US10432150B2 - Reducing audio artifacts in an amplifier during changes in power states - Google Patents
Reducing audio artifacts in an amplifier during changes in power states Download PDFInfo
- Publication number
- US10432150B2 US10432150B2 US15/993,955 US201815993955A US10432150B2 US 10432150 B2 US10432150 B2 US 10432150B2 US 201815993955 A US201815993955 A US 201815993955A US 10432150 B2 US10432150 B2 US 10432150B2
- Authority
- US
- United States
- Prior art keywords
- state
- powered
- transition
- input signal
- clamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007704 transition Effects 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims description 12
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000004075 alteration Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- ATCJTYORYKLVIA-SRXJVYAUSA-N vamp regimen Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1.C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C(C45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 ATCJTYORYKLVIA-SRXJVYAUSA-N 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
- H03F1/305—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in case of switching on or off of a power supply
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/16—Sound input; Sound output
- G06F3/165—Management of the audio stream, e.g. setting of volume, audio stream path
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/52—Circuit arrangements for protecting such amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/181—Low-frequency amplifiers, e.g. audio preamplifiers
- H03F3/183—Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
- H03F3/187—Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only in integrated circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45475—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/03—Indexing scheme relating to amplifiers the amplifier being designed for audio applications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/129—Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/321—Use of a microprocessor in an amplifier circuit or its control circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45151—At least one resistor being added at the input of a dif amp
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45528—Indexing scheme relating to differential amplifiers the FBC comprising one or more passive resistors and being coupled between the LC and the IC
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45636—Indexing scheme relating to differential amplifiers the LC comprising clamping means, e.g. diodes
Definitions
- the present disclosure relates in general to circuits for audio devices, including without limitation personal audio devices, such as wireless telephones and media players, and more specifically, to systems and methods relating to reducing audio artifacts in an amplifier during powering on and powering off the amplifier and related components.
- Personal audio devices including wireless telephones, such as mobile/cellular telephones, cordless telephones, mp3 players, and other consumer audio devices, are in widespread use.
- Such personal audio devices may include circuitry for driving a pair of headphones or one or more speakers.
- Such circuitry often includes a power amplifier for driving an audio output signal to headphones or speakers.
- a power amplifier amplifies an audio signal by taking energy from a power supply and controlling an audio output signal to match an input signal shape but with a larger amplitude.
- transducer e.g., a loudspeaker, a headphone
- one or more disadvantages and problems associated with existing approaches to powering on and powering off components in an audio system may be reduced or eliminated.
- an apparatus may include a digital-to-analog converter configured to convert a digital audio input signal into a differential analog input signal with a substantially non-zero common-mode voltage, an amplifier configured to receive the differential analog input signal and generate at an amplifier output a ground-centered output signal from the differential analog input signal, a clamp configured to selectively couple and decouple the amplifier output to a ground voltage, and a controller configured to control the clamp to selectively couple and decouple the amplifier output to a ground voltage responsive to transitions between power states of a device comprising the apparatus and control the differential analog input signal generated by the digital-to-analog converter in order to minimize a level transition current through an output load coupled to the amplifier output during transitions between the power states.
- a method may include, in an apparatus comprising a digital-to-analog converter configured to convert a digital audio input signal into a differential analog input signal with a substantially non-zero common-mode voltage, an amplifier configured to receive the differential analog input signal and generate at an amplifier output a ground-centered output signal from the differential analog input signal, and a clamp configured to selectively couple and decouple the amplifier output to a ground voltage, controlling the clamp to selectively couple and decouple the amplifier output to a ground voltage responsive to transitions between power states of a device comprising the apparatus and controlling the differential analog input signal generated by the digital-to-analog converter in order to minimize a level transition current through an output load coupled to the amplifier output during transitions between the power states.
- FIG. 1 is an illustration of an example personal audio device, in accordance with embodiments of the present disclosure
- FIG. 2 is a block diagram of selected components of an example audio integrated circuit of a personal audio device, in accordance with embodiments of the present disclosure
- FIG. 3 is an example timing diagram depicting operation of various components of an audio integrated circuit of a personal audio device during powering on, steady state operation, and powering off the personal audio device, in accordance with embodiments of the present disclosure.
- FIG. 4 is an example timing diagram depicting operation of various components of an audio integrated circuit of a personal audio device during transitioning to and from a low power state of the personal audio device, in accordance with embodiments of the present disclosure.
- FIG. 1 is an illustration of an example personal audio device 1 , in accordance with embodiments of the present disclosure.
- FIG. 1 depicts personal audio device 1 coupled to a headset 3 in the form of a pair of earbud speakers 8 A and 8 B.
- Headset 3 depicted in FIG. 1 is merely an example, and it is understood that personal audio device 1 may be used in connection with a variety of audio transducers, including without limitation, headphones, earbuds, in-ear earphones, and external speakers.
- a plug 4 may provide for connection of headset 3 to an electrical terminal of personal audio device 1 .
- Personal audio device 1 may provide a display to a user and receive user input using a touch screen 2 , or alternatively, a standard liquid crystal display (LCD) may be combined with various buttons, sliders, and/or dials disposed on the face and/or sides of personal audio device 1 . As also shown in FIG. 1 , personal audio device 1 may include an audio integrated circuit (IC) 9 for generating an analog audio signal for transmission to headset 3 and/or another audio transducer.
- IC audio integrated circuit
- FIG. 2 is a block diagram of selected components of an example audio IC 9 of a personal audio device, in accordance with embodiments of the present disclosure.
- example audio IC 9 may be used to implement audio IC 9 of FIG. 1 .
- a microcontroller core 18 may supply a digital audio input signal DIG_IN to a digital-to-analog converter (DAC) 14 , which may convert the digital audio input signal to an analog input signal V IN , wherein analog input signal V IN equals the difference between a voltage V IN + and a voltage V IN ⁇ .
- DAC digital-to-analog converter
- DAC 14 may be supplied with electrical energy from a voltage source with a first terminal having a supply voltage V DAC relative to a ground voltage and a second terminal at the ground voltage. Accordingly, analog input signal V IN generated by DAC 14 may be non-ground centered such that analog input signal V IN has a substantially non-zero common mode voltage (e.g., V DAC /2) relative to the ground voltage.
- V DAC substantially non-zero common mode voltage
- DAC 14 may supply analog signal V IN to an amplifier 16 which may amplify or attenuate analog input signal V IN to provide an audio output signal V OUT , which may operate a load 19 , wherein such load may comprise a speaker, headphone transducer (e.g., earbud speaker 8 A or 8 B), a line level signal output, and/or other suitable output.
- load 19 may comprise a speaker, headphone transducer (e.g., earbud speaker 8 A or 8 B), a line level signal output, and/or other suitable output.
- input resistors 21 A and 21 B each having resistance R IN may be coupled between respective outputs of DAC 14 and respective inputs of amplifier 16 .
- amplifier 16 may be supplied with electrical energy from a voltage source with a first terminal having a supply voltage V AMP + relative to the ground voltage and a second terminal at a supply voltage V AMP ⁇ relative to the ground voltage which is equal in magnitude to but of opposite polarity of supply voltage V AMP + . Accordingly, output signal V OUT generated by amplifier 16 may be ground centered such that output signal V IN has a substantially zero common mode voltage relative to the ground voltage.
- amplifier 16 may include a differential input for receiving a non-ground-centered input voltage (e.g., analog input voltage V IN ) and generating therefrom a ground-centered single-ended output signal (e.g., output voltage V OUT ) at its output.
- load 19 is modeled as a resistor with resistance R L .
- load 19 may have a complex impedance including capacitive and/or inductive elements in lieu of or in addition to resistance R L .
- load 19 may be coupled at a first terminal (e.g., via output switch 24 ) to the output of amplifier 16 and may be coupled at a second terminal (e.g., via ground resistor 22 having resistance R GND ) to the ground voltage.
- Ground resistor 22 may be selected to have a small enough resistance R GND relative to resistance R L of load 19 that during steady state operation of audio IC 9 , the voltage across ground resistor 22 is approximately zero, and the voltage across load 19 is approximately output voltage V OUT .
- audio IC 9 may also include an amplifier feedback network comprising feedback resistors 20 A and 20 B each having resistance R FB , wherein feedback resistor 20 A may be coupled at a first terminal (e.g., via output switch 24 ) to the output of amplifier 16 and may be coupled at a second terminal to a first differential input of amplifier 16 , and feedback resistor 20 B may be coupled at a first terminal (e.g., via output switch 24 ) to an electrical node common to load 19 and ground resistor 22 , and may be coupled at a second terminal to a second differential input of amplifier 16 .
- the ratio of the resistance R FB to the resistance R IN may establish a signal gain for amplifier 16 .
- audio IC 9 may include an output switch 24 .
- Output switch 24 may include any suitable system, device, or apparatus (e.g., a transistor) configured to, when enabled (e.g., activated, closed, turned on), electrically couple amplifier 16 to load 19 and when disabled (e.g., deactivated, open, turned off), electrically decouple amplifier 16 from load 19 .
- audio IC 9 may include a clamping switch 26 and a variable clamping resistor 28 that form a clamping network.
- Clamping switch 26 may include any suitable system, device, or apparatus (e.g., a transistor) configured to, when enabled (e.g., activated, closed, turned on), close an electrical path such that clamping resistor 28 is coupled between a first terminal of load 19 and a second terminal of load 19 , and when disabled (e.g., deactivated, open, turned off), open the electrical path by decoupling clamping resistor 28 from a terminal of load 19 .
- Those of skill in the art will recognize that the relative positions of clamping switch 26 and clamping resistor 28 may be switched and remain functionally equivalent.
- Clamping resistor 28 may comprise any suitable system, device, or apparatus having a controllable impedance (e.g., variable resistance R CLAMP ).
- a controllable impedance e.g., variable resistance R CLAMP
- the impedance of clamping resistor 28 may be varied to control output voltage V OUT (e.g., increase impedance of clamping resistor 28 to increase output voltage V OUT and decrease impedance of clamping resistor 28 to decrease output voltage V OUT ).
- the impedance of clamping resistor 28 may be varied to control output voltage V OUT during a powering on and/or powering off sequence of personal audio device 1 in order to minimize or eliminate the occurrence of audio artifacts during powering on and/or powering off.
- microcontroller core 18 may also generate control signals for controlling operation of output switch 24 , clamping switch 26 , clamping resistor 28 , and other components of audio IC 9 to reduce or eliminate audio artifacts during powering on and powering off personal audio device 1 while still ensuring appropriate steady-state operation of audio IC 9 .
- Functionality of microcontroller 18 may be illustrated with reference to FIGS. 3 and 4 and the description thereof, below.
- FIG. 3 is an example timing diagram depicting operation of various components of audio IC 9 of a personal audio device 1 during powering on, steady state operation, and powering off personal audio device 1 , in accordance with embodiments of the present disclosure.
- microcontroller core 18 may generate control signals (e.g., shown as “CONTROL SIGNALS” in FIG. 3 ) such that load 19 of audio IC 9 operates in a tristated, clamped amplifier state, meaning that microcontroller core 18 may cause output switch 24 to be deactivated, thus “tristating” the output of amplifier 16 by decoupling load 19 from the output of amplifier 16 , and cause clamping switch 26 to be activated, thus clamping one terminal of load 19 to its other terminal via clamping resistor 28 . Also as shown in FIG.
- clamping resistor 28 may be placed in a strong clamp state, meaning that microcontroller core 18 may control the impedance of clamping resistor 28 to have an approximately zero value, such that the two terminals of load 19 are at approximately the same electric potential and output voltage V OUT ⁇ 0.
- microcontroller core 18 may generate control signals such that amplifier 16 of audio IC 9 operates in an unclamped amplifier state, meaning that microcontroller core 18 may cause output switch 24 to be activated, thus coupling a first terminal of load 19 to the output of amplifier 16 and decoupling the first terminal of load 19 from the second terminal of load 19 . Accordingly, given that analog input signal V IN remains forced to its maximum magnitude negative value, amplifier 16 may generate an output voltage V OUT of approximately zero, thus muting load 19 . As a result, an amplifier state of amplifier 16 may be unclamped and muted and the clamp state of clamping switch 26 and clamping resistor 28 may be an off clamp state.
- microcontroller core 18 may generate a digital audio input signal DIG_IN in order to cause analog input signal V IN to ramp to its zero value (e.g., ramp both input terminals of amplifier 16 to the non-zero common-mode voltage of analog input signal V IN ), thus maintaining muting of load 19 .
- personal audio device 1 may transition from the powering up playback state to the powered up playback state, unmuting load 19 and playing back actual audio in the signal path from digital audio input signal DIG_IN through output voltage V OUT , thus operating in steady state.
- personal audio device 1 may receive a command to power down (e.g., responsive to a user interacting with a power button or other user interface device for powering off personal audio device 1 ). Responsive to a command to power down, personal audio device 1 may enter a powering down playback state.
- a command to power down e.g., responsive to a user interacting with a power button or other user interface device for powering off personal audio device 1 . Responsive to a command to power down, personal audio device 1 may enter a powering down playback state.
- microcontroller core 18 may generate a digital audio input signal DIG_IN in order to cause analog input signal V IN to its zero value (e.g., cause both input terminals of amplifier 16 to be at the non-zero common-mode voltage of analog input signal V IN ), such that the output of amplifier 16 of audio IC 9 operates in a muted, unclamped amplifier state.
- DIG_IN digital audio input signal
- microcontroller core 18 may ramp digital audio input signal DIG_IN to its maximum magnitude negative value, such that the analog input signal V IN is ramped to its maximum magnitude negative value by a time labeled t 6 in FIG. 3 .
- microcontroller core 18 may (e.g., at a time labeled t 7 in FIG.
- clamping resistor 28 may be placed in a strong clamp state, meaning that microcontroller core 18 may control the impedance of clamping resistor 28 to have an approximately zero value, such that the two terminals of load 19 are at approximately the same electric potential and output voltage V OUT ⁇ 0. Subsequently (e.g., at a time labeled t 8 in FIG. 3 and thereafter), various components of audio IC 9 may completely power off.
- the controlling of the signal path and switches as described above may reduce or eliminate audible audio artifacts from occurring during transitioning between states in which personal audio device 1 is powered on and powered off.
- the varying of analog input signal V IN generated by DAC 14 during transition between power states may minimize a level transition current that may flow through load 19 during such transitions, and clamping of load 19 may also further suppress transient signals on load 19 and potential audio artifacts that may be created from such transient signals.
- FIG. 4 is an example timing diagram depicting operation of various components of audio IC 9 of personal audio device 1 during transitioning to and from a low power state of personal audio device 1 , in accordance with embodiments of the present disclosure.
- personal audio device 1 may begin to transition to a low power playback state from a powered up playback state in response to an appropriate trigger for entering the low power state (e.g., responsive to a user interacting with a power button or other user interface device, personal audio device 1 entering a sleep mode due to user inactivity, etc.). Responsive to such trigger, personal audio device 1 may enter a transition to low power playback state at time t 1 ′, as shown in FIG. 4 .
- an appropriate trigger for entering the low power state e.g., responsive to a user interacting with a power button or other user interface device, personal audio device 1 entering a sleep mode due to user inactivity, etc.
- personal audio device 1 may enter a transition to low power playback state at time t 1 ′, as shown in FIG. 4 .
- microcontroller core 18 may generate a digital audio input signal DIG_IN in order to cause analog input signal V IN to its zero value (e.g., cause both input terminals of amplifier 16 to be at the non-zero common-mode voltage of analog input signal V IN ), such that amplifier 16 of audio IC 9 operates in a muted, unclamped amplifier state.
- DIG_IN digital audio input signal
- microcontroller core 18 may ramp digital audio input signal DIG_IN to its maximum magnitude negative value, such that the analog input signal V IN is ramped to its maximum magnitude negative value by a time labeled t 2 ′ in FIG. 4 .
- microcontroller core 18 may (e.g., at a time labeled t 3 ′ in FIG.
- clamping resistor 28 may be placed in a strong clamp state, meaning that microcontroller core 18 may control the impedance of clamping resistor 28 to have an approximately zero value, such that the two terminals of load 19 are at approximately the same electric potential and output voltage V OUT ⁇ 0.
- microcontroller core 18 may control clamping resistor 28 to transition in steps (as shown in FIG. 4 ) or continuously from the strong clamp state to the weak clamp state by increasing an impedance of clamping resistor 28 during such transition.
- clamping resistor 28 has reached its weak state (e.g., at a time labeled t 5 ′ in FIG. 4 )
- personal audio device 1 may enter a lower power playback state.
- microcontroller core 18 may maintain digital audio input signal DIG_IN at its maximum magnitude negative level (thus maintaining analog input signal V IN at its maximum magnitude negative level), maintain the output of amplifier 16 in a tristated, clamped amplifier state, and maintain clamping resistor 28 in a weak clamp state.
- personal audio device 1 may begin to transition from a low power playback state to a powered up playback state in response to an appropriate trigger for exiting the low power state (e.g., responsive to a user interacting with a power button or other user interface device, personal audio device 1 exiting a sleep mode due to user activity, etc.). Responsive to such trigger, personal audio device 1 may enter a transition to normal playback state at time t 6 ′, as shown in FIG. 4 .
- an appropriate trigger for exiting the low power state e.g., responsive to a user interacting with a power button or other user interface device, personal audio device 1 exiting a sleep mode due to user activity, etc.
- personal audio device 1 may enter a transition to normal playback state at time t 6 ′, as shown in FIG. 4 .
- microcontroller core 18 may control clamping resistor 28 to transition in steps (as shown in FIG. 4 ) or continuously from the weak clamp state to the strong clamp state by decreasing an impedance of clamping resistor 28 during such transition.
- microcontroller core 18 may generate control signals such that the output of amplifier 16 of audio IC 9 operates in an unclamped amplifier state, meaning that microcontroller core 18 may cause output switch 24 to be activated, thus coupling a first terminal of load 19 to the output of amplifier 16 and decoupling the first terminal of load 19 from the second terminal of load 19 .
- amplifier 16 may generate an output voltage V OUT of approximately zero, thus muting load 19 .
- an amplifier state of amplifier 16 may be unclamped and muted and the clamp state of clamping switch 26 and clamping resistor 28 may be an off clamp state.
- microcontroller core 18 may generate a digital audio input signal DIG_IN in order to cause analog input signal V IN to ramp to its zero value (e.g., ramp both input terminals of amplifier 16 to the non-zero common-mode voltage of analog input signal V IN ), thus maintaining muting of load 19 .
- personal audio device 1 may transition from the transition to normal playback state to the powered up playback state, unmuting load 19 and playing back actual audio in the signal path from digital audio input signal DIG_IN through output voltage ⁇ Tour, thus operating in steady state.
- the controlling of the signal path, switches, and clamp strength as described above may reduce or eliminate audible audio artifacts from occurring during transitioning between low power and normal states of personal audio device 1 .
- audio IC 9 may minimize or eliminate audible audio artifacts associated with a level shift current that occurs in many ground-centered DACs.
- audio IC 9 may eliminate or minimize the occurrence of cross talk between electrical nodes within audio IC 9 .
- references in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Human Computer Interaction (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Health & Medical Sciences (AREA)
- Amplifiers (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/993,955 US10432150B2 (en) | 2017-06-13 | 2018-05-31 | Reducing audio artifacts in an amplifier during changes in power states |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762518913P | 2017-06-13 | 2017-06-13 | |
US15/993,955 US10432150B2 (en) | 2017-06-13 | 2018-05-31 | Reducing audio artifacts in an amplifier during changes in power states |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180358934A1 US20180358934A1 (en) | 2018-12-13 |
US10432150B2 true US10432150B2 (en) | 2019-10-01 |
Family
ID=64563829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/993,955 Active US10432150B2 (en) | 2017-06-13 | 2018-05-31 | Reducing audio artifacts in an amplifier during changes in power states |
Country Status (1)
Country | Link |
---|---|
US (1) | US10432150B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11593058B2 (en) * | 2020-06-29 | 2023-02-28 | Logitech Europe S.A. | Portable audio device case with power-saving features |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030185409A1 (en) * | 2002-03-26 | 2003-10-02 | Tsutomu Shimotoyodome | Noise reduction method |
US7999712B2 (en) * | 2009-07-30 | 2011-08-16 | Mediatek Inc. | Digital-to-analog converters and methods thereof |
US8315408B2 (en) * | 2003-01-30 | 2012-11-20 | Agere Systems Llc | Prevention of audio pop in a digital audio device |
US9014396B2 (en) * | 2008-01-31 | 2015-04-21 | Qualcomm Incorporated | System and method of reducing click and pop noise in audio playback devices |
-
2018
- 2018-05-31 US US15/993,955 patent/US10432150B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030185409A1 (en) * | 2002-03-26 | 2003-10-02 | Tsutomu Shimotoyodome | Noise reduction method |
US8315408B2 (en) * | 2003-01-30 | 2012-11-20 | Agere Systems Llc | Prevention of audio pop in a digital audio device |
US9014396B2 (en) * | 2008-01-31 | 2015-04-21 | Qualcomm Incorporated | System and method of reducing click and pop noise in audio playback devices |
US7999712B2 (en) * | 2009-07-30 | 2011-08-16 | Mediatek Inc. | Digital-to-analog converters and methods thereof |
Also Published As
Publication number | Publication date |
---|---|
US20180358934A1 (en) | 2018-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10447217B2 (en) | Amplifier with configurable final output stage | |
US9985587B2 (en) | Switched mode converter with variable common mode voltage buffer | |
CN110612665B (en) | Calibration of an amplifier with a configurable final output stage | |
US9301046B1 (en) | Systems and methods for minimizing distortion in an audio output stage | |
CN110326215B (en) | Offset calibration of amplifier and pre-circuit | |
US10090814B2 (en) | Removal of switching discontinuity in a hybrid switched mode amplifier | |
US9929664B2 (en) | Prevention of switching discontinuity in a hybrid switched mode amplifier | |
CN110582935B (en) | Switching in an audio system having multiple playback paths | |
CN110603731B (en) | Switching in an amplifier with configurable final output stage | |
US10432150B2 (en) | Reducing audio artifacts in an amplifier during changes in power states | |
WO2018194979A1 (en) | Fully-differential current digital-to-analog converter | |
US10658988B1 (en) | Open-loop class-D amplifier system with analog supply ramping | |
US10812074B2 (en) | Control of switches in a variable impedance element | |
US10833657B2 (en) | Variable output resistance in a playback path with closed-loop pulse-width modulation driver | |
US9854357B1 (en) | Minimizing startup transients in an audio playback path |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: CIRRUS LOGIC INTERNATIONAL SEMICONDUCTOR LTD., UNI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BALASUNDARAM, RAMYA;MANOLA, BHUPENDRA;DHANANJAY, PRADEEP;SIGNING DATES FROM 20180625 TO 20180709;REEL/FRAME:046539/0279 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: CIRRUS LOGIC, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CIRRUS LOGIC INTERNATIONAL SEMICONDUCTOR LTD.;REEL/FRAME:049645/0273 Effective date: 20150407 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |