plurality of second wells, the control portion including a capacitive element that includes:
a first plate having a first lower portion and a first extension portion;
a second plate having a second lower portion and a second extension portion, the first and second plates being spaced apart from each other, a portion of the respective second well being between the first and second plates, the first and second plates abutting the second doped semiconductor material, the first and second extension portions extending towards each other from the respective first and second lower portions; and
an electrically floating layer including a conductive material, the electrically floating layer being coupled to the access portion and the control portion of a first memory cell of the plurality of memory cells, the electrically floating layer being coupled to the access portion with a first capacitance and coupled to the control portion with a second capacitance that is less than the first capacitance, a ratio of the first capacitance to a sum of the first capacitance and the second capacitance being greater than or equal to 0.8.
19. The device of claim 18, wherein each memory cell includes an isolation region in the substrate that extends partially into the respective second well and abuts the second plate.
US14/605,303 2014-02-04 2015-01-26 Embedded non-volatile memory with single polysilicon layer memory cells erasable through band to band tunneling induced hot electron and programmable through Fowler-Nordheim tunneling Active 2035-08-23 US10468425B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2014A000154 2014-02-04
ITMI2014A0154 2014-02-04
ITMI20140154 2014-02-04

Publications (2)

Publication Number Publication Date
US20150221661A1 US20150221661A1 (en) 2015-08-06
US10468425B2 true US10468425B2 (en) 2019-11-05

Family

ID=50486976

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/605,303 Active 2035-08-23 US10468425B2 (en) 2014-02-04 2015-01-26 Embedded non-volatile memory with single polysilicon layer memory cells erasable through band to band tunneling induced hot electron and programmable through Fowler-Nordheim tunneling

Country Status (1)

Country Link
US (1) US10468425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456035B2 (en) * 2020-10-30 2022-09-27 Kioxia Corporation Semiconductor memory device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532005A4 (en) * 2010-02-07 2016-06-22 Zeno Semiconductor Inc Semiconductor memory device having electrically floating body transistor, and having both volatile and non-volatile functionality and method
US9368209B2 (en) * 2014-02-04 2016-06-14 Stmicroelectronics S.R.L. Embedded non-volatile memory with single polysilicon layer memory cells programmable through channel hot electrons and erasable through fowler-nordheim tunneling
US9450052B1 (en) * 2015-07-01 2016-09-20 Chengdu Monolithic Power Systems Co., Ltd. EEPROM memory cell with a coupler region and method of making the same
US10797064B2 (en) 2018-09-19 2020-10-06 Ememory Technology Inc. Single-poly non-volatile memory cell and operating method thereof
WO2022094038A1 (en) * 2020-10-28 2022-05-05 Washington University Synaptic memory and memory arrays using fowler-nordheim timers

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761126A (en) 1997-02-07 1998-06-02 National Semiconductor Corporation Single-poly EPROM cell that utilizes a reduced programming voltage to program the cell
US20040119113A1 (en) * 2002-12-19 2004-06-24 Simacek Thomas K. Programmable memory transistor
US20090080257A1 (en) * 2007-09-25 2009-03-26 Renesas Technology Corp. Semiconductor device
US20090201742A1 (en) * 2008-02-11 2009-08-13 Aplus Flash Technology, Inc. Single-polycrystalline silicon electrically erasable and programmable nonvolatile memory device
US20090267127A1 (en) * 2008-04-25 2009-10-29 Weize Chen Single Poly NVM Devices and Arrays
US20100157669A1 (en) 2006-12-07 2010-06-24 Tower Semiconductor Ltd. Floating Gate Inverter Type Memory Cell And Array
US20110157977A1 (en) 2009-12-30 2011-06-30 Stmicroelectronics S.R.L. Ftp memory device with single selection transistor
US20110157972A1 (en) 2009-12-30 2011-06-30 Stmicroelectronics S.R.L. Ftp memory device programmable and erasable at cell level
US20110316067A1 (en) 2010-06-24 2011-12-29 Thierry Coffi Herve Yao Electronic device including a tunnel structure
US20120037971A1 (en) 2010-08-13 2012-02-16 Samsung Electronics Co., Ltd. Nonvolatile memory device and method of forming the same
US20130343128A1 (en) 2012-06-25 2013-12-26 Stmicroelectronics S.R.L. Non-volatile memory device with single-polysilicon-layer memory cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532645B1 (en) * 1999-11-03 2003-03-18 Axis Usa, Inc. Wire winding apparatus for dynamo-electric components

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940324A (en) 1997-02-07 1999-08-17 National Semiconductor Corporation Single-poly EEPROM cell that is programmable and erasable in a low-voltage environment
US5761126A (en) 1997-02-07 1998-06-02 National Semiconductor Corporation Single-poly EPROM cell that utilizes a reduced programming voltage to program the cell
US20040119113A1 (en) * 2002-12-19 2004-06-24 Simacek Thomas K. Programmable memory transistor
US20100157669A1 (en) 2006-12-07 2010-06-24 Tower Semiconductor Ltd. Floating Gate Inverter Type Memory Cell And Array
US20090080257A1 (en) * 2007-09-25 2009-03-26 Renesas Technology Corp. Semiconductor device
US20090201742A1 (en) * 2008-02-11 2009-08-13 Aplus Flash Technology, Inc. Single-polycrystalline silicon electrically erasable and programmable nonvolatile memory device
US20090267127A1 (en) * 2008-04-25 2009-10-29 Weize Chen Single Poly NVM Devices and Arrays
US20110157977A1 (en) 2009-12-30 2011-06-30 Stmicroelectronics S.R.L. Ftp memory device with single selection transistor
US20110157972A1 (en) 2009-12-30 2011-06-30 Stmicroelectronics S.R.L. Ftp memory device programmable and erasable at cell level
US8693256B2 (en) 2009-12-30 2014-04-08 Stmicroelectronics S.R.L. FTP memory device with single selection transistor
US20110316067A1 (en) 2010-06-24 2011-12-29 Thierry Coffi Herve Yao Electronic device including a tunnel structure
US20120037971A1 (en) 2010-08-13 2012-02-16 Samsung Electronics Co., Ltd. Nonvolatile memory device and method of forming the same
US20130343128A1 (en) 2012-06-25 2013-12-26 Stmicroelectronics S.R.L. Non-volatile memory device with single-polysilicon-layer memory cells

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
Chen et al., "A New Antifuse Cell With Programmable Contact for Advance CMOS Logic Circuits," IEEE Electron Device Letters 29(5): 522-524, 2008.
Chi et al., "A New Single-poly Flash Memory Cell with Low-voltage and Low-power Operations for Embedded Applications," Device Research Conference Digest IEEE, 1997, pp. 126-127.
Ching-Fang Lin et al., "A single-poly EEPROM cell structure compatible to standard CMOS process" Solid-State Electronics, vol. 51, pp. 888-893, 2007.
Dray et al., "A Novel Memory Array Based on an Annular Single-Poly EPROM Cell for Use in Standard CMOS Technology," IEEE Int. Workshop on Memory Technology, Design and Testing (MTDT), 2002, pp. 143-148.
Hoefler et al., "Analysis of a Novel Electrically Programmable Active Fuse for Advanced CMOS SOI One-Time Programmable Memory Applications," Solid State Device Research Conference, IEEE. 2006, pp. 230-233.
Lee et al., "A New Differential P-Channel Logic-Compatible Multiple-Time Programmable (MTP) Memory Cell With Self-Recovery Operation," IEEE Electron Device Letters 32(5): 587-589, 2011.
Ma et al., "Reliability of pFET EEPROM With 70-Å Tunnel Oxide Manufactured in Generic Logic CMOS Processes," IEEE Transactions on Device and Materials Reliability 4(3): 353-358, 2004.
Na et al., "A Novel Single Polysilicon EEPROM Cell With a Polyfinger Capacitor," IEEE Electron Device Letters, 28(11): 1047-1049, 2007.
Na et al., "High-Performance Single Polysilicon EEPROM With Stacked MIM Capacitor," IEEE Electron Device Letters 27(4): 294-296, 2006.
Na et al., "Novel Single Polysilicon EEPROM Cell With Dual Work Function Floating Gate," IEEE Electron Device Letters 28(2): 151-153, 2007.
Ohnakado et al., "Device Characteristics of 0.35 μm P-Channel DINOR Flash Memory Using Band-to-Band Tunneling-Induced Hot Electron (BBHE) Programming," IEEE Transactions on Electron Devices 46(9): 1866-1871, 1999.
Ohsaki et al., "A Single Poly EEPROM Cell Structure for Use in Standard CMOS Processes," IEEE Journal of Solid-State Circuits 29(3): 311-316, 1994.
Raszka et al., "Embedded Flash Memory for Security Applications in a 0.13μm CMOS Logic Process," IEEE International Solid-State Circuits Conference, 2004, 10 pages.
Rosenberg, "Embedded Flash on a CMOS Logic Process Enables Secure Hardware Encryption for Deep Submicron Designs," Non-Volatile Memory Technology Symposium IEEE, 2005, 3 pages.
Shi et al., "Zero-Mask Contact Fuse for One-Time-Programmable Memory in Standard CMOS Processes," IEEE Electron Device Letters32(7): 955-957, 2011.
Shukuri et al., "A 10k-Cycling Reliable 90nm Logic NVM "eCFlash"(embedded CMOS Flash) Technology," 3rd International Memory Workshop (IMW) IEEE, 2011, 2 pages.
Torricelli et al., "Half-MOS Single-Poly EEPROM Cell in Standard CMOS Process," IEEE Transactions on Electron Devices60(6): 1892-1897, 2013.
Wang et al., "Highly Reliable 90-nm Logic Multitime Programmable NVM Cells Using Novel Work-Function-Engineered Tunneling Devices," IEEE Transactions on Electron Devices54(9): 2526-2530, 2007.
Wu et al., "A High-Density MTP Cell With Contact Coupling Gates by Pure CMOS Logic Press,". IEEE Electron Device Letters32(10): 1352-1354, 2011.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456035B2 (en) * 2020-10-30 2022-09-27 Kioxia Corporation Semiconductor memory device

Also Published As

Publication number Publication date
US20150221661A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
US10468425B2 (en) Embedded non-volatile memory with single polysilicon layer memory cells erasable through band to band tunneling induced hot electron and programmable through Fowler-Nordheim tunneling
US9368209B2 (en) Embedded non-volatile memory with single polysilicon layer memory cells programmable through channel hot electrons and erasable through fowler-nordheim tunneling
US7800156B2 (en) Asymmetric single poly NMOS non-volatile memory cell
US8344443B2 (en) Single poly NVM devices and arrays
US7859043B2 (en) Three-terminal single poly NMOS non-volatile memory cell
JP2002164446A (en) Non-volatile semiconductor memory, operation method and manufacturing method
US9361982B2 (en) Embedded non-volatile memory with single polysilicon layer memory cells programmable through band-to-band tunneling-induced hot electron and erasable through fowler-nordheim tunneling
US20130250700A1 (en) Nonvolatile memory comprising mini wells at a floating potential
US10950614B2 (en) Single poly non-volatile memory device, method of manufacturing the same and single poly non-volatile memory device array
US8722496B1 (en) Method for making embedded cost-efficient SONOS non-volatile memory
US20130075803A1 (en) Flash-To-ROM Conversion
US11152383B2 (en) Non-volatile memory (NVM) cell structure to increase reliability
US11844213B2 (en) Non-volatile memory (NVM) cell structure to increase reliability
US7652320B2 (en) Non-volatile memory device having improved band-to-band tunneling induced hot electron injection efficiency and manufacturing method thereof
US9082867B2 (en) Embedded cost-efficient SONOS non-volatile memory
KR100706071B1 (en) Single bit nonvolatile memory cell and methods for programming and erasing thereof
US8344440B2 (en) Three-terminal single poly NMOS non-volatile memory cell with shorter program/erase times
US7869279B1 (en) EEPROM memory device and method of programming memory cell having N erase pocket and program and access transistors
Groeseneken et al. Basics of nonvolatile semiconductor memory devices
Li et al. Multitime programmable memory cell with improved MOS capacitor in standard CMOS process
US7319604B2 (en) Electronic memory device having high density non-volatile memory cells and a reduced capacitive interference cell-to-cell
US20060226467A1 (en) P-channel charge trapping memory device with sub-gate
TWI400791B (en) Electrically isolated gated diode nonvolatile memory
US20240257874A1 (en) Non-volatile memory cell structures and methods of manufacturing thereof
US20080062759A1 (en) Flash memory device, method of operating a flash memory device and method for manufacturing the same device

Legal Events

Date Code Title Description
AS Assignment

Owner name: STMICROELECTRONICS S.R.L., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILANI, LUCA;TORRICELLI, FABRIZIO;RICHELLI, ANNA;AND OTHERS;REEL/FRAME:034974/0149

Effective date: 20141014

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4