US1037469A - Process of metallizing electrotype-molds. - Google Patents
Process of metallizing electrotype-molds. Download PDFInfo
- Publication number
- US1037469A US1037469A US64203211A US1911642032A US1037469A US 1037469 A US1037469 A US 1037469A US 64203211 A US64203211 A US 64203211A US 1911642032 A US1911642032 A US 1911642032A US 1037469 A US1037469 A US 1037469A
- Authority
- US
- United States
- Prior art keywords
- mold
- electrotype
- molds
- metallizing
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 19
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- 239000002904 solvent Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- -1 for instance Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000899 Gutta-Percha Substances 0.000 description 2
- 240000000342 Palaquium gutta Species 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229920000588 gutta-percha Polymers 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 238000006639 Goldberg reaction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011507 gypsum plaster Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
Definitions
- My invention relates to 'the process of metallizing or preparing electrotype molds to make them conductive in order of the application of fine flake graphite in dry state to said mold.
- This process is very objectionable because the graphite fiies about in all directions to the great inconvenience of the workmen.
- This has been overcome by the construction of special machines which brush the graphite onto the mold, but it nevertheless remains a lengthy and delicate operation.
- Another method consists in the application of metallic powder, for instance, bronze, to the mold and then applying a solution like silver nitrate or some other metallic salt in order to cause it to take. This process is not used much in practice on account of its inconveniences.
- the object of my invention is to simplify, cheapen and improve the so-called process of metallizing and is accomplished in the following manner I first prepare a solution of a conductive solid in colloidal form in a volatile liquid, then apply this solution to the non conductive mold and finally dry the mold, thereby evaporating the solvent and causing the conductive substance to be deposited on the non conductive mold.
- colloidal metals are the one that upon evaporation of their solvent they become non colloidal orinsoluble. In process the metal is, therefore, deposited uponthe mold in a coherent, continuous, insoluble, electrically,
- the conducting solids which I employ for the preparation of the colloidal solution maybe-gold, silver, or graphite, et cetera, but I prefer copper.
- the solvents for the solids are water, alcohol, ether, glycerin, acetone, etcetera.
- electrotype molds areordinarily prepared from wax, but it is well known that galvano plastic molds are made from other substances also, for instance, gutta percha, plaster of Paris, et cetera.
- the liquid that I use for a solvent depends upon the composition of the mold.
- a mold of gutta ercha I employ benzol as a solvent, for I find that a solution prepared from this as'la solvent readily'wets a gutta percha m0 d.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
- HYMAN ELI GOLDBERG, OF CHICAGO, ILLINOIS.
PROCESS METALLIZING ELECTROTYPE-MOLDS.
No Drawing,
Specification of Letters Patent. Application filed August 2, 1911. Serial No. 642,082.
Patented Sept. 3, 1912.
To all whom it may aoncem:
Be it known f that I, HYMAN ELI GOLD- BERG, a citizen of the United States, residing at Chicago, in the county of Cook and State of Illinois, have invented a certain'new and useful Process ofMetallizing Electrotype- Molds, of which the following is a specificati n,
My invention relates to 'the process of metallizing or preparing electrotype molds to make them conductive in order of the application of fine flake graphite in dry state to said mold. This process is very objectionable because the graphite fiies about in all directions to the great inconvenience of the workmen. This has been overcome by the construction of special machines which brush the graphite onto the mold, but it nevertheless remains a lengthy and delicate operation. Another method consists in the application of metallic powder, for instance, bronze, to the mold and then applying a solution like silver nitrate or some other metallic salt in order to cause it to take. This process is not used much in practice on account of its inconveniences. There are other processes, namely, the treatment with silver nitrate and phosphorous, and the treatment'with silver nitrate and sulfureted hydrogen. These methods are inconvenient and laborious and require considerable time, and frequently unless the work is very carefully done the results are imperfect and unsatisfactory.
The object of my invention is to simplify, cheapen and improve the so-called process of metallizing and is accomplished in the following manner I first prepare a solution of a conductive solid in colloidal form in a volatile liquid, then apply this solution to the non conductive mold and finally dry the mold, thereby evaporating the solvent and causing the conductive substance to be deposited on the non conductive mold. Among the properties of colloidal metals is the one that upon evaporation of their solvent they become non colloidal orinsoluble. In process the metal is, therefore, deposited uponthe mold in a coherent, continuous, insoluble, electrically,
conductive layer. Among the conducting solids which I employ for the preparation of the colloidal solution maybe-gold, silver, or graphite, et cetera, but I prefer copper. Among the solvents for the solids are water, alcohol, ether, glycerin, acetone, etcetera.
One method of obtaining cop er and other metals in colloidal form is to orm a direct current arc under waterbetween terminals consisting of the metal to be rendered colloidal. Other methods are explained by Theo. Svedberg in his published book upon the subject, entitled H erstellung Kolloz'der Loesungen Anorgam'scher Stojfe, 1909 edition, published by Theodore Steinkopff, Dresden, Germany. He describes methods applicable to organic solvents such as alcohol, ether, glycerin and acetone and the method consists in forming an alternating current are in the liquid andintroducing the metal, for example, silver or copper, in finely divided form, for example, small pieces of foil or thin sheets. The various processes are listed in the index at the end of the book, for instance, those relating. to copper are'listed on page 506.
It is the common practice to employ wax asthe substance for making the electrotype mold. It will be found generally that a water colloidal solution will not wet wax readily. This objection may be avoided by treating the mold previously to the application of the colloidal solution, with alcohol or similar liquid. I greatly prefer, however,
to avoid the necessity for this alcohol pretreatment by employing as the solvent one which has a greater attraction for wax than water, and as such solvent I- prefer ether. Another advantage in employing other as a solvent is that whereas a colloidal solution of copper in water spoils very readily by the oxidation of the copper such oxidation occurs very slowly in ether. Copper, of course, is an excellent conductor, and furthermore, copper is the metal usually employed in electrotyping and consequently by employing copper for the metallizing substance I -avoid mixing metals. Therefore, for all of these reasons I greatly prefer on the whole to use a colloidal solution of copper dissolved in ether.
' Of course electrotype molds areordinarily prepared from wax, but it is well known that galvano plastic molds are made from other substances also, for instance, gutta percha, plaster of Paris, et cetera. The liquid that I use for a solvent depends upon the composition of the mold. For a mold of gutta ercha I employ benzol as a solvent, for I find that a solution prepared from this as'la solvent readily'wets a gutta percha m0 d.
I find that in practice in using ether as a solvent'the operator has to be ve rapid in his work on account of the rapidity of evaporation of the ether. Moreover, the ether if too thickly applied makes the wax rather soft. For both of these reasons I sometimes use. a mixture of ether and alcohol instead of ether alone.
In practicing my method I sometimes pour the colloidal solution onto the mold and thus form a layer upon it or again sometimes apply it with a brush or sometimes di the mold completely in the coll'oidal so ution.
Having thus described my invention,
what v I claim as new, and desire to secur by Letters Patent, is:
1. The herein described process of producing an electrically conductive layer upon ting the said solvent to evaporate.
. 2. The herein described process of producmg an electrically conductive layer upon a surface, such as a mold, which consists in first applying to the mold surface a colloidal solution of a metal in-a volatilesolvent and then permitting the said solvent to evaporate.
In witness whereof, I have hereunto subscribed my name in the presence of two witnessesl HOWARD M. Cox, MARGARET D. R033.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64203211A US1037469A (en) | 1911-08-02 | 1911-08-02 | Process of metallizing electrotype-molds. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64203211A US1037469A (en) | 1911-08-02 | 1911-08-02 | Process of metallizing electrotype-molds. |
Publications (1)
Publication Number | Publication Date |
---|---|
US1037469A true US1037469A (en) | 1912-09-03 |
Family
ID=3105746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US64203211A Expired - Lifetime US1037469A (en) | 1911-08-02 | 1911-08-02 | Process of metallizing electrotype-molds. |
Country Status (1)
Country | Link |
---|---|
US (1) | US1037469A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2465228A (en) * | 1946-05-07 | 1949-03-22 | Westinghouse Electric Corp | Liquid treatment of contact surfaces for copper oxide rectifiers |
US2469620A (en) * | 1944-09-16 | 1949-05-10 | Harry E Wimpfheimer | Embossing die |
US2580718A (en) * | 1945-08-01 | 1952-01-01 | Printing And Allied Trades Res | Method of producing electroforms |
US2642390A (en) * | 1950-09-11 | 1953-06-16 | Garofano Joseph | Process of ornamentation of articles made of plastics |
US2682483A (en) * | 1950-06-22 | 1954-06-29 | Radio Ceramics Corp | Electrical heater and method of making same |
US2996610A (en) * | 1950-08-16 | 1961-08-15 | Matthew J Relis | Composite tuned circuit |
US4619741A (en) * | 1985-04-11 | 1986-10-28 | Olin Hunt Specialty Products Inc. | Process for preparing a non-conductive substrate for electroplating |
US4622108A (en) * | 1986-05-05 | 1986-11-11 | Olin Hunt Specialty Products, Inc. | Process for preparing the through hole walls of a printed wiring board for electroplating |
US4622107A (en) * | 1986-05-05 | 1986-11-11 | Olin Hunt Specialty Products Inc. | Process for preparing the through hole walls of a printed wiring board for electroplating |
US4631117A (en) * | 1985-05-06 | 1986-12-23 | Olin Hunt Specialty Products Inc. | Electroless plating process |
US4684560A (en) * | 1985-11-29 | 1987-08-04 | Olin Hunt Specialty Products, Inc. | Printed wiring board having carbon black-coated through holes |
US4718993A (en) * | 1987-05-29 | 1988-01-12 | Olin Hunt Specialty Products Inc. | Process for preparing the through hole walls of a printed wiring board for electroplating |
US4724005A (en) * | 1985-11-29 | 1988-02-09 | Olin Hunt Specialty Products Inc. | Liquid carbon black dispersion |
US4964959A (en) * | 1990-04-12 | 1990-10-23 | Olin Hunt Specialty Products Inc. | Process for preparing a nonconductive substrate for electroplating |
US4994153A (en) * | 1990-06-28 | 1991-02-19 | Olin Corporation | Process for preparing nonconductive substrates |
US5106537A (en) * | 1990-04-12 | 1992-04-21 | Olin Hunt Sub Iii Corp. | Liquid dispersion for enhancing the electroplating of a non-conductive surface |
US5139642A (en) * | 1991-05-01 | 1992-08-18 | Olin Corporation | Process for preparing a nonconductive substrate for electroplating |
US5476580A (en) * | 1993-05-17 | 1995-12-19 | Electrochemicals Inc. | Processes for preparing a non-conductive substrate for electroplating |
US5674372A (en) * | 1996-09-24 | 1997-10-07 | Mac Dermid, Incorporated | Process for preparing a non-conductive substrate for electroplating |
US5690805A (en) * | 1993-05-17 | 1997-11-25 | Electrochemicals Inc. | Direct metallization process |
US5725807A (en) * | 1993-05-17 | 1998-03-10 | Electrochemicals Inc. | Carbon containing composition for electroplating |
US6171468B1 (en) | 1993-05-17 | 2001-01-09 | Electrochemicals Inc. | Direct metallization process |
US6303181B1 (en) | 1993-05-17 | 2001-10-16 | Electrochemicals Inc. | Direct metallization process employing a cationic conditioner and a binder |
US6710259B2 (en) | 1993-05-17 | 2004-03-23 | Electrochemicals, Inc. | Printed wiring boards and methods for making them |
-
1911
- 1911-08-02 US US64203211A patent/US1037469A/en not_active Expired - Lifetime
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2469620A (en) * | 1944-09-16 | 1949-05-10 | Harry E Wimpfheimer | Embossing die |
US2580718A (en) * | 1945-08-01 | 1952-01-01 | Printing And Allied Trades Res | Method of producing electroforms |
US2465228A (en) * | 1946-05-07 | 1949-03-22 | Westinghouse Electric Corp | Liquid treatment of contact surfaces for copper oxide rectifiers |
US2682483A (en) * | 1950-06-22 | 1954-06-29 | Radio Ceramics Corp | Electrical heater and method of making same |
US2996610A (en) * | 1950-08-16 | 1961-08-15 | Matthew J Relis | Composite tuned circuit |
US2642390A (en) * | 1950-09-11 | 1953-06-16 | Garofano Joseph | Process of ornamentation of articles made of plastics |
US4619741A (en) * | 1985-04-11 | 1986-10-28 | Olin Hunt Specialty Products Inc. | Process for preparing a non-conductive substrate for electroplating |
US4631117A (en) * | 1985-05-06 | 1986-12-23 | Olin Hunt Specialty Products Inc. | Electroless plating process |
US4724005A (en) * | 1985-11-29 | 1988-02-09 | Olin Hunt Specialty Products Inc. | Liquid carbon black dispersion |
US4684560A (en) * | 1985-11-29 | 1987-08-04 | Olin Hunt Specialty Products, Inc. | Printed wiring board having carbon black-coated through holes |
US4622108A (en) * | 1986-05-05 | 1986-11-11 | Olin Hunt Specialty Products, Inc. | Process for preparing the through hole walls of a printed wiring board for electroplating |
US4622107A (en) * | 1986-05-05 | 1986-11-11 | Olin Hunt Specialty Products Inc. | Process for preparing the through hole walls of a printed wiring board for electroplating |
US4718993A (en) * | 1987-05-29 | 1988-01-12 | Olin Hunt Specialty Products Inc. | Process for preparing the through hole walls of a printed wiring board for electroplating |
US4964959A (en) * | 1990-04-12 | 1990-10-23 | Olin Hunt Specialty Products Inc. | Process for preparing a nonconductive substrate for electroplating |
US5106537A (en) * | 1990-04-12 | 1992-04-21 | Olin Hunt Sub Iii Corp. | Liquid dispersion for enhancing the electroplating of a non-conductive surface |
US4994153A (en) * | 1990-06-28 | 1991-02-19 | Olin Corporation | Process for preparing nonconductive substrates |
USRE37765E1 (en) | 1991-05-01 | 2002-06-25 | Macdermid, Incorporated | Process for preparing a nonconductive substrate for electroplating |
US5139642A (en) * | 1991-05-01 | 1992-08-18 | Olin Corporation | Process for preparing a nonconductive substrate for electroplating |
US5476580A (en) * | 1993-05-17 | 1995-12-19 | Electrochemicals Inc. | Processes for preparing a non-conductive substrate for electroplating |
US5690805A (en) * | 1993-05-17 | 1997-11-25 | Electrochemicals Inc. | Direct metallization process |
US5725807A (en) * | 1993-05-17 | 1998-03-10 | Electrochemicals Inc. | Carbon containing composition for electroplating |
US6171468B1 (en) | 1993-05-17 | 2001-01-09 | Electrochemicals Inc. | Direct metallization process |
US6303181B1 (en) | 1993-05-17 | 2001-10-16 | Electrochemicals Inc. | Direct metallization process employing a cationic conditioner and a binder |
US6710259B2 (en) | 1993-05-17 | 2004-03-23 | Electrochemicals, Inc. | Printed wiring boards and methods for making them |
US7186923B2 (en) | 1993-05-17 | 2007-03-06 | Electrochemicals, Inc. | Printed wiring boards and methods for making them |
US5674372A (en) * | 1996-09-24 | 1997-10-07 | Mac Dermid, Incorporated | Process for preparing a non-conductive substrate for electroplating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1037469A (en) | Process of metallizing electrotype-molds. | |
DE1147141B (en) | Safety razor blade and method for making the same | |
DE1923825C3 (en) | ||
DE1414281B1 (en) | Process for forming closed layers from polymeric material | |
DE1589727A1 (en) | Electrical capacitor and method of making electrical capacitors | |
DE1298629B (en) | Electric capacitor and process for its manufacture | |
EP0101894A2 (en) | Method of processing electrically conductive pyrrole polymers | |
US2520651A (en) | Artificial carbons for electrical and the like uses | |
US1281716A (en) | Process of making molded conductors. | |
US2082354A (en) | Method for making sintered shaped bodies | |
US2468527A (en) | Blocking-layer cell | |
DE2110785A1 (en) | Recording medium for an electrochemical high-speed printing process | |
US1720371A (en) | Semisolid electric conductor | |
DE658362C (en) | Photoelectric cell with a semiconductor layer | |
US925321A (en) | Process for facing stereotype-metal. | |
US1240567A (en) | Insulating compound and the method of forming the same. | |
DE644462C (en) | Method of making electrical resistance material | |
US1240566A (en) | Insulating compound and the method of forming the same. | |
US1034104A (en) | Conductive ink. | |
DE969552C (en) | Process for the production of capacitor dielectrics from materials with high dielectric constants | |
US2340867A (en) | High resistance element and method of producing the same | |
DE1926093C (en) | ||
AT249194B (en) | Process for the production of very thin electrically highly insulating layers on lacquer substrates, in particular for capacitors with high capacitance | |
US901965A (en) | Preparation of electrotype-molds. | |
KR880701065A (en) | Manufacture of electric conductor by reinforcement substitution process |