US10335445B2 - Compositions and methods of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of aquilaria malaccensis - Google Patents

Compositions and methods of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of aquilaria malaccensis Download PDF

Info

Publication number
US10335445B2
US10335445B2 US15/180,088 US201615180088A US10335445B2 US 10335445 B2 US10335445 B2 US 10335445B2 US 201615180088 A US201615180088 A US 201615180088A US 10335445 B2 US10335445 B2 US 10335445B2
Authority
US
United States
Prior art keywords
formula
phorbol ester
meoh
acetate
phorbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/180,088
Other versions
US20170266250A1 (en
Inventor
Fang-Rong Chang
Bing-Hung Chen
Hsue-Yin Hsu
Yang-Chang Wu
Chen Hsieh
Hui-Ping Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WE-WIN APPLIED BIO-TECH Co Ltd
Original Assignee
WE-WIN APPLIED BIO-TECH Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WE-WIN APPLIED BIO-TECH Co Ltd filed Critical WE-WIN APPLIED BIO-TECH Co Ltd
Assigned to WE-WIN APPLIED BIO-TECH CO., LTD. reassignment WE-WIN APPLIED BIO-TECH CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSIEH, CHEN, HSIEH, HUI-PING, HSU, HSUE-YIN, CHANG, FANG-RONG, CHEN, BING-HUNG, WU, YANG-CHANG
Publication of US20170266250A1 publication Critical patent/US20170266250A1/en
Application granted granted Critical
Publication of US10335445B2 publication Critical patent/US10335445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/83Thymelaeaceae (Mezereum family), e.g. leatherwood or false ohelo
    • A61K36/835Aquilaria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • A61K31/231Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having one or two double bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • A61K31/232Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having three or more double bonds, e.g. etretinate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/58Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/33Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with hydroxy compounds having more than three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/58Esters of straight chain acids with eighteen carbon atoms in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/587Monocarboxylic acid esters having at least two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/732Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/738Esters of keto-carboxylic acids or aldehydo-carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/33Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones
    • A61K2236/333Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones using mixed solvents, e.g. 70% EtOH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/39Complex extraction schemes, e.g. fractionation or repeated extraction steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings

Definitions

  • compositions and methods of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of Aquilaria malaccensis are provided.
  • allergic diseases are the hypersensitive immuno-response induced by specific foods or a number of factors in the environment that usually arouse some indispositions, such as allergic rhinitis, urticaria, atopic dermatitis, asthma, and even severe anaphylaxis.
  • the symptoms involve red eyes, itchy rashes, rhinorrhea, dyspnea, and swelling. Therefore, some foods and the factors in the environment are so-called allergens.
  • the environment is getting polluting by the growth of industry development, and the green lands and forests such as the Brazilian rainforest are substantively lost by the land development.
  • the phenomenon in number increase and age decline of patients with allergic diseases is observed and arisen from the changed climate and environment due to above reasons.
  • IgE-mediated allergy is a common immune system disorder, and the combinations with allergens release inflammatory chemicals such as histamine.
  • Current treatments for allergies include the avoidances of known allergens and the usages of corticosteroids and antihistamines; additionally, the intravenous injection of epinephrine would be applied for suppressions of hypersensitive responses when severe allergies occurred.
  • mast cells and their degranulation play a crucial role in IgE-mediated allergic inflammatory responses such as allergic rhinitis, acute asthma, and atopic eczema (Lian et al., Int. J. Mol. Sci., 16, 2252-2268, 2015).
  • Beta-hexosaminidase is an enzyme released along with histamine from mast cells (RBL-2H3 cells) upon activation and serves as a well-accepted in vitro model in allergy (Dearman et al., Toxicology, 206, 195-205, 2005). Although today we are able to treat the symptoms of allergy, available medications have undesirable effects, especially within a prolonged use. Therefore, there is a need to search for alternative treatment, and natural sources are often considered as safe and easily available.
  • Agarwood is a priceless fragrant resinous wood from Aquilaria species (Thymelaeaceae), which is formed as a defense mechanism to fend off pathogens.
  • Agarwood is widely applied in traditional medicine preparations for cardiotonic, carminative, antiasthmatic, aphrodisiac, astringent remedy.
  • Aquillaria agarwood has been found effective against diarrhea, dysentery, gout, rheumatism, paralysis and parasites, and it has been beneficial for skin diseases (Talukdar et al, Int. J. Pharm. Pharm. Sci., 6, 629-631, 2014).
  • Aquilaria species was previously found to possess antidepressant (Yang et al., J.
  • the alcoholic extract of A. malaccensis stein and bark exhibited cardiotonic activity (Pant et al., Phytochemistry, 19, 1869-1870, 1980), and cytotoxicity against Eagle's carcinoma of the nasopharynx and P-388 lymphocytic leukemia cells in vitro (Gunasekera et al., J. Nat. Prod., 44, 569-572, 1981).
  • the aqueous extract showed antitrypanosomal (Dyary et al., Trop. Biomed., 31, 89-96, 2014), antibacterial (Dash et al., Afr. J.
  • Aquilaria malaccensis it is too slow growth of Aquilaria malaccensis to supply the stein and bark extracts plentifully and permanently. Relative to the stems and barks of agarwood ( A. malaccensis ), the seeds of A. malaccensis were easier to be obtained and thus chosen for alternative investigation to prevent and treat allergic diseases.
  • the preparation methods, the compositions, and the bioactive assays including antiallergic, antiinflammatory, and cytotoxic tests of A. malaccensis seeds (AMS) extract, its fractions, and those isolated phorbol esters with formulas I ⁇ IV were designed and achieved.
  • the primary object of the present invention is to provide antiallergic compositions from the seeds of Aquilaria malaccensis and their preparation methods.
  • the second object of the present invention is to provide compositions from the seeds of Aquilaria malaccensis to prevent and treat the allergies and related hypersensitive immuno-responses effectively.
  • the third object of the present invention is to provide compositions from the seeds of Aquilaria malaccensis to prevent and treat the allergies and related hypersensitive immuno-responses effectively, of which compositions comprise a compound represented by Formula I to VI and their isomers or a or a pharmaceutically acceptable salt thereof as an active ingredient.
  • FIG. 1 shows preparation scheme of the present invention.
  • FIG. 2 shows isolation scheme of AM4-3 to afford 15 subfractions.
  • FIG. 3 shows isolation scheme of AM4-4 to afford 12 subfractions.
  • FIG. 4 shows 1 H NMR spectra comparison of selected compositions from Aquilaria malaccensis seeds, the ethanolic extract (EtOH), 90% aqueous methanol layer (MeOH), AM-4, and AM4-4.
  • FIG. 5 shows 1 H NMR spectrum of compound represented by Formula I.
  • FIG. 6 shows 13 C NMR spectrum of compound represented by Formula I.
  • FIG. 7 shows 1 H NMR spectrum of compound represented by Formula II.
  • FIG. 8 shows 13 C NMR spectrum of compound represented by Formula II.
  • FIG. 9 shows 1 H NMR spectrum of compound represented by Formula III.
  • FIG. 10 shows 13 C NMR spectrum of compound represented by Formula III.
  • FIG. 11 shows 1 H NMR spectrum of compound represented by Formula IV.
  • FIG. 12 shows 13 C NMR spectrum of compound represented by Formula IV.
  • FIG. 13 shows 1 H NMR spectrum of compound represented by Formula V.
  • FIG. 14 shows 13 C NMR spectrum of compound represented by Formula V.
  • FIG. 15 shows 1 H NMR spectrum of compound represented by Formula VI.
  • FIG. 16 shows antiallergic activities of the compositions from Aquilaria malaccensis seeds by inhibition of ⁇ -hexosaminidase release.
  • FIG. 17 shows Antiinflammatory effects of the compositions from Aquilaria malaccensis seeds on superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils.
  • FIG. 18 shows Cytotoxic activities of the compositions from Aquilaria malaccensis seeds against HepG2, MDA-MB231, and A549 carcinoma cell lines.
  • FIG. 19 shows Activity of phorbol ester-rich fraction (AM4) and phorbol ester I on stimulant-free degranulation in RBL-2H3 cells.
  • the present invention is further illustrated by the preparation schemes ( FIG. 1 ⁇ 3 ), the NMR spectra of phorbol esters represented by Formulas I to VI ( FIG. 4 ⁇ 15 ), and the bioactive results (Tab. 1 ⁇ 4), and the skills and methods used herein are described in detail:
  • AM4-3-1 3.4 mg; AM4-3-2, 25.3 mg; AM4-3-3, 345.6 mg; AM4-3-4, 49.2 mg; AM4-3-5, 16.4 mg; AM4-3-6, 39.5 mg; AM4-3-7, 8.4 mg; AM4-3-8, 3.8 mg; AM4-3-9, 42.7 mg; AM4-3-10, 23.0 mg; AM4-3-11, 42.5 mg; AM4-3-12, 43.5 mg; AM4-3-13, 23.5 mg; AM4-3-14, 7.9 mg; and AM4-3-15, 38.3 mg) Of which subfractions, AM4-3-6 and AM4-3-13 are two phorbol ester-rich fractions.
  • AM4-4-1 2.2 mg; AM4-4-2, 16.3 mg; AM4-4-3, 3.5 mg; AM4-4-4, 5.7 mg; AM4-4-5, 7.7 mg; AM4-4-6, 11.5 mg; AM4-4-7, 37.6 mg; AM4-4-8, 6.8 mg; AM4-4-9, 43.9 mg; AM4-4-10, 3.3 mg; AM4-4-11, 3.5 mg; and AM4-4-12, 23.5 mg) Of which subfractions, AM4-4-3, AM4-4-7, AM4-4-8 and AM4-4-9 are four phorbol ester-rich fractions.
  • phorbol ester I is 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate with a molecular formula of C 36 H 50 O 8 deduced from HRESIMS data m/z 633.33980 [M+Na] + (calcd for C 36 H 50 O 8 Na, 633.33979); [ ⁇ ] D 25 : ⁇ 3.75 ⁇ 1.97 (c 0.0667, CHCl 3 ); UV (MeOH) ⁇ max (log ⁇ ): 303 (2.78), 233 (2.75) nm; and IR (neat) ⁇ max : 3413, 2965, 2922, 1710, 1615, 1377, 1258, 1092, 802 cm ⁇ 1 .
  • the 1 H and 13 C NMR spectra of phorbol ester I are shown in FIG. 5 and FIG. 6 , respectively.
  • phorbol ester II is 12-deoxy-13-O-acetoylphorbol-20-octadec-9-enoate with a molecular formula of C 40 H 62 O 7 deduced from HRESIMS data m/z 677.43884 [M+Na] + (calcd for C 40 H 62 O 7 Na, 677.43878); [ ⁇ ] D 25 : +2.91 ⁇ 0.49 (c 0.3333, CHCl 3 ); UV (MeOH) ⁇ max (log ⁇ ): 285 (2.78), 250 (2.83) nm; and IR (neat) ⁇ max : 3409, 2922, 2855, 1717, 1375, 1332, 1152, 1021 cm ⁇ 1 .
  • the 1 H and 13 C NMR spectra of phorbol ester II are shown in FIG. 7 and FIG. 8 , respectively.
  • phorbol ester III is 12-O-(2E,4E)-6-oxohexa-2,4-dienoylphorbol-13-acetate with a molecular formula of C 28 H 34 O 9 deduced from HRESIMS m/z 537.20959 [M+Na] + (calcd for C 28 H 34 O 9 Na, 537.20950); [ ⁇ ] D 25 : +4.20 ⁇ 0.82 (c 0.1667, CHCl 3 ); UV (MeOH) ⁇ max (log ⁇ ): 295 (2.80), 249 (2.84) nm; and IR (neat) ⁇ max : 3413, 2925, 2855, 2360, 2339, 1625, 1597, 1261, 1184, 755 cm ⁇ 1 .
  • the 1 H and 13 C NMR spectra of phorbol ester III are shown in FIG. 9 and FIG. 10 , respectively.
  • phorbol ester IV is 12-O-(2E,4E)-6,7-dihydroxytetradeca-2,4-dienoylphorbol-13-acetate with a molecular formula of C 36 H 52 O 10 deduced from HRESIMS m/z 667.34515 [M+Na] + (calcd for C 36 H 52 O 10 Na, 667.34527); [ ⁇ ] D 25 : +10.44 ⁇ 1.45 (c 0.1667, CHCl 3 ); UV (MeOH) ⁇ max (log ⁇ ): 289 (2.79), 249 (2.83) nm; and IR (neat) ⁇ max : 3392, 2925, 2851, 1710, 1632, 1455, 1375, 1261, 1024, 802, 755 cm ⁇ 1 .
  • the 1 H and 13 C NMR spectra of phorbol ester IV are shown in FIG. 11 and FIG. 12 , respectively.
  • phorbol ester V is 12-deoxyphorbol 13-decanoate with a molecular formula of C 30 H 46 O 6 deduced from HRESIMS m/z 525.31921 [M+Na] + (calcd for C 30 H 46 O 6 Na, 525.31921); [ ⁇ ] D 25 : +8.55 ⁇ 0.63 (c 0.200, CHCl 3 ); UV (MeOH) ⁇ max (log ⁇ ): 325 (0.14), 249 (1.31) nm; and IR (neat) ⁇ max : 3392, 2925, 2356, 1710, 1629, 1335, 1155 cm ⁇ 1 .
  • the 1 H and 13 C NMR spectra of phorbol ester V are shown in FIG. 13 and FIG. 14 , respectively.
  • phorbol ester VI is 12-deoxyphorbol 13-octanoate with a molecular formula of C 28 H 42 O 6 deduced from ESIMS m/z 475 [M+H] + (calcd for C 28 H 43 O 6 ); [ ⁇ ] D 25 : +4.75 ⁇ 1.27 (c 0.200, CHCl 3 ); UV (MeOH) ⁇ max (log ⁇ ): 311 (0.01), 250 (2.85) nm; and IR (neat) ⁇ max : 3377, 2922, 2858, 1710, 1625, 1332, 1018 cm ⁇ 1 .
  • the 1 H NMR spectrum of phorbol ester VI is shown in FIG. 15 .
  • compositions of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of Aquilaria malaccensis were evaluated by the following assays.
  • RBL-2H3 The mucosal mast cell-derived rat basophilic leukemia (RBL-2H3) cell line was purchased from the Bioresource Collection and Research Center (Hsin-Chu, Taiwan). Cells were grown in DMEM medium supplemented with 10% FBS and 100 U/mL penicillin plus 100 ⁇ g/mL streptomycin. Cells were cultured in 10 cm cell culture dishes at 37° C. in a humidified chamber with 5% CO 2 in air.
  • compositions from the seeds of Aquilaria malaccensis were prepared for bioactive assays.
  • the ethanolic extract EtOH
  • n-butanol layer BuOH
  • aqueous layer Water
  • EtOAc ethyl acetate layer
  • n-hexane layer Hexane
  • 90% aqueous methanol layer MeOH
  • the divided AM-4, AM4-4-7, AM4-4-8, AM4-4-9 were prepared for bioactive assays.
  • a methylthiazol tetrazolium (MTT) assay was used to measure the potential toxic effects of the samples on RBL-2H3 cells (Chen et al., J. Nat. Prod., 72, 950-953, 2009). Briefly, RBL-2H3 cells (2 ⁇ 104 cells/well) were seeded in a 96-well plate overnight and treated with various concentrations of samples (10 ⁇ 100 ⁇ g/mL) for 24 h. MTT solution (0.5 mg/mL) was added to the wells (80 ⁇ L per well) and incubated for 1 h. The formed formazan crystals were dissolved in DMSO (80 ⁇ L).
  • the absorbance at 595 nm was measured using microplate reader (Multiskan Ascent, Thermo Scientific). The degree of cell viability of each sample was calculated as the percentage of control value (untreated cells). The maximal tolerated dose of DMSO was 0.5%. All experiments were repeated at least two times.
  • Degranulation ⁇ -hexosaminidase assay induced by A23187 or antigen The degree of A23187- and antigen-induced degranulation in RBL-2H3 cells was determined by a ⁇ -hexosaminidase release assay as described previously (Chen et al., J. Nat. Prod., 72, 950-953, 2009; Matsuda et al., Bioorg. Med. Chem., 12, 5891-5898, 2004) with following modifications.
  • RBL-2H3 cells were seeded in a 96-well plate (2 ⁇ 10 4 cells/well) for A23187-induced and in 48-well plate (3 ⁇ 10 4 cells/well) for antigen-induced experiment.
  • Cells were treated with various concentrations of the samples for 20 h.
  • Dexamethasone (10 nM) was used as a positive control.
  • the cells for the antigen-induced experiment were first sensitized with anti-DNP IgE (5 ⁇ g/mL) for at least 2 h.
  • RBL-2H3 cells 4 ⁇ 10 4 cells/well
  • Tyrode's buffer supplemented with 5.6 mM glucose, 2 mg/mL BSA and 2 mM glutamine was used to prepare the samples and treat the cells.
  • 50 ⁇ L of supernatants were transferred into a 96-well microplate and examined as described above (the section of Cell viability assay).
  • A23187 (1 ⁇ M) was used as a positive control. All experiments were repeated three times.
  • Human neutrophils from venous blood of healthy, adult volunteers (20-30 years old) were isolated using a standard method of dextran sedimentation prior to centrifugation in a Ficoll-Hypaque gradient and hypotonic lysis of erythrocytes (Boyum et al., Scand. J. Clin. Lab. Invest., 97, 77-89, 1968).
  • HBSS Hank's buffered salt solution
  • Superoxide anion generation assay and elastase release inhibition assay Neutrophil superoxide anion generation was determined using superoxide dismutase (SOD)-inhibitory cytochrome reduction according to described procedures (Babior et al., J. Clin. Invest., 52, 741-744, 1973; Hwang et al., Free Radical Bio. Med., 41, 1433-1441, 2006). Degranulation of azurophilic granules was determined by measuring the elastase release as described previously (Hwang et al., Free Radical Bio. Med., 41, 1433-1441, 2006). All experiments were repeated at least three times.
  • SOD superoxide dismutase
  • MTT assay was used to according to the used in a previous manuscript. HepG2 (1 ⁇ 10 4 cells), A 549 (5 ⁇ 10 3 cells), and MDA-MB-231 (1 ⁇ 10 4 cells) were seeded into 96-well plates, followed by treatment with the AMS samples at concentration of 20 ⁇ g/mL After 72 h, the medium was removed and 100 ⁇ L of MTT solution (0.5 mg/mL) was added to each well. The plates were then incubated at 37° C. for 1 h and then, the MTT dye was detected by the addition of DMSO (100 ⁇ L). The absorbance was recorded at 550 nm. Doxorubicin was used as a positive control.
  • antiallergic activity of the compositions from Aquilaria malaccensis seeds and A23187 was concluded in Table 1 whereas antiinflammatory effects of the compositions from A. malaccensis seeds on superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils were summarized in Table 2.
  • activity of phorbol ester-rich fraction (AM4) and phorbol ester I on stimulant-free degranulation in RBL-2H3 cells was shown in Table 4.
  • the RBL-2H3 cells were treated with AM4 (10 ⁇ g/ml) and phorbol ester I (10 ⁇ g/ml) for 10 h.
  • Tyrode's buffer supplemented with glucose, bovine serum albumin (BSA) and glutamine was used as a medium.
  • A23187 (1 ⁇ M) was used as a positive control.
  • the ethanolic extract (A-EtOH) showed potent antiallergic activity (IC 50 0.92 and 3.9 ⁇ g/mL in A23187 and antigen-induced ⁇ -hexosaminidase assay, respectively.
  • antiallergic activity of the samples was due to inhibition of ⁇ -hexosaminidase release, and not false positive as a result of direct inhibition of ⁇ -hexosaminidase enzymatic activity (Wang et al., Biol. Pharm. Bull., 30, 388-392, 2007), the enzyme was extracted and tested with the active samples.
  • AM4-4 (IC 50 4.8 ⁇ 10 +5 ⁇ g/mL, therapeutic index 1477328 , A 23187-induced; and IC 50 6.8 ⁇ 10 +4 ⁇ g/mL, therapeutic index 103776, antigen-induced (3-hexosaminidase assay) afforded the most active fraction AM4-4-8 (IC 50 7.6 ⁇ 10 ⁇ 6 ⁇ g/mL, therapeutic index 9645374, A23187-induced; and IC 50 8.0 ⁇ 10 +5 ⁇ g/mL, therapeutic index 9645374, antigen-induced degranulation assay), and a new compound, phorbol ester I (IC 50 values of 0.0017 ⁇ M, therapeutic index 71538, A23187-induced; and IC 50 0.011 ⁇ M, therapeutic index 10550, antigen-induced degranulation assay).
  • the phorbol ester I really possesses the antiallergic activity and can be pharmaceutically applied for preventing and treating allergies.
  • AM4-4-9 subfraction comprising phorbol ester I also really possesses the antiallergic activity and can be pharmaceutically applied for preventing and treating allergies. Therefore, AM4-3-13, AM4-4-3, and AM4-4-7 subfractions have the antiallergic activity correspondingly.
  • the extractions and the fractionated fractions (phorbol ester-contained fractions) from Aquilaria malaccensis seeds can be pharmaceutically applied for preventing and treating allergies and show the potent antiallergic activity.
  • this invention is characteristic for the advantages of easy collection, simple procedure, and plant growth no-effect due to the phorbol esters preparations from the seeds of Aquilaria malaccensis rather than the stems and barks. Besides, in accordance with the preparation methods of this invention, four new phorbol esters I ⁇ IV were isolated.

Abstract

The present invention relates to phorbol esters from the seeds of Aquilaria malaccensis by a series of chromatographic processes, and compositions containing these congeners for the treatment of allergic responses.

Description

(a) TECHNICAL FIELD OF THE INVENTION
Compositions and methods of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of Aquilaria malaccensis.
(b) DESCRIPTION OF THE PRIOR ART
It is known that allergic diseases are the hypersensitive immuno-response induced by specific foods or a number of factors in the environment that usually arouse some indispositions, such as allergic rhinitis, urticaria, atopic dermatitis, asthma, and even severe anaphylaxis. The symptoms involve red eyes, itchy rashes, rhinorrhea, dyspnea, and swelling. Therefore, some foods and the factors in the environment are so-called allergens. However, the environment is getting polluting by the growth of industry development, and the green lands and forests such as the Brazilian rainforest are substantively lost by the land development. The phenomenon in number increase and age decline of patients with allergic diseases is observed and arisen from the changed climate and environment due to above reasons.
IgE-mediated allergy is a common immune system disorder, and the combinations with allergens release inflammatory chemicals such as histamine. Current treatments for allergies include the avoidances of known allergens and the usages of corticosteroids and antihistamines; additionally, the intravenous injection of epinephrine would be applied for suppressions of hypersensitive responses when severe allergies occurred. Importantly, mast cells and their degranulation play a crucial role in IgE-mediated allergic inflammatory responses such as allergic rhinitis, acute asthma, and atopic eczema (Lian et al., Int. J. Mol. Sci., 16, 2252-2268, 2015). Beta-hexosaminidase is an enzyme released along with histamine from mast cells (RBL-2H3 cells) upon activation and serves as a well-accepted in vitro model in allergy (Dearman et al., Toxicology, 206, 195-205, 2005). Although today we are able to treat the symptoms of allergy, available medications have undesirable effects, especially within a prolonged use. Therefore, there is a need to search for alternative treatment, and natural sources are often considered as safe and easily available.
Agarwood is a priceless fragrant resinous wood from Aquilaria species (Thymelaeaceae), which is formed as a defense mechanism to fend off pathogens. Agarwood is widely applied in traditional medicine preparations for cardiotonic, carminative, antiasthmatic, aphrodisiac, astringent remedy. Moreover, Aquillaria agarwood has been found effective against diarrhea, dysentery, gout, rheumatism, paralysis and parasites, and it has been beneficial for skin diseases (Talukdar et al, Int. J. Pharm. Pharm. Sci., 6, 629-631, 2014). Furthermore, Aquilaria species was previously found to possess antidepressant (Yang et al., J. Nat. Prod., 76, 216-222, 2013; Huong et al., Nat. Prod. Sci., 8, 30-33, 2002), anti-neuroinflammatory (Huo et al., Fitoterapia, 106, 115-121, 2015), analgesic, antiinflammatory (Zhou et al., J. Ethnopharmacol., 117, 345-350, 2008), antioxidant, antibacterial (Kamonwannasit et al., Ann. Clin. Microbiol. Antimicrob., 12, 20, 2013) in vitro assays whereas anti-hyperglycemic and laxative activity in vivo (Pranakhon et al., Pharmacogn. Mag., 11, 82-89, 2015; Hara et al., Biosci. Biotechnol. Biochem., 72, 335-345, 2008).
In particular, the alcoholic extract of A. malaccensis stein and bark exhibited cardiotonic activity (Pant et al., Phytochemistry, 19, 1869-1870, 1980), and cytotoxicity against Eagle's carcinoma of the nasopharynx and P-388 lymphocytic leukemia cells in vitro (Gunasekera et al., J. Nat. Prod., 44, 569-572, 1981). The aqueous extract showed antitrypanosomal (Dyary et al., Trop. Biomed., 31, 89-96, 2014), antibacterial (Dash et al., Afr. J. Biotechnol., 7, 3531-3534, 2008), and antiallergic activity in vitro and in vivo (Kiln et al., J. Ethnopharmacol., 58, 31-38, 1997). In the previous phytochemical investigation of A. malaccensis stein bark, an anticancer phorbol ester, 12-O-(2Z,4E,6E)-deca-2,4,6-trienoylphorbol-13-acetate was isolated (Gunasekera et al., J. Nat. Prod., 44, 569-572, 1981). The phorbol ester belongs to the tigliane esters, a class of compounds are well recognized as being irritant, proinflammatory and cocarcinogenic. However, no any further studies of this phytochemical on anti-allergy was conducted, and therefore its antiallergic properties still unknown.
On the other hand, it is too slow growth of Aquilaria malaccensis to supply the stein and bark extracts plentifully and permanently. Relative to the stems and barks of agarwood (A. malaccensis), the seeds of A. malaccensis were easier to be obtained and thus chosen for alternative investigation to prevent and treat allergic diseases. In the present invention, the preparation methods, the compositions, and the bioactive assays including antiallergic, antiinflammatory, and cytotoxic tests of A. malaccensis seeds (AMS) extract, its fractions, and those isolated phorbol esters with formulas I˜IV were designed and achieved.
SUMMARY OF THE INVENTION
The primary object of the present invention is to provide antiallergic compositions from the seeds of Aquilaria malaccensis and their preparation methods.
The second object of the present invention is to provide compositions from the seeds of Aquilaria malaccensis to prevent and treat the allergies and related hypersensitive immuno-responses effectively.
These objects will become apparent as description of the invention proceeds. In accordance with this invention, the methods of preparation are following:
(a) Air-dried and powdered seeds of A. malaccensis (462 g) were extracted with 90% ethanol at room temperature (3×5 L) and then concentrated under reduced pressure.
(b) The combined extracts were concentrated and an obtained ethanolic extract (EtOH, 27.7 g) was suspended in water and partitioned with ethyl acetate (EtOAc, 3×1 L).
(c) The organic (EtOAc) layer (25.6 g) was further partitioned with n-hexane and 90% aqueous methanol (MeOH) to obtain a low-polar (Hexane) layer (7.1 g) and a high-polar (MeOH) layer (16.2 g).
(d) The MeOH layer was subjected to a column chromatography over silica gel (23 cm×4 cm, silica gel 60, 0.063-0.200 mm, Merck) under a gradient elution of n-hexane/CH2Cl2/MeOH to yield six fractions (AM1, 6:3:1; AM2, 6:4:1; AM3, 6:6:1; AM4, 6:8:1; AM5, 6:10:1 and AM6, 6:10:2).
(e) Following bioactivity data, fraction AM4 (3212.0 g) was further fractionated over a Sephadex LH-20 column (CH2Cl2/MeOH, 1:1) to obtain eight sub-fractions (AM4-1 to AM4-8).
(f) Fraction AM4-3 (762.0 mg) was subjected to column chromatography (17 cm×4 cm, Geduran Si 60, 0.040˜0.063 mm, Merck) under gradient elution of EtOAc/n-hexane (from 1:10 to 4:1) yielding 15 fractions AM4-3-1˜AM4-3-15.
(g) Fraction AM4-4 (173.7 mg) was further separated by column chromatography on silica gel (30 cm×1.5 cm, Geduran Si 60, 0.040˜0.063 mm, Merck) under gradient elution of EtOAc/n-hexane (from 1:15 to 4:1) to obtain 12 subfractions AM4-4-1˜AM4-4-12.
In accordance with the preparation methods, a new phorbol ester of Formula I was isolated from AM4-4-9.
Figure US10335445-20190702-C00001
In accordance with the preparation methods, a new phorbol ester of Formula II reported by now was isolated from AM4-3-6 and AM4-4-3.
Figure US10335445-20190702-C00002
In accordance with the preparation methods, a new phorbol ester of Formula III reported by now was isolated from AM4-3-13.
Figure US10335445-20190702-C00003
In accordance with the preparation methods, a new phorbol ester of Formula IV reported by now was also isolated from AM4-3-13.
Figure US10335445-20190702-C00004
In accordance with the preparation methods, two known phorbol esters of Formulas V and VI were isolated from AM4-4-7 and AM4-4-8, respectively.
Figure US10335445-20190702-C00005
The third object of the present invention is to provide compositions from the seeds of Aquilaria malaccensis to prevent and treat the allergies and related hypersensitive immuno-responses effectively, of which compositions comprise a compound represented by Formula I to VI and their isomers or a or a pharmaceutically acceptable salt thereof as an active ingredient.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1. shows preparation scheme of the present invention.
FIG. 2. shows isolation scheme of AM4-3 to afford 15 subfractions.
FIG. 3. shows isolation scheme of AM4-4 to afford 12 subfractions.
FIG. 4. shows 1H NMR spectra comparison of selected compositions from Aquilaria malaccensis seeds, the ethanolic extract (EtOH), 90% aqueous methanol layer (MeOH), AM-4, and AM4-4.
FIG. 5. shows 1H NMR spectrum of compound represented by Formula I.
FIG. 6. shows 13C NMR spectrum of compound represented by Formula I.
FIG. 7. shows 1H NMR spectrum of compound represented by Formula II.
FIG. 8. shows 13C NMR spectrum of compound represented by Formula II.
FIG. 9. shows 1H NMR spectrum of compound represented by Formula III.
FIG. 10. shows 13C NMR spectrum of compound represented by Formula III.
FIG. 11. shows 1H NMR spectrum of compound represented by Formula IV.
FIG. 12. shows 13C NMR spectrum of compound represented by Formula IV.
FIG. 13. shows 1H NMR spectrum of compound represented by Formula V.
FIG. 14. shows 13C NMR spectrum of compound represented by Formula V.
FIG. 15. shows 1H NMR spectrum of compound represented by Formula VI.
FIG. 16. shows antiallergic activities of the compositions from Aquilaria malaccensis seeds by inhibition of β-hexosaminidase release.
FIG. 17. shows Antiinflammatory effects of the compositions from Aquilaria malaccensis seeds on superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils.
FIG. 18. shows Cytotoxic activities of the compositions from Aquilaria malaccensis seeds against HepG2, MDA-MB231, and A549 carcinoma cell lines.
FIG. 19. shows Activity of phorbol ester-rich fraction (AM4) and phorbol ester I on stimulant-free degranulation in RBL-2H3 cells.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is further illustrated by the preparation schemes (FIG. 1˜3), the NMR spectra of phorbol esters represented by Formulas I to VI (FIG. 4˜15), and the bioactive results (Tab. 1˜4), and the skills and methods used herein are described in detail:
(a) After air-dried and powdered, the seeds of A. malaccensis (462 g) were extracted with 90% EtOH (5 L) at room temperature in triplicate and then concentrated under reduced pressure to afford an ethanolic extract (27.7 g).
(b) The ethanolic extract was suspended in water (1 L) and partitioned with equivalent ethyl acetate in triplicate, an organic (EtOAc) layer (25.6 g) and an aqueous (H2O) layer were separated.
(c) The EtOAc layer was further partitioned with n-hexane and 90% aqueous MeOH to obtain n-hexane layer (7.1 g) and MeOH layer (16.2 g) whereas the H2O layer was further partitioned with n-butanol to divide into an n-butanol (BuOH) layer and an aqueous (Water) layer.
(d) The MeOH layer was subjected to a column chromatography over silica gel (23 cm×4 cm, silica gel 60, 0.063˜0.200 mm, Merck) under a gradient elution of n-hexane/CH2Cl2/MeOH (6:3:1, 6:4:1, 6:6:1, 6:8:1, 6:10:1, and 6:10:2) to yield six fractions (AM1, 2917.0 mg; AM2, 1320.0 mg; AM3, 6834.0 mg; AM4, 3212.2 mg; AM5, 1703.0 mg; and AM6, 97.9 mg).
(e) Fractions AM4 was further fractionated over a Sephadex LH-20 column (CH2Cl2/MeOH, 1:1) to obtain eight sub-fractions (AM4-1, 688.0 mg; AM4-2, 688.0 mg; AM4-3, 762.0 mg; AM4-4, 173.7 mg; AM4-5, 609.0 mg; AM4-6, 253.5 mg; AM4-7, 80.0 mg; and AM4-8, 80.0 mg). Of which subfractions, AM4-3 and AM4-4 are phorbol ester-rich fractions. The above scheme are shown in FIG. 1.
(f) Fraction AM4-3 was subjected to column chromatography (17 cm×4 cm, Geduran Si 60, 0.040˜0.063 mm, Merck) under gradient elution of EtOAc/n-hexane (from 1:10 to 4:1) yielding 15 fractions AM4-3-1˜AM4-3-15 (FIG. 2). (AM4-3-1, 3.4 mg; AM4-3-2, 25.3 mg; AM4-3-3, 345.6 mg; AM4-3-4, 49.2 mg; AM4-3-5, 16.4 mg; AM4-3-6, 39.5 mg; AM4-3-7, 8.4 mg; AM4-3-8, 3.8 mg; AM4-3-9, 42.7 mg; AM4-3-10, 23.0 mg; AM4-3-11, 42.5 mg; AM4-3-12, 43.5 mg; AM4-3-13, 23.5 mg; AM4-3-14, 7.9 mg; and AM4-3-15, 38.3 mg) Of which subfractions, AM4-3-6 and AM4-3-13 are two phorbol ester-rich fractions.
(g) Fraction AM4-4 was further separated by column chromatography on silica gel (30 cm×1.5 cm, Geduran Si 60, 0.040˜0.063 mm, Merck) under gradient elution of EtOAc/n-hexane (from 1:15 to 4:1), and 12 subfractions AM4-4-1˜AM4-4-12 were obtained (FIG. 3). (AM4-4-1, 2.2 mg; AM4-4-2, 16.3 mg; AM4-4-3, 3.5 mg; AM4-4-4, 5.7 mg; AM4-4-5, 7.7 mg; AM4-4-6, 11.5 mg; AM4-4-7, 37.6 mg; AM4-4-8, 6.8 mg; AM4-4-9, 43.9 mg; AM4-4-10, 3.3 mg; AM4-4-11, 3.5 mg; and AM4-4-12, 23.5 mg) Of which subfractions, AM4-4-3, AM4-4-7, AM4-4-8 and AM4-4-9 are four phorbol ester-rich fractions.
(h) From AM4-4-9, a new phorbol ester named 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate (43.9 mg) was isolated. This compound possesses a molecule of C36H50O8 and is represented by Formula I:
Figure US10335445-20190702-C00006

(i) From AM4-3-6 and AM4-4-3, a new phorbol ester named 12-deoxy-13-O-acetoylphorbol-20-octadec-9-enoate (8.8 mg) was afforded. This compound possesses a molecule of C40H62O7 and is represented by Formula II:
Figure US10335445-20190702-C00007

(j) From AM4-3-13, two new phorbol esters were given. One new phorbol ester named 12-O-(2E,4E)-6-oxohexa-2,4-dienoylphorbol-13-acetate (0.7 mg) with a molecule of C28H34O9 is represented by Formula III. Another new phorbol ester named 12-O-(2E,4E)-6,7-dihydroxytetradeca-2,4-dienoylphorbol-13-acetate (0.9 mg) possesses a molecule of C36H52O10 and is represented by Formula IV.
Figure US10335445-20190702-C00008

(k) From AM4-4-7 and AM4-4-8, two known phorbol esters, 12-deoxyphorbol 13-decanoate (8.5 mg) and 12-deoxyphorbol 13-octanoate (1.4 mg), were isolated. These two compounds possess molecules H of C30H46O6 and C28H42O6 and are represented by Formulas V and VI, respectively.
Figure US10335445-20190702-C00009
Analysis of the 1H NMR spectra comparison of the ethanolic extract (EtOH), 90% aqueous methanol layer (MeOH), AM-4, and AM4-4 (FIG. 4), the EtOH extract, MeOH layer, AM-4, and the subfraction AM4-4 all comprise phorbol esters, and the efficacy of anti-allergy is in proportion to the signal strength of phorbol esters.
In accordance with the preparation methods, phorbol ester I is 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate with a molecular formula of C36H50O8 deduced from HRESIMS data m/z 633.33980 [M+Na]+ (calcd for C36H50O8Na, 633.33979); [α]D 25: −3.75±1.97 (c 0.0667, CHCl3); UV (MeOH)λmax (log ε): 303 (2.78), 233 (2.75) nm; and IR (neat) νmax: 3413, 2965, 2922, 1710, 1615, 1377, 1258, 1092, 802 cm−1. The 1H and 13C NMR spectra of phorbol ester I are shown in FIG. 5 and FIG. 6, respectively.
In accordance with the preparation methods, phorbol ester II is 12-deoxy-13-O-acetoylphorbol-20-octadec-9-enoate with a molecular formula of C40H62O7 deduced from HRESIMS data m/z 677.43884 [M+Na]+ (calcd for C40H62O7Na, 677.43878); [α]D 25: +2.91±0.49 (c 0.3333, CHCl3); UV (MeOH) λmax (log ε): 285 (2.78), 250 (2.83) nm; and IR (neat) νmax: 3409, 2922, 2855, 1717, 1375, 1332, 1152, 1021 cm−1. The 1H and 13C NMR spectra of phorbol ester II are shown in FIG. 7 and FIG. 8, respectively.
In accordance with the preparation methods, phorbol ester III is 12-O-(2E,4E)-6-oxohexa-2,4-dienoylphorbol-13-acetate with a molecular formula of C28H34O9 deduced from HRESIMS m/z 537.20959 [M+Na]+ (calcd for C28H34O9Na, 537.20950); [α]D 25: +4.20±0.82 (c 0.1667, CHCl3); UV (MeOH) λmax (log ε): 295 (2.80), 249 (2.84) nm; and IR (neat) νmax: 3413, 2925, 2855, 2360, 2339, 1625, 1597, 1261, 1184, 755 cm−1. The 1H and 13C NMR spectra of phorbol ester III are shown in FIG. 9 and FIG. 10, respectively.
In accordance with the preparation methods, phorbol ester IV is 12-O-(2E,4E)-6,7-dihydroxytetradeca-2,4-dienoylphorbol-13-acetate with a molecular formula of C36H52O10 deduced from HRESIMS m/z 667.34515 [M+Na]+ (calcd for C36H52O10Na, 667.34527); [α]D 25: +10.44±1.45 (c 0.1667, CHCl3); UV (MeOH) λmax (log ε): 289 (2.79), 249 (2.83) nm; and IR (neat) νmax: 3392, 2925, 2851, 1710, 1632, 1455, 1375, 1261, 1024, 802, 755 cm−1. The 1H and 13C NMR spectra of phorbol ester IV are shown in FIG. 11 and FIG. 12, respectively.
In accordance with the preparation methods, phorbol ester V is 12-deoxyphorbol 13-decanoate with a molecular formula of C30H46O6 deduced from HRESIMS m/z 525.31921 [M+Na]+ (calcd for C30H46O6Na, 525.31921); [α]D 25: +8.55±0.63 (c 0.200, CHCl3); UV (MeOH) λmax (log ε): 325 (0.14), 249 (1.31) nm; and IR (neat) νmax: 3392, 2925, 2356, 1710, 1629, 1335, 1155 cm−1. The 1H and 13C NMR spectra of phorbol ester V are shown in FIG. 13 and FIG. 14, respectively.
In accordance with the preparation methods, phorbol ester VI is 12-deoxyphorbol 13-octanoate with a molecular formula of C28H42O6 deduced from ESIMS m/z 475 [M+H]+ (calcd for C28H43O6); [α]D 25: +4.75±1.27 (c 0.200, CHCl3); UV (MeOH) λmax (log ε): 311 (0.01), 250 (2.85) nm; and IR (neat) νmax: 3377, 2922, 2858, 1710, 1625, 1332, 1018 cm−1. The 1H NMR spectrum of phorbol ester VI is shown in FIG. 15.
In the present specification and the scope of the patent application, the provided chemicals with formulas I˜VI should comprise all of their optical isomers and stereoisomers, therefore, all of these optical and stereo isomers are included within the scope of the present invention.
For the proposes of this invention, the compositions of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of Aquilaria malaccensis were evaluated by the following assays.
Cell culture: The mucosal mast cell-derived rat basophilic leukemia (RBL-2H3) cell line was purchased from the Bioresource Collection and Research Center (Hsin-Chu, Taiwan). Cells were grown in DMEM medium supplemented with 10% FBS and 100 U/mL penicillin plus 100 μg/mL streptomycin. Cells were cultured in 10 cm cell culture dishes at 37° C. in a humidified chamber with 5% CO2 in air.
Sample preparations: In accordance with the preparation methods of this invention, the compositions from the seeds of Aquilaria malaccensis, the ethanolic extract (EtOH), n-butanol layer (BuOH), aqueous layer (Water), ethyl acetate layer (EtOAc), n-hexane layer (Hexane), 90% aqueous methanol layer (MeOH), the divided AM-4, AM4-4-7, AM4-4-8, AM4-4-9 (phorbol ester I), were prepared for bioactive assays.
Cell viability assay: A methylthiazol tetrazolium (MTT) assay was used to measure the potential toxic effects of the samples on RBL-2H3 cells (Chen et al., J. Nat. Prod., 72, 950-953, 2009). Briefly, RBL-2H3 cells (2×104 cells/well) were seeded in a 96-well plate overnight and treated with various concentrations of samples (10˜100 μg/mL) for 24 h. MTT solution (0.5 mg/mL) was added to the wells (80 μL per well) and incubated for 1 h. The formed formazan crystals were dissolved in DMSO (80 μL). The absorbance at 595 nm was measured using microplate reader (Multiskan Ascent, Thermo Scientific). The degree of cell viability of each sample was calculated as the percentage of control value (untreated cells). The maximal tolerated dose of DMSO was 0.5%. All experiments were repeated at least two times.
Degranulation β-hexosaminidase assay induced by A23187 or antigen: The degree of A23187- and antigen-induced degranulation in RBL-2H3 cells was determined by a β-hexosaminidase release assay as described previously (Chen et al., J. Nat. Prod., 72, 950-953, 2009; Matsuda et al., Bioorg. Med. Chem., 12, 5891-5898, 2004) with following modifications. RBL-2H3 cells were seeded in a 96-well plate (2×104 cells/well) for A23187-induced and in 48-well plate (3×104 cells/well) for antigen-induced experiment. Cells were treated with various concentrations of the samples for 20 h. Dexamethasone (10 nM) was used as a positive control. The cells for the antigen-induced experiment were first sensitized with anti-DNP IgE (5 μg/mL) for at least 2 h. After thorough washing by pre-warmed Tyrode's buffer (135 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 1.0 mM MgCl2, 5.6 mM glucose, 20 mM HEPES at pH 7.4), the cells were stimulated by either calcium ionophore A23187 (1 μM) or antigen DNP-BSA (100 ng/mL) in Tyrode's buffer for 1 h. Unstimulated cells were either lysed with 0.5% Triton X-100 solution for the total amount of β-hexosaminidase release or left untreated for spontaneous release of β-hexosaminidase. Then aliquots of supernatants (50 μL) were incubated with equal volume of 1 μM of p-NAG (50 μL) prepared in 0.1 M citrate buffer (pH 4.5) serving as a substrate for the released β-hexosaminidase. After 1 h of incubation at 37° C., the reaction was quenched by the addition of 100 μL of stop buffer (0.1 M Na2/NaHCO3, pH 10.0). Absorbance was measured at 405 nm on a microplate reader (Multiskan Ascent, Thermo Scientific). The inhibition percentage of β-hexosaminidase release was calculated as the percentage of control value (untreated stimulated cells). The maximal tolerated dose of DMSO was 0.5%. All experiments were repeated three times.
Effect on enzymatic activity of β-hexosaminidase: To test the possible effect of the sample on enzymatic activity, following assay was performed. The cell suspension (2×106 cells) in 2 mL of Tyrode's buffer was sonicated for 5 min. The solution was then centrifuged, and the supernatant was diluted with 8 mL of Tyrode's buffer. The enzyme solution (45 μL) and test sample solution (5 μL) were transferred into a 96-well microplate and enzyme activity was examined as described above (the section of Cell viability assay). All experiments were repeated three times.
Direct degranulation β-hexosaminidase assay induced by the sample: The degree of β-hexosaminidase release triggered by the sample in RBL-2H3 cells was determined by a modified β-hexosaminidase release assay. Briefly, RBL-2H3 cells (4×104 cells/well) were seeded in a 48-well plate and treated with the samples for 10 h. Tyrode's buffer supplemented with 5.6 mM glucose, 2 mg/mL BSA and 2 mM glutamine was used to prepare the samples and treat the cells. Then 50 μL of supernatants were transferred into a 96-well microplate and examined as described above (the section of Cell viability assay). A23187 (1 μM) was used as a positive control. All experiments were repeated three times.
Preparation of human neutrophils: Human neutrophils from venous blood of healthy, adult volunteers (20-30 years old) were isolated using a standard method of dextran sedimentation prior to centrifugation in a Ficoll-Hypaque gradient and hypotonic lysis of erythrocytes (Boyum et al., Scand. J. Clin. Lab. Invest., 97, 77-89, 1968). Purified neutrophils containing >98% viable cells, as determined by the trypan-blue exclusion method (Jauregui et al., In Vitro, 17, 1100-1110, 1981), were resuspended in a Ca2+-free Hank's buffered salt solution (HBSS) at pH 7.4 and were maintained at 4° C. prior to use.
Superoxide anion generation assay and elastase release inhibition assay: Neutrophil superoxide anion generation was determined using superoxide dismutase (SOD)-inhibitory cytochrome reduction according to described procedures (Babior et al., J. Clin. Invest., 52, 741-744, 1973; Hwang et al., Free Radical Bio. Med., 41, 1433-1441, 2006). Degranulation of azurophilic granules was determined by measuring the elastase release as described previously (Hwang et al., Free Radical Bio. Med., 41, 1433-1441, 2006). All experiments were repeated at least three times.
Cytotoxic assay: MTT assay was used to according to the used in a previous manuscript. HepG2 (1×104 cells), A549 (5×103 cells), and MDA-MB-231 (1×104 cells) were seeded into 96-well plates, followed by treatment with the AMS samples at concentration of 20 μg/mL After 72 h, the medium was removed and 100 μL of MTT solution (0.5 mg/mL) was added to each well. The plates were then incubated at 37° C. for 1 h and then, the MTT dye was detected by the addition of DMSO (100 μL). The absorbance was recorded at 550 nm. Doxorubicin was used as a positive control.
In accordance with the assays, antiallergic activity of the compositions from Aquilaria malaccensis seeds and A23187 (a positive control) was concluded in Table 1 whereas antiinflammatory effects of the compositions from A. malaccensis seeds on superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils were summarized in Table 2. Furthermore, activity of phorbol ester-rich fraction (AM4) and phorbol ester I on stimulant-free degranulation in RBL-2H3 cells was shown in Table 4. The RBL-2H3 cells were treated with AM4 (10 μg/ml) and phorbol ester I (10 μg/ml) for 10 h. In the stimulant-free degranulation assay, Tyrode's buffer supplemented with glucose, bovine serum albumin (BSA) and glutamine was used as a medium. A23187 (1 μM) was used as a positive control.
In accordance with antiallergic activity of the compositions from Aquilaria malaccensis seeds (Table 1), the ethanolic extract (A-EtOH) showed potent antiallergic activity (IC50 0.92 and 3.9 μg/mL in A23187 and antigen-induced β-hexosaminidase assay, respectively. To clarify that antiallergic activity of the samples was due to inhibition of β-hexosaminidase release, and not false positive as a result of direct inhibition of β-hexosaminidase enzymatic activity (Wang et al., Biol. Pharm. Bull., 30, 388-392, 2007), the enzyme was extracted and tested with the active samples. None of the samples inhibited the enzymatic activity of β-hexosaminidase. As the methanol layer (A-MeOH) proved the best antiallergic activity (IC50 0.0089 and 0.069 μg/mL in A23187 and antigen-induced degranulation assay, respectively), it was further separated using silica gel column chromatography to yield six fractions, AM1˜AM6. Among them, fraction AM4 showed the most remarkable antiallergic activity inhibiting β-hexosaminidase release from mast cells induced by either A23187 (IC50 0.0034 μg/mL) or antigen (IC50 0.0065 μg/mL).
In accordance with antiinflammatory effects of the compositions from Aquilaria malaccensis seeds on superoxide anion generation and elastase release in fMLP/CB-induced human neutrophils (Table 2), the ethanolic extract (A-EtOH) showed antiinflammatory activity (90.1% and 85.3% inhibition of superoxide generation and elastase release at 10 μg/mL, respectively). All partitioned fractions except the water layer (A-Water) displayed significant antiallergic and antiinflammatory activities.
In accordance with cytotoxic activities of the compositions from Aquilaria malaccensis seeds against HepG2, MDA-MB231, and A549 carcinoma cell lines (Table 3), only some of the compositions showed cytotoxic activities at 20 μg/mL level, (A-BuOH 57.1% against A549, AM4 56.5% against MDA-MB231 and 79.3% against A549, AM6 56.0% against MDA-MB231 cell line). Moreover, considering weak cytotoxicity of the compositions towards RBL-2H3 cells, the antiallergic active fraction AM4 exerted therapeutic index up to 28000. To further rule out the possibility that AM4 causes direct mast cell activation, we examined the capacity of AM4 to elicit degranulation by itself. Results showed that the AM4 treatments did not cause significant degranulation as compared with untreated control (Table 1).
Particularly, in accordance with antiallergic activity of the compositions from Aquilaria malaccensis seeds (Table 1), AM4-4 (IC50 4.8×10+5 μg/mL, therapeutic index 1477328, A23187-induced; and IC50 6.8×10+4 μg/mL, therapeutic index 103776, antigen-induced (3-hexosaminidase assay) afforded the most active fraction AM4-4-8 (IC50 7.6×10−6 μg/mL, therapeutic index 9645374, A23187-induced; and IC50 8.0×10+5 μg/mL, therapeutic index 9645374, antigen-induced degranulation assay), and a new compound, phorbol ester I (IC50 values of 0.0017 μM, therapeutic index 71538, A23187-induced; and IC50 0.011 μM, therapeutic index 10550, antigen-induced degranulation assay).
In accordance with the above bioactive results in this invention, the phorbol ester I really possesses the antiallergic activity and can be pharmaceutically applied for preventing and treating allergies. Similarly, AM4-4-9 subfraction comprising phorbol ester I also really possesses the antiallergic activity and can be pharmaceutically applied for preventing and treating allergies. Therefore, AM4-3-13, AM4-4-3, and AM4-4-7 subfractions have the antiallergic activity correspondingly. In accordance with the results of this invention, the extractions and the fractionated fractions (phorbol ester-contained fractions) from Aquilaria malaccensis seeds can be pharmaceutically applied for preventing and treating allergies and show the potent antiallergic activity.
REFERENCES
  • 1. Lian, Q.; Cheng, Y.; Zhong, C.; Wang, F. “Inhibition of the IgE-mediated activation of RBL-2H3 cells by TIPP, a novel thymic immunosuppressive pentapeptide.” Int. J. Mol. Sci., 16, 2252-2268 (2015).
  • 2. Dearman, R. J.; Skinner, R. A.; Deakin, N.; Shaw, D.; Kimber, I. “Evaluation of an in vitro method for the measurement of specific IgE antibody responses: The rat basophilic leukemia (RBL) cell assay.” Toxicology, 206, 195-205 (2005).
  • 3. Talukdar, A. “Gas chromatography-mass spectrometric analysis of the essential oil of eaglewood (Aquilaria agalloocha Roxb).” Int. J. Pharm. Pharm. Sci., 6, 629-631 (2014).
  • 4. Yang, L.; Qiao, L.; Ji, C.; Xie, D.; Gong, N.-B.; Lu, Y.; Zhang, J.; Dai, J.; Guo, S. “Antidepressant abietane diterpenoids from Chinese eaglewood.” J. Nat. Prod., 76, 216-222 (2013).
  • 5. Huong, D. T. L.; Dat, N. T.; Minh, C. V.; Kang, J. S.; Kim, Y. H. “Monoamine oxidase inhibitors from Aquilaria agallocha.” Nat. Prod. Sci., 8, 30-33. (2002).
  • 6. Huo, H.-X.; Zhu, Z.-X.; Pang, D.-R.; Li, Y.-T.; Huang, Z.; Shi, S.-P.; Zheng, J.; Zhang, Q.; Zhao, Y.-F.; Tu, P.-F. “Anti-neuroinflammatory sesquiterpenes from Chinese eaglewood.” Fitoterapia, 106, 115-121 (2015).
  • 7. Zhou, M.; Wang, H.; Suolangjiba; Kou, J.; Yu, B. “Antinociceptive and anti-inflammatory activities of Aquilaria sinensis (Lour.) Gilg. leaves extract.” J. Ethnopharmacol., 117, 345-350 (2008).
  • 8. Kamonwannasit, S.; Nantapong, N.; Kumkrai, P.; Luecha, P.; Kupittayanant, S.; Chudapongse, N. “Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall.” Ann. Clin. Microbiol. Antimicrob., 12, 20 (2013).
  • 9. Pranakhon, R.; Aromdee, C.; Pannangpetch, P. “Effects of iriflophenone 3-C-β-glucoside on fasting blood glucose level and glucose uptake.” Pharmacogn. Mag., 11, 82-89 (2015).
  • 10. Hara, H.; Ise, Y.; Morimoto, N.; Shimazawa, M.; Ichihashi, K.; Ohyama, M.; Iinuma, M. “Laxative effect of agarwood leaves and its mechanism.” Biosci. Biotechnol. Biochem., 72, 335-345 (2008).
  • 11. Pant, P.; Rastogi, R. P. “Agarol, a new sesquiterpene from Aquilaria agallocha.” Phytochemistry, 19, 1869-1870 (1980).
  • 12. Gunasekera, S. P.; Kinghorn, A. D.; Cordell, G A.; Farnsworth, N. R. “Plant anticancer agents. XIX. Constituents of Aquilaria malaccensis.” J. Nat. Prod., 44, 569-572 (1981).
  • 13. Dyary, H. O.; Arifah, A. K.; Sharma, R. S.; Rasedee, A.; Mohd-Aspollah, M. S.; Zakaria, Z. A.; Zuraini, A.; Somchit, M. N. “Antitrypanosomal screening and cytotoxic effects of selected medicinal plants.” Trop. Biomed., 31, 89-96 (2014).
  • 14. Dash, M.; Patra, J. K.; Panda, P. P. “Phytochemical and antimicrobial screening of extracts of Aquilaria agallocha Roxb.” Afr. J. Biotechnol., 7, 3531-3534 (2008).
  • 15. Kim, Y. C.; Lee, E. H.; Lee, Y. M.; Kim, H. K.; Song, B. K.; Lee, E. J.; Kim, H. M. “Effect of the aqueous extract of Aquilaria agallocha stems on the immediate hypersensitivity reactions.” J. Ethnopharmacol., 58, 31-38 (1997).
  • 16. Chen, B. H., Wu, P. Y., Chen, K. M., Fu, T. F., Wang, H. M., Chen, C. Y. “Antiallergic potential on RBL-2H3 cells of some phenolic constituents of Zingiber officinale (ginger).” J. Nat. Prod., 72, 950-953 (2009).
  • 17. Matsuda, H., Tewtrakul, S., Morikawa, T., Nakamura, A., Yoshikawa, M. “Anti-allergic principles from Thai zedoary: Structural requirements of curcuminoids for inhibition of degranulation and effect on the release of TNF-α and IL-4 in RBL-2H3 cells.” Bioorg. Med. Chem., 12, 5891-5898 (2004).
  • 18. Boyum, A. “Isolation of mononuclear cells and granulocytes from human blood.” Scand. J. Clin. Lab. Invest., 97, 77-89 (1968).
  • 19. Jauregui, H. O., Hayner, N. T., Driscoll, J. L., Williams-Holland, R., Lipsky, M. H., Galletti, P. M. “Trypan blue dye uptake and lactate dehydrogenase in adult rat hepatocytes-freshly isolated cells, cell suspensions, and primary monolayer cultures.” In Vitro, 17, 1100-1110 (1981).
  • 20. Babior, B. M., Kipnes, R. S., Curnutte, J. T. “Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent.” J. Clin. Invest., 52, 741-744 (1973).
  • 21. Hwang, T. L., Leu, Y. L., Kao, S. H., Tang, M. C., Chang, H. L. “Viscolin, a new chalcone from Viscum coloratura, inhibits human neutrophil superoxide anion and elastase release via a cAMP-dependent pathway.” Free Radical Bio. Med., 41, 1433-1441 (2006).
  • 22. Wang, Q.; Matsuda, H.; Matsuhira, K.; Nakamura, S.; Yuan, D.; Yoshikawa, M “Inhibitory effects of thunberginols A, B, and F on degranulations and releases of TNF-alpha; and IL-4 in RBL-2H3 cells.” Biol. Pharm. Bull., 30, 388-392 (2007).
Outstandingly, this invention is characteristic for the advantages of easy collection, simple procedure, and plant growth no-effect due to the phorbol esters preparations from the seeds of Aquilaria malaccensis rather than the stems and barks. Besides, in accordance with the preparation methods of this invention, four new phorbol esters I˜IV were isolated.
This invention is unprecedented and filled with novelty and progressiveness, thus it is prudential to meet the requirement invention patents, and the patent application is made according to the law.
All above described is used only for illustrating possible embodiments of the present invention, and therefore it can not limit the protection scope of this invention. All skilled equal changes or modifications in accordance with the present invention are still under the terms of the specification and the scope of the present invention.

Claims (5)

We claim:
1. A method for preparing compositions from Aquilaria malaccensis seeds, the method including the following steps:
(a) extracting Aquilaria malaccensis seeds that are air dried and powdered with 90% ethanol at room temperature in triplicate and concentrating the extract under a reduced pressure to provide an ethanolic extract;
(b) partitioning the ethanolic extract by suspending the ethanolic extract in water, followed by partitioning carried out with equivalent ethyl acetate in triplicate, so as to separate an organic ethyl acetate layer;
(c) subjecting the ethyl acetate layer to partitioning with n-hexane and 90% aqueous methanol (MeOH) to obtain a hexane layer and a MeOH layer;
(d) subjecting the MeOH layer to column chromatography over silica gel under gradient elution of n-hexane/CH2Cl2/MeOH of 6:3:1, 6:4:1, 6:6:1, 6:8:1, 6:10:1 and 5:10:2 to yield six respective fractions of AM1, 6:3:1; AM2, 6:4:1; AM3, 6:6:1; AM4, 6:8:1; AM5, 6:10:1; and AM6, 6:10:2;
(e) fractioning fraction AM4 over a dextran bead sizing column with a ratio of CH2Cl2/MeOH being 1:1 to obtain eight sub-fractions, which are respectively AM4-1 to AM4-8;
(f) subjecting fraction AM4-3 to column chromatography over silica under gradient elution of EtOAc/n-hexane from 1:10 to, 4:1 to obtain fifteen AM4-3 originating subfractions, which are respectively AM4-3-1 to AM4-3-15; and
(g) separating fraction AM4-4 with column chromatography on silica gel under gradient elution of EtOAc/n-hexane from 1:15 to 4:1 to obtain twelve AM4-4 originating subfractions, which are respectively AM4-4-1 to AM4-4-12,
wherein the fifteen AM4-3 originating subfractions and the twelve AM4-4 originating subfractions are further separated on column chromatography over silica gel to provide phorbol esters of the following formulas:
Formula I: 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate having a molecular formula C36H50O8 of structural formula:
Figure US10335445-20190702-C00010
Formula II: 12-deoxy-13-O-acetoylphorbol-20-octadec-9-enoate having a molecular formula C40H62O7 of structural formula:
Figure US10335445-20190702-C00011
Formula III: 12-O-(2E,4E)-6-oxohexa-2,4-dienoylphorbol-13-acetate having a molecular formula C28H34O9 of structural formula:
Figure US10335445-20190702-C00012
and
Formula IV: 12-O-(2E,4E)-6,7-dihydroxytetradeca-2,4-dienoylphorbol-13-acetate having a molecular formula C36H52O10 of structural formula:
Figure US10335445-20190702-C00013
wherein Formula I derives from the subfraction AM4-4-9, Formula II derives from the subfractions AM4-3-6 and AM4-4-3, and Formulas III and IV derive from the subfraction AM4-3-13.
2. The method as claimed in claim 1, wherein phorbol ester of Formula I,
12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate,
was isolated from AM4-4-9.
Figure US10335445-20190702-C00014
3. The method as claimed in claim 1, wherein phorbol ester of Formula II,
12-deoxy-13-O-acetoylphorbol-20-octadec-9-enoate,
reported by now was isolated from AM4-3-6 and AM4-4-3
Figure US10335445-20190702-C00015
4. The method as claimed in claim 1, wherein phorbol ester of Formula III,
12-O-(2E,4E)-6-oxohexa-2,4-dienoylphorbol-13-acetate,
was isolated from AM4-3-13
Figure US10335445-20190702-C00016
5. The method as claimed in claim 1, wherein phorbol ester of Formula IV,
12-O-(2E,4E)-6,7-dihydroxytetradeca-2,4-dienoylphorbol-13-acetate,
isolated from AM4-3-13
Figure US10335445-20190702-C00017
US15/180,088 2016-03-16 2016-06-13 Compositions and methods of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of aquilaria malaccensis Active US10335445B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW105108065A 2016-03-16
TW105108065 2016-03-16
TW105108065A TWI687405B (en) 2016-03-16 2016-03-16 Agarwood tree seed extract, preparation method and application for anti-allergy

Publications (2)

Publication Number Publication Date
US20170266250A1 US20170266250A1 (en) 2017-09-21
US10335445B2 true US10335445B2 (en) 2019-07-02

Family

ID=59847937

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/180,088 Active US10335445B2 (en) 2016-03-16 2016-06-13 Compositions and methods of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of aquilaria malaccensis

Country Status (3)

Country Link
US (1) US10335445B2 (en)
CN (1) CN107198724B (en)
TW (1) TWI687405B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731607B (en) * 2020-03-04 2021-06-21 謝慧萍 Use of agarwood tree extract to prepare skin anti-inflammatory composition
CN113498816A (en) * 2021-06-10 2021-10-15 海口楠脂香业有限公司 Agilawood tea powder and preparation method and application thereof
CN115025014B (en) * 2022-05-25 2023-03-14 中国科学院昆明植物研究所 Aquilaria sinensis flower extract with collagen secretion promoting and antioxidant activities and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001082927A1 (en) * 2000-05-02 2001-11-08 Lead Chemical Co., Ltd Antibiral compositions containing phorbol derivatives as the main active ingredient
US20110160152A1 (en) * 2009-12-29 2011-06-30 Taipei Medical University Extracts of aquilaria hulls and use thereof in the treatment of cancer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007101243A (en) * 2004-06-12 2008-07-20 Сигнум Байосайенсиз COMPOSITIONS AND METHODS FOR LOCAL APPLICATION FOR CONDITIONS RELATED TO EPITEL

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001082927A1 (en) * 2000-05-02 2001-11-08 Lead Chemical Co., Ltd Antibiral compositions containing phorbol derivatives as the main active ingredient
US20110160152A1 (en) * 2009-12-29 2011-06-30 Taipei Medical University Extracts of aquilaria hulls and use thereof in the treatment of cancer

Also Published As

Publication number Publication date
TWI687405B (en) 2020-03-11
TW201733970A (en) 2017-10-01
US20170266250A1 (en) 2017-09-21
CN107198724B (en) 2021-05-04
CN107198724A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
Tiwari et al. Phytochemistry and pharmacology of Tinospora cordifolia: A review
Wu et al. Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana
Khalafalla et al. Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma
Sawangjaroen et al. The anti-amoebic activity of some medicinal plants used by AIDS patients in southern Thailand
Oloyede et al. Phytochemical screening, antimicrobial and antioxidant activities of four Nigerian medicinal plants
VERMA et al. Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid
Kumar et al. Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia
Opoku et al. Antimicrobial and phytochemical properties of Alstonia boonei extracts
US10335445B2 (en) Compositions and methods of antiallergic phorbol ester and phorbol derivatives as the main active ingredients from the seeds of aquilaria malaccensis
Nand Insignificant anti-acne activity of Azadirachta indica leaves and bark
Ajaghaku et al. In vitro and in vivo antioxidant potentials of Alchornea floribunda leaf extract, fractions and isolated bioactive compounds
Rajamohan et al. Antioxidant, Antimicrobial activities and GC-MS analysis of Calotropis gigantea white flowers
Agyare et al. Anti-infective and Anti-inflammatory Properties of Portulaca oleracea L
Kulkarni et al. Phytochemical analysis of Cassia fistula and its in vitro antimicrobial, antioxidant and anti-inflammatory activities
Mahmud et al. Ethnomedicinal, phytochemical and pharmacological profile of a mangrove plant Ceriops Decandra GriffDin Hou.
da Rosa et al. Calea uniflora Less. attenuates the inflammatory response to carrageenan-induced pleurisy in mice
Lau et al. Two antifungal components isolated from Fructus Psoraleae and Folium Eucalypti Globuli by bioassay-guided purification
Ranjit et al. An overview of phytochemical and pharmacological activities of Calotropis procera
Gill et al. Phytochemical investigation of high altitude medicinal plants Cinnamomum tamala (Buch-ham) Nees and Eberm and Rhododendron arboreum smith
Carneiro et al. Assessment of genotoxic, cytotoxic, and protective effects of Salacia crassifolia (Mart. Ex. Schult.) G. Don. stem bark fractions in mice
Ureña-Vacas et al. Dibenzofurans from lichens–a pharmacological overview
Radwan et al. Seasonal Variations in Antioxidant Activity, Total Flavonoids Content, Total Phenolic Content, Antimicrobial Activity and Some Bioactive Components of Ficus carica L. in Palestine
dos Santos et al. Acanthospermum hispidum DC: An updated review on phytochemistry and biological activities
Ezeonu et al. Antimicrobial Activity, Phytochemistry and Acute Toxicity Profile of Sarcocephalius latifolius Root Bark: doi. org/10.26538/tjnpr/v5i3. 26
Bruno et al. Phytochemical Composition and Biological Activity of Faidherbia albida (Mimosaceae) Roots and Leaves

Legal Events

Date Code Title Description
AS Assignment

Owner name: WE-WIN APPLIED BIO-TECH CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANG, FANG-RONG;CHEN, BING-HUNG;HSU, HSUE-YIN;AND OTHERS;SIGNING DATES FROM 20160315 TO 20160316;REEL/FRAME:038891/0434

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4