US10333368B2 - Cooling unit of drive motor - Google Patents

Cooling unit of drive motor Download PDF

Info

Publication number
US10333368B2
US10333368B2 US15/264,767 US201615264767A US10333368B2 US 10333368 B2 US10333368 B2 US 10333368B2 US 201615264767 A US201615264767 A US 201615264767A US 10333368 B2 US10333368 B2 US 10333368B2
Authority
US
United States
Prior art keywords
path
cooling medium
drive motor
flow
fixing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/264,767
Other versions
US20170302137A1 (en
Inventor
Kyoungbum Kim
MyungKyu Jeong
GaEun Lee
Sanghwa Do
Young Jin Seo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Assigned to HYUNDAI MOTOR COMPANY reassignment HYUNDAI MOTOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DO, SANGHWA, MR., JEONG, MYUNGKYU, MR., KIM, KYOUNGBUM, MR., LEE, GAEUN, MS., SEO, YOUNG JIN, MR.
Publication of US20170302137A1 publication Critical patent/US20170302137A1/en
Priority to US16/352,032 priority Critical patent/US10855135B2/en
Priority to US16/352,071 priority patent/US10855136B2/en
Application granted granted Critical
Publication of US10333368B2 publication Critical patent/US10333368B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • H02K1/325Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium between salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • H02K9/16Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the cooling medium circulates through ducts or tubes within the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a drive motor for a vehicle, more particularly, to a cooling unit of the drive motor capable of cooling a stator core of the drive motor fixed within a housing.
  • an electric vehicle or a hybrid vehicle called an environmentally-friendly vehicle may be driven by an electric motor (hereinafter, referred to as a “drive motor”) obtaining a torque by power of a battery.
  • a drive motor an electric motor
  • the drive motor as described above includes a stator core.
  • the stator core is fixed within a housing, and a rotor is mounted integrally with a motor shaft of the drive motor.
  • cooling should be necessarily performed in order to prevent damage due to the heat and secure continuously stable operability.
  • cooling of the drive motor such as a permanent magnet synchronous motor (PMSM) plays a very important role in efficiency of the motor and protection of core components (a permanent magnet, a winding coil, and the like).
  • PMSM permanent magnet synchronous motor
  • core components a permanent magnet, a winding coil, and the like.
  • an oil cooling scheme through oil and a water cooling scheme through a coolant have been mainly used.
  • a cooling unit of the drive motor depending on the water cooling scheme will be described by way of example.
  • a support ring for cooling a stator core simultaneously with fixing the stator core to a housing is installed between the housing and the stator core.
  • the support ring includes a coolant flow path formed therein along a ring direction (a circumferential direction) in order to allow a coolant to flow.
  • the support ring includes a coolant inlet formed in order to inject the coolant into the cooling flow path, and a coolant outlet formed in order to exhaust the coolant from the coolant flow path.
  • the coolant injected through the coolant inlet may flow from the coolant inlet to both sides along the coolant flow path, and be exhausted through the coolant outlet.
  • the coolant flow path of the support ring may include a first path connecting the coolant inlet and the coolant outlet to each other at one side and a second path connecting the coolant inlet and the coolant outlet to each other at another side.
  • the coolant flow path may include the first and second paths of which flow cross-sectional areas are the same as each other and lengths are different from each other.
  • the flow cross-sectional areas of the first and second paths are the same as each other and the lengths of the first and second paths are different from each other, such that a greater amount of flow rate may be introduced into a path having a shorter length, among the first and second paths.
  • imbalance of a flow rate of the coolant flowing along the first and second paths occurs in the coolant flow path of the support ring, which may cause cooling imbalance of the drive motor.
  • the present invention provides a cooling unit of a drive motor having advantages of decreasing imbalance of a flow rate of a coolant flowing along a coolant flow path of a support ring.
  • An exemplary embodiment of the present invention provides a cooling unit of a drive motor, including: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different flow cross sections and are connected to each other.
  • the first and second paths may have different lengths, and the first path may have a length longer than that of the second path.
  • the first path may have a flow cross section larger than that of the second path.
  • the first and second paths may allow the same flow rate of cooling medium to flow.
  • a cooling unit of a drive motor including: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different lengths, a plurality of through-holes connected to the flow path are formed along an outer circumferential direction of the fixing member in an outer circumferential surface of the fixing member, and cap plugs are installed in the through-holes, and the cap plugs are inserted into the through-holes at different depths so as to each correspond to the first and second paths.
  • the first and second paths may have the same flow cross section and be connected to each other.
  • the first path may have a length longer than that of the second path.
  • An insertion depth of the cap plugs corresponding to the first path may be shallower than that of the cap plugs corresponding to the second path.
  • a cooling unit of a drive motor including: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different lengths, a plurality of through-holes connected to the flow path are formed along an outer circumferential direction of the fixing member in an outer circumferential surface of the fixing member, and cap plugs are installed in the through-holes, and the cap plugs are inserted into the through-holes at different depths so as to each correspond to the first and second paths, and insertion depths of the cap plugs
  • the first and second paths may have the same flow cross section and be connected to each other.
  • the first path may have a length longer than that of the second path.
  • An insertion depth of the cap plugs corresponding to the second path may be deeper than that of the cap plugs corresponding to the first path.
  • the actuators may include operation cylinders connected to the cap plugs corresponding to the second path.
  • FIG. 1 is a cross-sectional view schematically showing a cooling unit of a drive motor according to an exemplary embodiment of the present invention.
  • FIG. 2 is a perspective view showing a fixing member used in the cooling unit of the drive motor according to an exemplary embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the fixing member used in the cooling unit of the drive motor according to an exemplary embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a fixing member used in a cooling unit of a drive motor according to another exemplary embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a fixing member used in a cooling unit of a drive motor according to yet another exemplary embodiment of the present invention.
  • vehicle or “vehicular” or other similar term as used herein is inclusive of motor vehicles in general such as passenger automobiles including sports utility vehicles (SUV), buses, trucks, various commercial vehicles, watercraft including a variety of boats and ships, aircraft, and the like, and includes hybrid vehicles, electric vehicles, plug-in hybrid electric vehicles, hydrogen-powered vehicles and other alternative fuel vehicles (e.g. fuels derived from resources other than petroleum).
  • a hybrid vehicle is a vehicle that has two or more sources of power, for example both gasoline-powered and electric-powered vehicles.
  • control logic of the present invention may be embodied as non-transitory computer readable media on a computer readable medium containing executable program instructions executed by a processor, controller or the like.
  • Examples of computer readable media include, but are not limited to, ROM, RAM, compact disc (CD)-ROMs, magnetic tapes, floppy disks, flash drives, smart cards and optical data storage devices.
  • the computer readable medium can also be distributed in network coupled computer systems so that the computer readable media is stored and executed in a distributed fashion, e.g., by a telematics server or a Controller Area Network (CAN).
  • a telematics server or a Controller Area Network (CAN).
  • CAN Controller Area Network
  • FIG. 1 is a cross-sectional view schematically showing a cooling unit of a drive motor according to an exemplary embodiment of the present invention.
  • an exemplary embodiment of the present invention may be used in a drive motor 3 used in an electric vehicle or a hybrid vehicle.
  • the drive motor 3 may include a permanent magnet synchronous motor (PMSM) or a wound rotor synchronous motor (WRSM).
  • PMSM permanent magnet synchronous motor
  • WRSM wound rotor synchronous motor
  • the drive motor 3 includes a stator core 10 fixed within a motor housing 1 (hereinafter, referred to as a “housing” for convenience) and generating a magnetic flux, and a rotor core 30 disposed to have a predetermined gap from the stator core 10 and be rotated around a rotation shaft 20 , which is a drive shaft.
  • the drive motor 3 may be used in an inner rotor type synchronous motor in which the rotor core 30 is disposed inside the stator core 10 .
  • a cooling unit 100 of the drive motor 3 has a structure in which the stator core 10 of the drive motor 3 is fixed within the housing 1 , and the stator core 10 may be cooled by a cooling medium (for example, a coolant).
  • a cooling medium for example, a coolant
  • the cooling unit 100 of the drive motor 3 that may decrease imbalance of a flow rate of the cooling medium and further improve cooling performance for the stator core 10 of the drive motor 3 is provided.
  • the cooling unit 100 of the drive motor 3 includes a fixing member 50 installed between the housing 1 and the stator core 10 .
  • FIG. 2 is a perspective view showing a fixing member used in the cooling unit of the drive motor according to an exemplary embodiment of the present invention
  • FIG. 3 is a cross-sectional view of FIG. 2 .
  • the purpose of the fixing member 50 is to cool heat generated in the stator core 10 through a coolant, which is a cooling medium, in a water cooling scheme, simultaneously with supporting and fixing the stator core 10 of the drive motor 3 within the housing 1 .
  • the fixing member 50 is provided as a support ring of which an entire shape is a ring shape, and is installed between the housing 1 and the stator core 10 .
  • the fixing member 50 may be formed of a stainless steel material having a thermal expansion coefficient similar to that of the stator core 10 .
  • the fixing member 50 includes a coolant flow path 61 allowing the coolant, which is the cooling medium, to flow in a ring direction (a circumferential direction) in order to cool the stator core 10 .
  • the coolant flow path 61 may be formed integrally with the fixing member 50 within the fixing member 50 .
  • the fixing member 50 preferably is manufactured through core type low pressure casting, and the coolant flow path 61 is formed integrally with the fixing member 50 within the fixing member 50 . That is, the coolant flow path 61 may be formed as an annular internal space within a ring-shaped body of the fixing member 50 by molding the ring-shaped body of the fixing member 50 through the low pressure casting.
  • a plurality of through-holes 71 connected to the coolant flow path 61 are formed along an outer circumferential direction of the fixing member 50 in an outer circumferential surface of the fixing member 50 .
  • the through-holes 71 are formed along a circumferential direction in the outer circumferential surface of the fixing member 50 so as to be spaced apart from each other by predetermined intervals.
  • the through-holes 71 may be formed as core holes for forming the coolant flow path 61 within the fixing member 50 .
  • a cooling medium inlet 73 for injecting the coolant into the coolant flow path 61 is formed in any one of the through-holes 71 .
  • a cooling medium outlet 75 for exhausting the coolant from the coolant flow path 61 is formed in another of the through-holes 71 .
  • Cap plugs 77 (shown by an alternate long and short dash line in FIG. 3 ) for plugging the through-holes 71 are installed in through-holes other than the through-holes in which the cooling medium inlet 73 and the cooling medium outlet 75 are installed among the through-holes 71 .
  • the cap plugs 77 plug the through-holes 71 while being inserted into the through-holes 71 in a press-fitting scheme.
  • the coolant flow path 61 to which the coolant flows is formed along the circumferential direction (or the ring direction) of the fixing member 50 , the coolant flow path 61 includes a first path 81 and a second path 82 connected to each other.
  • the first and second paths 81 and 82 are divided along the circumferential direction of the fixing member 50 and are connected to each other, thereby making it possible to form the coolant flow path 61 described above.
  • the first path 81 connects the cooling medium inlet 73 and the cooling medium outlet 75 to each other at one side on the basis of the circumferential direction of the fixing member 50
  • the second path 82 connects the cooling medium inlet 73 and the cooling medium outlet 75 to each other at another side on the basis of the circumferential direction of the fixing member 50 .
  • the first and second paths 81 and 82 of the coolant flow path 61 are provided with different lengths.
  • a length of the first path 81 may be relatively longer than that of the second path 82 .
  • the first and second paths 81 and 82 have different flow cross sections and are connected to each other.
  • a flow cross section of the first path 81 is larger than that of the second path 82 .
  • the fixing member 50 is installed between the housing 1 and the stator core 10 , and the coolant flow path 61 to which the coolant flows is formed in the fixing member 50 , thereby making it possible to allow the coolant to flow to the coolant flow path 61 and cool heat generated in the stator core 10 by the coolant.
  • the coolant injected through the cooling medium inlet 73 of the fixing member 50 may flow in two directions along the first and second paths 81 and 82 of the coolant flow path 61 , and be exhausted through the cooling medium outlet 75 .
  • the first and second paths 81 and 82 may allow the same flow rate of cooling medium to flow.
  • the second path 82 having a length relatively shorter than that of the first path 81 has a flow cross section smaller than that of the first path 81 , a flow velocity of the coolant is increased in the second path 82 as compared with in the first path 81 .
  • the first path 81 having a length relatively longer than that of the second path 82 has a flow cross section larger than that of the second path 82 , a flow velocity of the coolant is decreased in the first path 81 as compared with in the second path 82 .
  • imbalance of the flow rate of the coolant flowing along the first and second paths 81 and 82 of the coolant flow path 61 is decreased in an exemplary embodiment of the present invention as compared with the related art in which flow cross sections of the first and second paths are the same as each other and lengths of the first and second paths are different from each other.
  • cooling performance for the stator core 10 of the drive motor 3 may be improved.
  • FIG. 4 is a cross-sectional view showing a fixing member used in a cooling unit of a drive motor according to another exemplary embodiment of the present invention.
  • the cooling unit of a drive motor may include a fixing member 150 having a coolant flow path 161 of which flow cross sections of first and second paths 181 and 182 are the same as each other and a length of the first path 181 is relatively longer than that of the second path 182 .
  • the cooling unit of a drive motor may include cap plugs 177 installed into through-holes 171 of the fixing member 150 at different insertion lengths so as to each correspond to the first and second paths 181 and 182 .
  • the cap plugs 177 in the first path 181 are inserted into the through-holes 171 at an insertion depth shallower than that of the cap plugs 177 in the second path 182 .
  • the cap plugs 177 in the second path 182 are inserted into the through-holes 171 at an insertion depth deeper than that of the cap plugs 177 in the first path 181 .
  • the cap plugs 177 in the first path 181 having a length relatively longer than that of the second path 182 are inserted into the through-holes 171 at an insertion depth shallower than that of the cap plugs 177 in the second path 182 , a flow velocity of the coolant is decreased in the first path 181 as compared with the second path 182 .
  • insertion depths of the cap plugs 177 each corresponding to the first and second paths 181 and 182 of the coolant flow path 161 are set to be different from each other, thereby decreasing imbalance of a flow rate of the coolant flowing along the first and second paths 181 and 182 . Therefore, cooling performance for the stator core of the drive motor may be increased.
  • FIG. 5 is a cross-sectional view showing a fixing member used in a cooling unit of a drive motor according to yet another exemplary embodiment of the present invention.
  • the cooling unit of a drive motor may include a fixing member 250 having a coolant flow path 261 of which flow cross sections of first and second paths 281 and 282 are the same as each other and a length of the first path 281 is relatively longer than that of the second path 282 , similar to the cooling unit of a drive motor according to another exemplary embodiment of the present invention described above.
  • cooling unit of a drive motor may include cap plugs 277 installed into through-holes 271 of the fixing member 250 at different insertion lengths so as to each correspond to the first and second paths 281 and 282 .
  • insertion depths of the cap plugs 277 each corresponding to the first and second paths 281 and 282 may be varied by actuators 290 .
  • the cap plugs 277 in the second path 282 are inserted into the through-holes 271 at an insertion depth deeper than that of the cap plugs 277 in the first path 281 by the actuators 290 .
  • the cap plugs 277 in the first path 281 are inserted into the through-hole 271 at an insertion depth shallower than that of the cap plugs 277 in the second path 282 , for example, by a thickness of the through-holes 271 .
  • the actuators 290 as described above may include, for example, operation cylinders 291 installed to be connected to the cap plugs 277 corresponding to the second path 282 and well-known in the related art.
  • insertion depths of the cap plugs 277 each corresponding to the first and second paths 281 and 282 of the coolant flow path 261 are set to be different from each other through the actuators 290 , thereby decreasing imbalance of a flow rate of the coolant flowing along the first and second paths 281 and 282 of the coolant flow part 261 . Therefore, cooling performance for the stator core of the drive motor may be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

A cooling unit of a drive motor includes: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different flow cross sections and are connected to each other.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application claims under 35 U.S.C. § 119(a) the benefit of Korean Patent Application No. 10-2016-0047095 filed in the Korean Intellectual Property Office on Apr. 18, 2016, the entire contents of which are incorporated herein by reference.
BACKGROUND (a) Technical Field
The present invention relates to a drive motor for a vehicle, more particularly, to a cooling unit of the drive motor capable of cooling a stator core of the drive motor fixed within a housing.
(b) Description of the Related Art
Generally, an electric vehicle or a hybrid vehicle called an environmentally-friendly vehicle may be driven by an electric motor (hereinafter, referred to as a “drive motor”) obtaining a torque by power of a battery.
The drive motor as described above includes a stator core. The stator core is fixed within a housing, and a rotor is mounted integrally with a motor shaft of the drive motor.
Meanwhile, a large amount of heat is generated due to an eddy current generated in the stator core of the drive motor, cooling should be necessarily performed in order to prevent damage due to the heat and secure continuously stable operability.
Particularly, cooling of the drive motor such as a permanent magnet synchronous motor (PMSM) plays a very important role in efficiency of the motor and protection of core components (a permanent magnet, a winding coil, and the like). In the drive motor, when a temperature of the permanent magnet becomes a predetermined level or more, permanent magnet demagnetization is generated, such that intensity of magnetic force becomes weak, which has a significantly negative influence on efficiency of the motor.
For cooling the drive motor, an oil cooling scheme through oil and a water cooling scheme through a coolant have been mainly used. Among them, a cooling unit of the drive motor depending on the water cooling scheme will be described by way of example. In the cooling unit of the drive motor depending on the water cooling scheme, a support ring for cooling a stator core simultaneously with fixing the stator core to a housing is installed between the housing and the stator core.
In the related art, the support ring includes a coolant flow path formed therein along a ring direction (a circumferential direction) in order to allow a coolant to flow. In addition, the support ring includes a coolant inlet formed in order to inject the coolant into the cooling flow path, and a coolant outlet formed in order to exhaust the coolant from the coolant flow path. Here, the coolant injected through the coolant inlet may flow from the coolant inlet to both sides along the coolant flow path, and be exhausted through the coolant outlet.
Therefore, the coolant flow path of the support ring may include a first path connecting the coolant inlet and the coolant outlet to each other at one side and a second path connecting the coolant inlet and the coolant outlet to each other at another side. Here, the coolant flow path may include the first and second paths of which flow cross-sectional areas are the same as each other and lengths are different from each other.
Therefore, in the coolant flow path of the support ring according to the related art, the flow cross-sectional areas of the first and second paths are the same as each other and the lengths of the first and second paths are different from each other, such that a greater amount of flow rate may be introduced into a path having a shorter length, among the first and second paths.
Therefore, in the related art, imbalance of a flow rate of the coolant flowing along the first and second paths occurs in the coolant flow path of the support ring, which may cause cooling imbalance of the drive motor.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
SUMMARY
The present invention provides a cooling unit of a drive motor having advantages of decreasing imbalance of a flow rate of a coolant flowing along a coolant flow path of a support ring.
An exemplary embodiment of the present invention provides a cooling unit of a drive motor, including: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different flow cross sections and are connected to each other.
The first and second paths may have different lengths, and the first path may have a length longer than that of the second path.
The first path may have a flow cross section larger than that of the second path.
The first and second paths may allow the same flow rate of cooling medium to flow.
Another exemplary embodiment of the present invention provides a cooling unit of a drive motor including: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different lengths, a plurality of through-holes connected to the flow path are formed along an outer circumferential direction of the fixing member in an outer circumferential surface of the fixing member, and cap plugs are installed in the through-holes, and the cap plugs are inserted into the through-holes at different depths so as to each correspond to the first and second paths.
The first and second paths may have the same flow cross section and be connected to each other.
The first path may have a length longer than that of the second path.
An insertion depth of the cap plugs corresponding to the first path may be shallower than that of the cap plugs corresponding to the second path.
Yet another exemplary embodiment of the present invention provides a cooling unit of a drive motor including: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different lengths, a plurality of through-holes connected to the flow path are formed along an outer circumferential direction of the fixing member in an outer circumferential surface of the fixing member, and cap plugs are installed in the through-holes, and the cap plugs are inserted into the through-holes at different depths so as to each correspond to the first and second paths, and insertion depths of the cap plugs are varied by actuators.
The first and second paths may have the same flow cross section and be connected to each other.
The first path may have a length longer than that of the second path.
An insertion depth of the cap plugs corresponding to the second path may be deeper than that of the cap plugs corresponding to the first path.
The actuators may include operation cylinders connected to the cap plugs corresponding to the second path.
BRIEF DESCRIPTION OF THE DRAWINGS
A brief description of the drawings will be provided to more sufficiently understand the drawings which are used in the detailed description of the present invention.
FIG. 1 is a cross-sectional view schematically showing a cooling unit of a drive motor according to an exemplary embodiment of the present invention.
FIG. 2 is a perspective view showing a fixing member used in the cooling unit of the drive motor according to an exemplary embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the fixing member used in the cooling unit of the drive motor according to an exemplary embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a fixing member used in a cooling unit of a drive motor according to another exemplary embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a fixing member used in a cooling unit of a drive motor according to yet another exemplary embodiment of the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
It is understood that the term “vehicle” or “vehicular” or other similar term as used herein is inclusive of motor vehicles in general such as passenger automobiles including sports utility vehicles (SUV), buses, trucks, various commercial vehicles, watercraft including a variety of boats and ships, aircraft, and the like, and includes hybrid vehicles, electric vehicles, plug-in hybrid electric vehicles, hydrogen-powered vehicles and other alternative fuel vehicles (e.g. fuels derived from resources other than petroleum). As referred to herein, a hybrid vehicle is a vehicle that has two or more sources of power, for example both gasoline-powered and electric-powered vehicles.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Throughout the specification, unless explicitly described to the contrary, the word “comprise” and variations such as “comprises” or “comprising” will be understood to imply the inclusion of stated elements but not the exclusion of any other elements. In addition, the terms “unit”, “-er”, “-or”, and “module” described in the specification mean units for processing at least one function and operation, and can be implemented by hardware components or software components and combinations thereof.
Further, the control logic of the present invention may be embodied as non-transitory computer readable media on a computer readable medium containing executable program instructions executed by a processor, controller or the like. Examples of computer readable media include, but are not limited to, ROM, RAM, compact disc (CD)-ROMs, magnetic tapes, floppy disks, flash drives, smart cards and optical data storage devices. The computer readable medium can also be distributed in network coupled computer systems so that the computer readable media is stored and executed in a distributed fashion, e.g., by a telematics server or a Controller Area Network (CAN).
The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
FIG. 1 is a cross-sectional view schematically showing a cooling unit of a drive motor according to an exemplary embodiment of the present invention.
Referring to FIG. 1, an exemplary embodiment of the present invention may be used in a drive motor 3 used in an electric vehicle or a hybrid vehicle. The drive motor 3 may include a permanent magnet synchronous motor (PMSM) or a wound rotor synchronous motor (WRSM).
The drive motor 3 includes a stator core 10 fixed within a motor housing 1 (hereinafter, referred to as a “housing” for convenience) and generating a magnetic flux, and a rotor core 30 disposed to have a predetermined gap from the stator core 10 and be rotated around a rotation shaft 20, which is a drive shaft. For example, the drive motor 3 may be used in an inner rotor type synchronous motor in which the rotor core 30 is disposed inside the stator core 10.
A cooling unit 100 of the drive motor 3 according to an exemplary embodiment of the present invention as described above has a structure in which the stator core 10 of the drive motor 3 is fixed within the housing 1, and the stator core 10 may be cooled by a cooling medium (for example, a coolant).
In an exemplary embodiment of the present invention, the cooling unit 100 of the drive motor 3 that may decrease imbalance of a flow rate of the cooling medium and further improve cooling performance for the stator core 10 of the drive motor 3 is provided.
To this end, the cooling unit 100 of the drive motor 3 according to an exemplary embodiment of the present invention includes a fixing member 50 installed between the housing 1 and the stator core 10.
FIG. 2 is a perspective view showing a fixing member used in the cooling unit of the drive motor according to an exemplary embodiment of the present invention, and FIG. 3 is a cross-sectional view of FIG. 2.
Referring to FIGS. 1 to 3, in an exemplary embodiment of the present invention, the purpose of the fixing member 50 is to cool heat generated in the stator core 10 through a coolant, which is a cooling medium, in a water cooling scheme, simultaneously with supporting and fixing the stator core 10 of the drive motor 3 within the housing 1.
The fixing member 50 is provided as a support ring of which an entire shape is a ring shape, and is installed between the housing 1 and the stator core 10. The fixing member 50 may be formed of a stainless steel material having a thermal expansion coefficient similar to that of the stator core 10.
In an exemplary embodiment of the present invention, the fixing member 50 includes a coolant flow path 61 allowing the coolant, which is the cooling medium, to flow in a ring direction (a circumferential direction) in order to cool the stator core 10. The coolant flow path 61 may be formed integrally with the fixing member 50 within the fixing member 50.
The fixing member 50 preferably is manufactured through core type low pressure casting, and the coolant flow path 61 is formed integrally with the fixing member 50 within the fixing member 50. That is, the coolant flow path 61 may be formed as an annular internal space within a ring-shaped body of the fixing member 50 by molding the ring-shaped body of the fixing member 50 through the low pressure casting.
In addition, a plurality of through-holes 71 connected to the coolant flow path 61 are formed along an outer circumferential direction of the fixing member 50 in an outer circumferential surface of the fixing member 50. The through-holes 71 are formed along a circumferential direction in the outer circumferential surface of the fixing member 50 so as to be spaced apart from each other by predetermined intervals.
The through-holes 71 may be formed as core holes for forming the coolant flow path 61 within the fixing member 50. A cooling medium inlet 73 for injecting the coolant into the coolant flow path 61 is formed in any one of the through-holes 71. In addition, a cooling medium outlet 75 for exhausting the coolant from the coolant flow path 61 is formed in another of the through-holes 71.
Cap plugs 77 (shown by an alternate long and short dash line in FIG. 3) for plugging the through-holes 71 are installed in through-holes other than the through-holes in which the cooling medium inlet 73 and the cooling medium outlet 75 are installed among the through-holes 71. The cap plugs 77 plug the through-holes 71 while being inserted into the through-holes 71 in a press-fitting scheme.
Meanwhile, in an exemplary embodiment of the present invention, since the coolant flow path 61 to which the coolant flows is formed along the circumferential direction (or the ring direction) of the fixing member 50, the coolant flow path 61 includes a first path 81 and a second path 82 connected to each other. The first and second paths 81 and 82 are divided along the circumferential direction of the fixing member 50 and are connected to each other, thereby making it possible to form the coolant flow path 61 described above.
The first path 81 connects the cooling medium inlet 73 and the cooling medium outlet 75 to each other at one side on the basis of the circumferential direction of the fixing member 50, and the second path 82 connects the cooling medium inlet 73 and the cooling medium outlet 75 to each other at another side on the basis of the circumferential direction of the fixing member 50.
The first and second paths 81 and 82 of the coolant flow path 61 are provided with different lengths. For example, a length of the first path 81 may be relatively longer than that of the second path 82.
In an exemplary embodiment of the present invention, the first and second paths 81 and 82 have different flow cross sections and are connected to each other. For example, a flow cross section of the first path 81 is larger than that of the second path 82.
Therefore, in the cooling unit 100 of a drive motor according to an exemplary embodiment of the present invention configured as described above, the fixing member 50 is installed between the housing 1 and the stator core 10, and the coolant flow path 61 to which the coolant flows is formed in the fixing member 50, thereby making it possible to allow the coolant to flow to the coolant flow path 61 and cool heat generated in the stator core 10 by the coolant.
In an exemplary embodiment of the present invention, the coolant injected through the cooling medium inlet 73 of the fixing member 50 may flow in two directions along the first and second paths 81 and 82 of the coolant flow path 61, and be exhausted through the cooling medium outlet 75.
Further, in an exemplary embodiment of the present invention, since the length of the first path 81 is longer than that of the second path 82 and the flow cross section of the first path 81 is larger than that of the second path 82, the first and second paths 81 and 82 may allow the same flow rate of cooling medium to flow.
That is, since the second path 82 having a length relatively shorter than that of the first path 81 has a flow cross section smaller than that of the first path 81, a flow velocity of the coolant is increased in the second path 82 as compared with in the first path 81. In addition, since the first path 81 having a length relatively longer than that of the second path 82 has a flow cross section larger than that of the second path 82, a flow velocity of the coolant is decreased in the first path 81 as compared with in the second path 82.
Therefore, imbalance of the flow rate of the coolant flowing along the first and second paths 81 and 82 of the coolant flow path 61 is decreased in an exemplary embodiment of the present invention as compared with the related art in which flow cross sections of the first and second paths are the same as each other and lengths of the first and second paths are different from each other. As a result, cooling performance for the stator core 10 of the drive motor 3 may be improved.
FIG. 4 is a cross-sectional view showing a fixing member used in a cooling unit of a drive motor according to another exemplary embodiment of the present invention.
Referring to FIG. 4, the cooling unit of a drive motor according to another exemplary embodiment of the present invention may include a fixing member 150 having a coolant flow path 161 of which flow cross sections of first and second paths 181 and 182 are the same as each other and a length of the first path 181 is relatively longer than that of the second path 182.
Further, the cooling unit of a drive motor according to another exemplary embodiment of the present invention may include cap plugs 177 installed into through-holes 171 of the fixing member 150 at different insertion lengths so as to each correspond to the first and second paths 181 and 182.
Here, the cap plugs 177 in the first path 181 are inserted into the through-holes 171 at an insertion depth shallower than that of the cap plugs 177 in the second path 182. In addition, the cap plugs 177 in the second path 182 are inserted into the through-holes 171 at an insertion depth deeper than that of the cap plugs 177 in the first path 181.
Therefore, in another exemplary embodiment of the present invention, since the cap plugs 177 in the second path 182 having a length relatively shorter than that of the first path 181 are inserted into the through-holes 171 at an insertion depth deeper than that of the cap plugs 177 in the first path 181, a flow velocity of the coolant is increased in the second path 182 as compared with the first path 181.
In addition, in another exemplary embodiment of the present invention, since the cap plugs 177 in the first path 181 having a length relatively longer than that of the second path 182 are inserted into the through-holes 171 at an insertion depth shallower than that of the cap plugs 177 in the second path 182, a flow velocity of the coolant is decreased in the first path 181 as compared with the second path 182.
Therefore, in another exemplary embodiment of the present invention, insertion depths of the cap plugs 177 each corresponding to the first and second paths 181 and 182 of the coolant flow path 161 are set to be different from each other, thereby decreasing imbalance of a flow rate of the coolant flowing along the first and second paths 181 and 182. Therefore, cooling performance for the stator core of the drive motor may be increased.
FIG. 5 is a cross-sectional view showing a fixing member used in a cooling unit of a drive motor according to yet another exemplary embodiment of the present invention.
Referring to FIG. 5, the cooling unit of a drive motor according to yet another exemplary embodiment of the present invention may include a fixing member 250 having a coolant flow path 261 of which flow cross sections of first and second paths 281 and 282 are the same as each other and a length of the first path 281 is relatively longer than that of the second path 282, similar to the cooling unit of a drive motor according to another exemplary embodiment of the present invention described above.
Further, the cooling unit of a drive motor according to yet another exemplary embodiment of the present invention may include cap plugs 277 installed into through-holes 271 of the fixing member 250 at different insertion lengths so as to each correspond to the first and second paths 281 and 282.
In yet another exemplary embodiment of the present invention, insertion depths of the cap plugs 277 each corresponding to the first and second paths 281 and 282 may be varied by actuators 290.
For example, the cap plugs 277 in the second path 282 are inserted into the through-holes 271 at an insertion depth deeper than that of the cap plugs 277 in the first path 281 by the actuators 290.
Here, the cap plugs 277 in the first path 281 are inserted into the through-hole 271 at an insertion depth shallower than that of the cap plugs 277 in the second path 282, for example, by a thickness of the through-holes 271.
The actuators 290 as described above may include, for example, operation cylinders 291 installed to be connected to the cap plugs 277 corresponding to the second path 282 and well-known in the related art.
Therefore, since the cap plugs 277 in the second path 282 having a length relatively shorter than that of the first path 281 are inserted into the through-holes 271 at an insertion depth deeper than that of the cap plugs 277 in the first path 281 by the actuators 290, a flow velocity of the coolant is increased in the second path 282 as compared with in the first path 281.
In addition, since the cap plugs 277 in the first path 281 having a length relatively longer than that of the second path 282 are inserted into the through-holes 271 at an insertion depth shallower than that of the cap plugs 277 in the second path 282, a flow velocity of the coolant is decreased in the first path 281 as compared with the second path 282.
Therefore, in yet another exemplary embodiment of the present invention, insertion depths of the cap plugs 277 each corresponding to the first and second paths 281 and 282 of the coolant flow path 261 are set to be different from each other through the actuators 290, thereby decreasing imbalance of a flow rate of the coolant flowing along the first and second paths 281 and 282 of the coolant flow part 261. Therefore, cooling performance for the stator core of the drive motor may be increased.
While this invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (5)

What is claimed is:
1. A cooling unit of a drive motor, comprising:
a motor housing being formed in a ring shape and configured to fix a stator core of the drive motor,
wherein the motor housing includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, and
the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side, and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and
the first and second paths have different flow cross sections and are connected to each other.
2. The cooling unit of a drive motor of claim 1, wherein the motor housing includes a fixing member being formed in a ring shape and being installed on an inner wall surface thereof so as to fix the stator core of the drive motor, and
the flow path, the cooling medium inlet, and the cooling medium outlet are formed at the fixing member.
3. The cooling unit of a drive motor of claim 1, wherein:
the first and second paths have different lengths, and the first path has a length longer than that of the second path.
4. The cooling unit of a drive motor of claim 3, wherein:
the first path has a flow cross section larger than that of the second path.
5. The cooling unit of a drive motor of claim 4, wherein:
the first and second paths allow the same flow rate of cooling medium to flow.
US15/264,767 2016-04-18 2016-09-14 Cooling unit of drive motor Active 2037-05-24 US10333368B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/352,032 US10855135B2 (en) 2016-04-18 2019-03-13 Cooling unit of drive motor
US16/352,071 US10855136B2 (en) 2016-04-18 2019-03-13 Cooling unit of drive motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0047095 2016-04-18
KR1020160047095A KR101836259B1 (en) 2016-04-18 2016-04-18 Cooling structure of drive motor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/352,071 Division US10855136B2 (en) 2016-04-18 2019-03-13 Cooling unit of drive motor
US16/352,032 Division US10855135B2 (en) 2016-04-18 2019-03-13 Cooling unit of drive motor

Publications (2)

Publication Number Publication Date
US20170302137A1 US20170302137A1 (en) 2017-10-19
US10333368B2 true US10333368B2 (en) 2019-06-25

Family

ID=60038562

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/264,767 Active 2037-05-24 US10333368B2 (en) 2016-04-18 2016-09-14 Cooling unit of drive motor
US16/352,032 Active 2036-12-29 US10855135B2 (en) 2016-04-18 2019-03-13 Cooling unit of drive motor
US16/352,071 Active 2036-12-29 US10855136B2 (en) 2016-04-18 2019-03-13 Cooling unit of drive motor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/352,032 Active 2036-12-29 US10855135B2 (en) 2016-04-18 2019-03-13 Cooling unit of drive motor
US16/352,071 Active 2036-12-29 US10855136B2 (en) 2016-04-18 2019-03-13 Cooling unit of drive motor

Country Status (3)

Country Link
US (3) US10333368B2 (en)
KR (1) KR101836259B1 (en)
CN (1) CN107306055B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4583376A1 (en) * 2024-01-04 2025-07-09 Toyota Jidosha Kabushiki Kaisha Motor unit
EP4589823A1 (en) * 2024-01-18 2025-07-23 Toyota Jidosha Kabushiki Kaisha Motor unit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102575713B1 (en) * 2017-12-04 2023-09-07 현대자동차주식회사 Motor cooling structure
US10862371B2 (en) * 2018-12-14 2020-12-08 Bendix Commercial Vehicle Systems Llc Perimeter liquid-cooled electric machine and integrated power inverter
CN110112866B (en) * 2019-06-17 2024-04-19 苏州百狮腾电气有限公司 Small screw compressor motor
DE102021210878A1 (en) * 2021-09-29 2023-03-30 Robert Bosch Gesellschaft mit beschränkter Haftung electrical machine
CN114867317B (en) * 2022-05-30 2025-01-28 福建万芯科技有限公司 Container data center management method, device, storage medium and electronic equipment
KR20240065674A (en) * 2022-11-07 2024-05-14 현대자동차주식회사 Cooling strcuture and method of manufacturing housing including the same
KR102727412B1 (en) 2023-10-26 2024-11-07 주식회사 케이제이 Ev drive motor cooling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727611B2 (en) 2002-05-28 2004-04-27 Emerson Electric Co. Cooling jacket for electric machines
JP2006174550A (en) 2004-12-14 2006-06-29 Nissan Motor Co Ltd Stator structure of disk type rotating electrical machine
JP3815399B2 (en) 2002-08-08 2006-08-30 日産自動車株式会社 Stator cooling structure for multi-axis multilayer motor
JP2010273424A (en) 2009-05-20 2010-12-02 Honda Motor Co Ltd Electric motor
US20130049495A1 (en) * 2010-02-26 2013-02-28 Hitachi Automotive Systems, Ltd. Rotating electric machine system
JP2014107888A (en) 2012-11-26 2014-06-09 Meidensha Corp Water channel structure of motor frame
JP2014222984A (en) 2013-05-14 2014-11-27 株式会社豊田自動織機 Rotary electric machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919106B2 (en) * 2009-01-15 2012-04-18 アイシン・エィ・ダブリュ株式会社 Stator
CN102651579B (en) * 2011-02-25 2017-03-29 德昌电机(深圳)有限公司 Cooling body and motor
JP2012186880A (en) * 2011-03-03 2012-09-27 Hitachi Constr Mach Co Ltd Rotary electric machine provided with cooling structure and construction machine using rotary electric machine
US20140339933A1 (en) * 2013-05-15 2014-11-20 Remy Technologies, L.L.C. Electric machine including an adaptable cooling system
WO2014194060A1 (en) * 2013-05-30 2014-12-04 Remy Technologies. Llc Electric machine with liquid cooled housing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727611B2 (en) 2002-05-28 2004-04-27 Emerson Electric Co. Cooling jacket for electric machines
JP3815399B2 (en) 2002-08-08 2006-08-30 日産自動車株式会社 Stator cooling structure for multi-axis multilayer motor
JP2006174550A (en) 2004-12-14 2006-06-29 Nissan Motor Co Ltd Stator structure of disk type rotating electrical machine
JP2010273424A (en) 2009-05-20 2010-12-02 Honda Motor Co Ltd Electric motor
US20130049495A1 (en) * 2010-02-26 2013-02-28 Hitachi Automotive Systems, Ltd. Rotating electric machine system
JP2014107888A (en) 2012-11-26 2014-06-09 Meidensha Corp Water channel structure of motor frame
JP2014222984A (en) 2013-05-14 2014-11-27 株式会社豊田自動織機 Rotary electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4583376A1 (en) * 2024-01-04 2025-07-09 Toyota Jidosha Kabushiki Kaisha Motor unit
EP4589823A1 (en) * 2024-01-18 2025-07-23 Toyota Jidosha Kabushiki Kaisha Motor unit

Also Published As

Publication number Publication date
US10855135B2 (en) 2020-12-01
US20190214878A1 (en) 2019-07-11
KR101836259B1 (en) 2018-03-08
US20170302137A1 (en) 2017-10-19
CN107306055B (en) 2020-06-16
KR20170119208A (en) 2017-10-26
US20190214879A1 (en) 2019-07-11
CN107306055A (en) 2017-10-31
US10855136B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
US10855135B2 (en) Cooling unit of drive motor
CN106169836B (en) Motor with cooling structure
US20160164374A1 (en) Rotor of wound rotor driving motor
CN107465321B (en) Wound rotor synchronous motor for vehicle
US20180175679A1 (en) Direct-cooling driving motor for vehicle
US11264852B2 (en) Motor
US20160164357A1 (en) Rotor structure of wound rotor driving motor
CN105634165B (en) Rotor of wound rotor synchronous motor
KR101846921B1 (en) Cooling structure of drive motor
US20160134169A1 (en) Stator assembly unit of drive motor of hybrid vehicle
JP4958891B2 (en) Toroidal winding motor
CN102396133A (en) Dynamo-electric machine
US10291105B2 (en) Cooling structure of drive motor
CN105553183A (en) Cooling unit of drive motor
KR20150051682A (en) Cooling structure of oil cooling motor
CA2899980A1 (en) Electrical machine with direct stator cooling
KR20220096306A (en) Structure for projecting cooling oil
US20120326549A1 (en) Fixing a permanent magnet in a driving motor rotor
JP2017517238A (en) Rotor with permanent magnets with magnetic flux concentration for rotating electrical machines
US20170163105A1 (en) Stator assembly unit of drive motor
KR102625857B1 (en) Driven Motor for Electric Vehicle
US20180166950A1 (en) Cooling Structure for Drive Motor
US11831227B2 (en) Motor cover structure
US12224652B2 (en) Motor cooling structure
KR20140029685A (en) Oil cooling type motor

Legal Events

Date Code Title Description
AS Assignment

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, KYOUNGBUM, MR.;JEONG, MYUNGKYU, MR.;LEE, GAEUN, MS.;AND OTHERS;REEL/FRAME:039736/0279

Effective date: 20160909

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4