US10299670B1 - Self-retaining nasal septum retractor - Google Patents

Self-retaining nasal septum retractor Download PDF

Info

Publication number
US10299670B1
US10299670B1 US16/124,130 US201816124130A US10299670B1 US 10299670 B1 US10299670 B1 US 10299670B1 US 201816124130 A US201816124130 A US 201816124130A US 10299670 B1 US10299670 B1 US 10299670B1
Authority
US
United States
Prior art keywords
speculum
self
arm
nasal
retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active - Reinstated
Application number
US16/124,130
Inventor
Ibrahim Ali Sumaily
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
King Saud University
Original Assignee
King Saud University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Saud University filed Critical King Saud University
Priority to US16/124,130 priority Critical patent/US10299670B1/en
Assigned to KING SAUD UNIVERSITY reassignment KING SAUD UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUMAILY, IBRAHIM ALI, DR.
Application granted granted Critical
Publication of US10299670B1 publication Critical patent/US10299670B1/en
Priority to SA119410016A priority patent/SA119410016B1/en
Active - Reinstated legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/32Devices for opening or enlarging the visual field, e.g. of a tube of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/233Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the nose, i.e. nasoscopes, e.g. testing of patency of Eustachian tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/02Surgical instruments, devices or methods for holding wounds open, e.g. retractors; Tractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/02Surgical instruments, devices or methods for holding wounds open, e.g. retractors; Tractors
    • A61B17/0206Surgical instruments, devices or methods for holding wounds open, e.g. retractors; Tractors with antagonistic arms as supports for retractor elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/24Surgical instruments, devices or methods for use in the oral cavity, larynx, bronchial passages or nose; Tongue scrapers

Definitions

  • the disclosure of the present patent application relates to surgical retractors, and particularly to a self-retaining nasal septum retractor having adjustable speculum angles.
  • Surgical instruments have been designed in order to provide minimally invasive visual and physical access to the inner nose and certain areas within the human head, such as the suprasellar and parasellar areas.
  • a variety of nasal specula were designed for nasal and transnasal surgery.
  • Nasal specula have evolved to incorporate many different shapes and sizes tailored for specific procedures and patient abnormalities.
  • endoscopic sinus surgery is one of the most common surgeries for either sinus pathology or as an approach to intracranial pathology, which has triggered new advances in retractor and speculum features.
  • Specula During the performance of nasal surgery, several separate instruments are required to be inserted through a very narrow nasal opening. Specula have been designed to spread and protect the nostril tissue, including the septum, but the ridged relation between the handle and the specula can prevent a user from positioning the specula in a desired location. This is especially the case when a large portion of the device remains in the working area just below the nose. Unobstructed movement is necessary in this area in order to operate other surgical instruments inserted in the nostril. Constant readjustment or accidental movement of the speculum can cause unnecessary damage to the patient, potentially affecting the outcome of the procedure.
  • the self-retaining nasal septum retractor includes two pivotally attached arms having handles on one end and speculum blades on the opposing end.
  • the speculum blades are adjustably connected to the arms through pivoting joints.
  • a user can adjust the vertical displacement and angular relation between the speculum blades and the arms to fit different patient septal/nasal structures.
  • a self-retaining mechanism allows a user to lock the retractor in a retracted position, freeing up a hand of the user for other surgical tasks.
  • a method of nasal retraction includes inspecting a patient's nostril to document unique and irregular structures. Once a topographical understanding of the patient's nasal septum has been achieved, a user can adjust the speculum pivots to conform to the structures of the patient's septum. An adjusted retractor is then inserted into the nostril and the speculum blades are positioned on the previously determined features. Retraction using the adjusted speculum blades will create a large working corridor within the nostril for the user to perform the procedure. Once the procedure is finished the retractor is removed from the nostril and either sterilized or thrown away.
  • FIG. 1 is a perspective view of a self-retaining nasal septum retractor.
  • FIG. 2 is a side elevation view of the self-retaining nasal septum retractor of FIG. 1 .
  • FIG. 3 is a partial side elevation view of the self-retaining nasal septum retractor of FIG. 1 , showing the nasal speculum blades set to a desired orientation before surgery.
  • FIG. 4 is a partial side elevation view of the self-retaining nasal septum retractor of FIG. 1 , shown both in an insertion configuration and in a working configuration.
  • FIG. 5 is a partial top view of the handle and locking mechanism of the self-retaining nasal septum retractor of FIG. 1 .
  • the self-retaining nasal septum retractor provides a self-retaining vertically and angularly adjustable nasal septum retractor 10 .
  • the retractor 10 includes a pair of arms 21 a , 21 b , which are pivotally connected. Handles 25 a , 25 b having finger loops are located at the proximal end of the arms for a user to engage with the fingers and thumb to operate the instrument. The distal ends of the arms are attached in series to joints 19 a , 19 b , 15 a , 15 b , which pivotally attach speculum blades 13 a , 13 b to the arms.
  • a self-retaining mechanism 27 a , 27 b , 27 c , 27 d , 27 e is capable of locking the arms 21 a , 21 b at a desired opening (spacing) and angular relation to one another.
  • the first arm 21 a and second arm 21 b are connected by a joint 23 including a pivot pin that extends through a bore in each of the arms 21 a , 21 b , providing the arms with a pivotal relationship.
  • the arms 21 a , 21 b are connected as a non-cross joint, which is chosen because joining the proximal handle portions will cause the speculum blades to spread. This configuration may be preferred because a user will have more control and power when contracting with the hand than when extending.
  • the arms 21 a , 21 b may be configured as a cross-hinge for procedures where less force is necessary.
  • the arms 21 a 21 b are bowed outwardly to give the user an expanded working field when the retractor 10 is in a retracted state.
  • the preferred embodiment shows the portion of the arms distal to the arm joint 23 longer that the proximal portion with the handles 25 a , 25 b . This configuration allows for a magnitude increase between the input movement at the handle and the output movement at the speculum.
  • the distal portion can be shorter than the proximal portion resulting in a force increase at the output end, but also a magnitude decrease.
  • the proximal end of the retractor 10 is shown with the handles 25 a , 25 b comprising rings or loops for accepting a user's fingers.
  • the handles 25 a , 25 b comprising rings or loops for accepting a user's fingers.
  • other user grips/interfaces known in the art may be used for their respective benefits.
  • an electrically driven mechanism may be used to control the pivotal relationship between the arms 21 a , 21 b .
  • An electrical drive may allow for more precision with regard to distance and force.
  • first arm 21 a and second arm 21 b are each connected to respective intermediate members 17 a , 17 b by respective speculum joints 19 a , 19 b .
  • a bore in the proximal end of each intermediate member 17 a , 17 b is aligned with a bore in the distal end of their respective arms 21 a , 21 b .
  • a hinge pin in inserted through the aligned bores of the first arm 21 a and intermediate member 17 a , and another hinge pin is inserted through the aligned bores of 21 b and 17 b to create the joints.
  • Each intermediate member is connected at its distal end to a respective speculum blade 13 a , 13 b by distal speculum joints 15 a , 15 b having a hinge mechanism similar to the proximal speculum joints 19 a , 19 b .
  • the hinges have variable stiffness, allowing the user to tighten the joint to a desired stiffness. Preferably, a stiffness light enough to be flexed by the user's hands, in preparation for the procedure, while remaining stiff enough to maintain the preset position during the procedure. It is also contemplated that the joints have a locking feature for giving the user the ability to easily adjust the joint to a desired position and then be locked in place.
  • the self-retaining nasal septum retractor 10 may have a configuration having teeth on the connected members' bore adjacent surfaces, which are in contact with the each other, and a threaded hinge pin that can be tightened to compress the surfaces together. While only a hinge pin joint is discussed, any joint orientation known in the art is contemplated for these joints.
  • the speculum joints 15 a , 15 b , 19 a , 19 b are restricted to operate in a plane perpendicular to the plane of the arm connecting joint 23 .
  • joints 15 a , 15 b , 19 a , 19 b allow a user to adjust the angle of the intermediate members 17 a , 17 b and the speculum blades 13 a , 13 b with respect to the arms 21 a , 21 b .
  • the intermediate members 17 a , 17 b give the proximal end of the speculum blades 13 a , 13 b the ability to be displaced from the plane on which its arm 21 a , 21 b lies.
  • the speculum blades 13 a , 13 b can move with three degrees of freedom.
  • Devices with only one or greater than two speculum joints are also contemplated. Further, it is also contemplated to incorporate speculum blade joints that also allow lateral adjustment for situations where a lateral angle or displacement is desired.
  • FIG. 2 shows a side view of the device with both sets of speculum joints in the same position. Therefore, only the first arm 21 a components are depicted.
  • This view shows a possible vertical and angular orientation of the medial intermediate member 17 a and speculum blade 13 a .
  • the proximal speculum joint 19 a is angled downward, which displaces the distal speculum joint 15 a (and therefore the respective speculum blade 13 a ) vertically below the plane of the arm 21 a .
  • the distal speculum joint 15 a is also angled down to reorient the tip of the speculum blade 13 a so it is in a plane parallel with the arm 21 a.
  • the individual adjustability of the speculum blade joints 15 a , 15 b , 19 a , 19 b allows a user to adjust each speculum blade 13 a , 13 b for contacting an optimal location in the patient's nose with regard to potential retraction size and protection of the intranasal tissue.
  • standard retractors typically will not create a large enough working area due to the irregular septal surface, thus preventing proper retraction.
  • By adding adjustability to both angular deviation and vertical displacement with respect to the device arms 21 a , 21 b a user can adjust the blade 13 a to a position where it can properly contact the irregular surface of the septum.
  • the angular deviation and vertical displacement of the speculum blades 13 a , 13 b will be determined and set on a case-by-case basis based on the unique structure of each nostril.
  • FIG. 3 depicts the retractor 10 in a preset position that may be set by a user after inspection of the patient's nasal features and before insertion into the nostril.
  • the configuration takes advantage of the individual angular adjustability of each speculum blade 13 a , 13 b .
  • the proximal speculum joint 19 b of the lateral speculum blade 13 b is at a slight downward angle of deviation, since minimal vertical offset is necessary, and the distal speculum joint 15 b of the corresponding blade 13 b is set to a downward angle.
  • the speculum blade 13 b can be used to retract and protect the patient's inferior turbinate.
  • the location of the inferior turbinate is slightly more posterior that a typical patient, so that the speculum blade 13 b has been adjusted to contact the turbinate's center.
  • the speculum blade 13 a adjusted for contacting the septum, is positioned for a situation where the hypothetical patient's deviated septum is more accepting of a blade coming from a lower vertical position and at an upward angle.
  • the speculum joint 19 a of the first arm 21 a is angled more sharply downward than the proximal speculum joint 19 b of the lateral speculum blade 13 b , utilizing the intermediate member 17 a for vertical displacement, and the distal speculum joint 15 a is angled only slightly downward to create the necessary upward angle of the speculum blade 13 a from the lower position.
  • This is purely a hypothetical configuration, as each patient will require different adjustment based on the procedure and nostril characteristics. The angles in FIG. 3 are exaggerated to help depict the features being discussed.
  • FIG. 4 shows a change in the angle of the proximal speculum joints 19 and distal speculum joints 15 that can be performed during a procedure.
  • both joint angles are downward, similar to the orientation in FIG. 2 .
  • This orientation may be advantageous for insertion of the speculum blades 13 into the nostril because it allows a user to align the speculum blades 13 with the arms 21 , while slightly displacing the arms 21 so that there is a direct line of sight between the blades 13 and into the nose.
  • a surgeon will typically insert multiple tools, often including a rigid endoscope and forceps, which are operated by lengthy handles.
  • a relatively large movement of the handle may be necessary for a small movement of the tool head. Accordingly, a large working area below the nose may be required. If the retractor 10 maintains its position in the location directly below the nostril, it may hinder the movement of the user, potentially increasing the time of the operation or decreasing the quality of work performed. Therefore, it would be beneficial to move the non-critical portions of the retractor 10 out of this working area.
  • the dashed lines show the retractor 10 in a second orientation that would be advantageous for the portion of the operation where instruments are inserted into the nostril.
  • the speculum joints 15 , 19 are pivoted up so the handles 25 and arms 21 are positioned above the patient's head, giving the user an unobstructed working area to maneuver the handles of the tools inserted in the nostril.
  • the blades 13 a , 13 b of the speculum are designed in a way that avoids damaging the tissue within the nostril when inserted, retracted, and adjusted. This is achieved through preventing points of high stress, which may damage the tissue.
  • the end of the blades 13 a , 13 b and all of their edges are rounded to remove sharp points that can cut the tissue or provide points of stress concentration.
  • a superior edge of each blade 13 a , 13 b tapers out from the distal to proximal end in order to match the shape of the nostril.
  • the blades 13 a , 13 b By shaping the blades 13 a , 13 b according to the shape of the nostril channel, the blades 13 a , 13 b maintain contact with a maximum surface area on the sides of the nostril without adding undue stress due to conflicting shapes.
  • Each blade 13 a , 13 b curves inward around its longitudinal axis, providing an external surface that matches the shape of the nostril entrance.
  • the retractor 10 should create a large working corridor for visualization inside the nostril and to give the user an area to work within the nostril.
  • the curved shape of the speculum blades 13 a , 13 b creates a conical working corridor for the tools to access the inner nose or trans-nasal region.
  • the tools cannot be designed with the same non-damaging characteristics as the speculum blades 13 a , 13 b , since they need to perform their intended functions, which, in many cases, include damaging tissue. For instance, a knife must to be sharp in order to properly perform its duties of cutting.
  • the corridor created by the speculum blades 13 a , 13 b provides a necessary protective barrier for the surrounding tissue. When a knife is inserted into the nostril, contact will be made with the speculum blades 13 a , 13 b , instead of the tissue, thereby preventing possible damage to the tissue.
  • the speculum blades 13 a , 13 b may specifically be designed for different procedures where various size and shape characteristics are beneficial. For example, a trans-nasal procedure, including procedures in the sellar, infrasellar, and supraseller regions, may benefit from having longer blades with a less severe taper at the tip. This will allow the blades to be inserted further into the nostril, creating a longer protective corridor. Trans-nasal blades may also flair out slightly at the distal-most end. The outward flair can further retract soft tissue directly adjacent the site of the tissue being operated on, giving the user more space to visualize the area and maneuver the multiple tools.
  • the speculum blades 13 a , 13 b may be specifically designed for intra-septal procedures.
  • a patient's septum may be an irregular shape, which won't properly conform to the shape of a generic speculum blade.
  • the blade intended to engage these specific structures can be shaped in a way that optimizes retraction.
  • FIG. 5 shows an embodiment of the self-retaining mechanism 27 a - 27 e .
  • the self-retaining mechanism 27 a - 27 e allows a user to lock the arms 21 a , 21 b at a specific angular relation to one another, therefore maintaining a retracted state without requiring a user to hold the instrument. This affords the user a free hand for use in other aspects of the procedure.
  • the self-retaining mechanism 27 a - 27 e in FIG. 5 comprises an arcuate guide 27 a attached at its one end to the first arm 21 a with the lateral end extending through a hole 27 e in the second arm 21 b .
  • the guide 27 a slides freely through the hole 27 e , guiding the relative movement of the arms 21 a , 21 b .
  • a lower surface of the guide 27 a is fitted with a row of extending teeth 27 d spread across its length.
  • the teeth 27 d are configured to engage a locking handle 27 b attached to the freely pivoting arm 21 b , thereby preventing the arm 21 b from sliding freely on the guide 27 a , effectively locking it in place.
  • the locking handle 27 b is connected to the lateral arm 21 b by a locking holder 27 c which biases the locking handle 27 b towards the teeth 27 d in order to maintain the locked position, in which teeth on the locking handle 27 b are mated with the teeth 27 d on the guide.
  • a user can unlock the self-retaining mechanism 27 a - 27 e to change the angular relation between the arms 21 a , 21 b by applying a proximally directed force to the locking handle 17 b with a free finger. The force exerted by the user will overcome the bias set by the locking holder 27 c and separate the locking handle 27 b from the teeth 27 d .
  • the device may also include a mechanism for locking the handle in a freely movable position so that the user doesn't not need to maintain pressure on the handle in situations where locking is not necessary or a hindrance.
  • a mechanism for locking the handle in a freely movable position so that the user doesn't not need to maintain pressure on the handle in situations where locking is not necessary or a hindrance.
  • Other locking mechanisms known in the art are contemplated for use with this device.
  • Such mechanism may include a threaded bolt that adjusts the width through twisting the bolt or an electrically powered locking mechanism that the user operates through a user interface.
  • the retractor 10 described above may be manufactured out of stainless steel, titanium, cobalt-chromium alloys or any other biocompatible metals having proper strength and stiffness characteristics.
  • the external metal surface present the risk of reflecting light into the user's eyes during an inspection, especially when a user is shining a beam of light into the nostril. Therefore, it may be beneficial to ebonize the surfaces of the instrument as a measure to prevent light reflection.
  • Disposable retractors 10 may be made out of polymers, such as polypropylene, polyvinyl chloride, polycarbonate, polyurethane, polyethersulfone, polytetrafluoroethylene, polyetherimide, polysulfone, or any other biocompatible polymers having proper strength and stiffness characteristics.
  • polymers such as polypropylene, polyvinyl chloride, polycarbonate, polyurethane, polyethersulfone, polytetrafluoroethylene, polyetherimide, polysulfone, or any other biocompatible polymers having proper strength and stiffness characteristics.
  • the speculum blades 13 a , 13 b are contemplated as being within the range of 2 cm to 8 cm in length, preferably 5 cm, along their longitudinal axis L a , which is the axis directed into the nostril when inserted.
  • the tip width W T of the speculum blades 13 a , 13 b , the portion spanning the nostril passage, is contemplated to be within the range of 4 mm to 12 mm, preferably 8 mm.
  • the intermediate members 17 a , 17 b connecting the two speculum joints 15 , 19 are contemplated as being within the range of 0.5 cm to 3 cm in length, preferably 1 cm.
  • This distance from the arm joint 23 connecting the handles 25 to the proximal speculum joints 19 is contemplated as being within the range of 5 cm to 15 cm, preferably 10 cm.
  • Nasal structures are sized and shaped differently on different people. Therefore, sizes outside of these ranges are contemplated when a patient's features require the instrument to have a dimension not listed.
  • the speculum joints 15 , 19 are contemplated as having up to three hundred and sixty degrees of rotation, and the arm joint 23 is contemplated as having up to 180° of rotation. However, it is understood that different joint configurations can restrict the angular range.
  • a method of nasal retraction with the above described retractor may begin with an inspection, by a surgeon, of the nostril that is being retracted.
  • the surgeon takes note of specific feature, such as the location of the inferior turbinate and/or shape and location of a septum deviation.
  • the surgeon will adjust the proximal speculum hinges 19 and distal speculum hinges 15 , separately for each of the speculum blades 13 a and 13 b to a location the surgeon believes will offer the best retraction and protection for the patient.
  • the speculum blade 13 a is adjusted based on the shape of a user's septum and the speculum blade 13 b is adjusted based on the opposing wall feature being retracted, typically the inferior turbinate.
  • the user may test the adjusted retractor 10 in the patient's nostril and readjust if necessary.
  • the properly oriented speculum blades 13 are then inserted into the patient's nostril with the blade 13 a placed against the septum and the blade 13 b placed against the opposing wall, typically against at least the inferior turbinate.
  • the retractor 10 Once the retractor 10 is inserted and checked for proper position, the user will spread the speculum blades 13 by pulling on the locking handle 27 b to separate the teeth 27 d and then squeeze the handles 25 to retract the speculum blades. A minimal amount force is exerted by the user to prevent damage to the patient's nostril tissue. If the device fails to satisfactorily retract the nostril, a user may adjust the position or angles of the speculum blades. Once the nostril is satisfactorily retracted, the locking handle 27 b is released by the user, locking the retractor in its retracted position. At this point, the arms 21 and handles 25 of the retractor 10 may be pivoted up above the patient's forehead to create more space below the nose for performing the procedure.
  • the surgeon proceeds with the procedure by using the working channel created by the speculum blades 13 , making sure to use the curved speculum blades 13 a , 13 b as guides for the tools so that damage to surrounding tissue is minimized.
  • the user will pull on the locking handle 27 b , separating it from the teeth 27 d of the locking guide 27 a , and close the speculum blades 13 a , 13 b for removal.
  • Some procedures this device may be used for include submucosal resection of the nasal septum (S.M.R.); septorhinoplasty; removal of suprasellar, sellar, and infrasellar tumors; microscopic sinus or otic surgery; myringtomy and grommet insertion; polypectomy; and stapedectomy.
  • S.M.R. nasal septum
  • septorhinoplasty removal of suprasellar, sellar, and infrasellar tumors
  • microscopic sinus or otic surgery myringtomy and grommet insertion
  • polypectomy and stapedectomy.
  • the retractor 10 may also be used for other surgical procedures requiring retraction in locations other than the nose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Otolaryngology (AREA)
  • Surgical Instruments (AREA)

Abstract

The self-retaining nasal septum retractor includes two pivotally attached arms having handles on one end and speculum blades on the opposing end. The speculum blades are adjustably connected to the arms through pivoting joints. A user can adjust the vertical displacement and angular relation between the speculum blades and the arms to fit different patient septal/nasal structures. A self-retaining mechanism allows a user to lock the retractor in a retracted position, freeing up a hand of the user for other surgical tasks.

Description

BACKGROUND 1. Field
The disclosure of the present patent application relates to surgical retractors, and particularly to a self-retaining nasal septum retractor having adjustable speculum angles.
2. Description of the Related Art
Surgical instruments have been designed in order to provide minimally invasive visual and physical access to the inner nose and certain areas within the human head, such as the suprasellar and parasellar areas. With the introduction of rhinoscopy in the mid-nineteenth century, a variety of nasal specula were designed for nasal and transnasal surgery. Nasal specula have evolved to incorporate many different shapes and sizes tailored for specific procedures and patient abnormalities. Currently, endoscopic sinus surgery is one of the most common surgeries for either sinus pathology or as an approach to intracranial pathology, which has triggered new advances in retractor and speculum features.
During the performance of nasal surgery, several separate instruments are required to be inserted through a very narrow nasal opening. Specula have been designed to spread and protect the nostril tissue, including the septum, but the ridged relation between the handle and the specula can prevent a user from positioning the specula in a desired location. This is especially the case when a large portion of the device remains in the working area just below the nose. Unobstructed movement is necessary in this area in order to operate other surgical instruments inserted in the nostril. Constant readjustment or accidental movement of the speculum can cause unnecessary damage to the patient, potentially affecting the outcome of the procedure.
In cases where the patient has a deviated septum, a typical nasal speculum will not create a proper opening for the surgeon to operate. In such cases, surgeons commonly perform a septoplasty to improve the view and ease of instrument insertion to the surgical field. This additional procedure is time consuming and carries additional risk to the patient. In cases where the deviated septum is not symptomatic to the patient, which is often the case, the septoplasty will not afford the patient an improvement. Therefore, there is a need for a retractor capable of retracting a deviated septum.
Thus, a nasal septum retractor solving the aforementioned problems is desired.
SUMMARY
The self-retaining nasal septum retractor includes two pivotally attached arms having handles on one end and speculum blades on the opposing end. The speculum blades are adjustably connected to the arms through pivoting joints. A user can adjust the vertical displacement and angular relation between the speculum blades and the arms to fit different patient septal/nasal structures. A self-retaining mechanism allows a user to lock the retractor in a retracted position, freeing up a hand of the user for other surgical tasks.
A method of nasal retraction includes inspecting a patient's nostril to document unique and irregular structures. Once a topographical understanding of the patient's nasal septum has been achieved, a user can adjust the speculum pivots to conform to the structures of the patient's septum. An adjusted retractor is then inserted into the nostril and the speculum blades are positioned on the previously determined features. Retraction using the adjusted speculum blades will create a large working corridor within the nostril for the user to perform the procedure. Once the procedure is finished the retractor is removed from the nostril and either sterilized or thrown away.
These and other features of the present disclosure will become readily apparent upon further review of the following specification and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of a self-retaining nasal septum retractor.
FIG. 2 is a side elevation view of the self-retaining nasal septum retractor of FIG. 1.
FIG. 3 is a partial side elevation view of the self-retaining nasal septum retractor of FIG. 1, showing the nasal speculum blades set to a desired orientation before surgery.
FIG. 4 is a partial side elevation view of the self-retaining nasal septum retractor of FIG. 1, shown both in an insertion configuration and in a working configuration.
FIG. 5 is a partial top view of the handle and locking mechanism of the self-retaining nasal septum retractor of FIG. 1.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The self-retaining nasal septum retractor provides a self-retaining vertically and angularly adjustable nasal septum retractor 10. Referring to FIG. 1, the retractor 10 includes a pair of arms 21 a, 21 b, which are pivotally connected. Handles 25 a, 25 b having finger loops are located at the proximal end of the arms for a user to engage with the fingers and thumb to operate the instrument. The distal ends of the arms are attached in series to joints 19 a, 19 b, 15 a, 15 b, which pivotally attach speculum blades 13 a, 13 b to the arms. A self-retaining mechanism 27 a, 27 b, 27 c, 27 d, 27 e is capable of locking the arms 21 a, 21 b at a desired opening (spacing) and angular relation to one another.
The first arm 21 a and second arm 21 b are connected by a joint 23 including a pivot pin that extends through a bore in each of the arms 21 a, 21 b, providing the arms with a pivotal relationship. The arms 21 a, 21 b are connected as a non-cross joint, which is chosen because joining the proximal handle portions will cause the speculum blades to spread. This configuration may be preferred because a user will have more control and power when contracting with the hand than when extending. Alternatively, the arms 21 a, 21 b may be configured as a cross-hinge for procedures where less force is necessary. The arms 21 a 21 b are bowed outwardly to give the user an expanded working field when the retractor 10 is in a retracted state. The preferred embodiment shows the portion of the arms distal to the arm joint 23 longer that the proximal portion with the handles 25 a, 25 b. This configuration allows for a magnitude increase between the input movement at the handle and the output movement at the speculum. Alternatively, the distal portion can be shorter than the proximal portion resulting in a force increase at the output end, but also a magnitude decrease.
The proximal end of the retractor 10 is shown with the handles 25 a, 25 b comprising rings or loops for accepting a user's fingers. Alternatively, other user grips/interfaces known in the art may be used for their respective benefits. Further, an electrically driven mechanism may be used to control the pivotal relationship between the arms 21 a, 21 b. An electrical drive may allow for more precision with regard to distance and force.
The distal ends of the first arm 21 a and second arm 21 b are each connected to respective intermediate members 17 a, 17 b by respective speculum joints 19 a, 19 b. A bore in the proximal end of each intermediate member 17 a, 17 b is aligned with a bore in the distal end of their respective arms 21 a, 21 b. A hinge pin in inserted through the aligned bores of the first arm 21 a and intermediate member 17 a, and another hinge pin is inserted through the aligned bores of 21 b and 17 b to create the joints. Each intermediate member is connected at its distal end to a respective speculum blade 13 a, 13 b by distal speculum joints 15 a, 15 b having a hinge mechanism similar to the proximal speculum joints 19 a, 19 b. The hinges have variable stiffness, allowing the user to tighten the joint to a desired stiffness. Preferably, a stiffness light enough to be flexed by the user's hands, in preparation for the procedure, while remaining stiff enough to maintain the preset position during the procedure. It is also contemplated that the joints have a locking feature for giving the user the ability to easily adjust the joint to a desired position and then be locked in place. For example, the self-retaining nasal septum retractor 10 may have a configuration having teeth on the connected members' bore adjacent surfaces, which are in contact with the each other, and a threaded hinge pin that can be tightened to compress the surfaces together. While only a hinge pin joint is discussed, any joint orientation known in the art is contemplated for these joints. In a preferred embodiment, the speculum joints 15 a, 15 b, 19 a, 19 b are restricted to operate in a plane perpendicular to the plane of the arm connecting joint 23. These joints 15 a, 15 b, 19 a, 19 b allow a user to adjust the angle of the intermediate members 17 a, 17 b and the speculum blades 13 a, 13 b with respect to the arms 21 a, 21 b. The intermediate members 17 a, 17 b give the proximal end of the speculum blades 13 a, 13 b the ability to be displaced from the plane on which its arm 21 a, 21 b lies. Thus, the speculum blades 13 a, 13 b can move with three degrees of freedom. Devices with only one or greater than two speculum joints are also contemplated. Further, it is also contemplated to incorporate speculum blade joints that also allow lateral adjustment for situations where a lateral angle or displacement is desired.
FIG. 2 shows a side view of the device with both sets of speculum joints in the same position. Therefore, only the first arm 21 a components are depicted. This view shows a possible vertical and angular orientation of the medial intermediate member 17 a and speculum blade 13 a. In this orientation, the proximal speculum joint 19 a is angled downward, which displaces the distal speculum joint 15 a (and therefore the respective speculum blade 13 a) vertically below the plane of the arm 21 a. The distal speculum joint 15 a is also angled down to reorient the tip of the speculum blade 13 a so it is in a plane parallel with the arm 21 a.
The individual adjustability of the speculum blade joints 15 a, 15 b, 19 a, 19 b allows a user to adjust each speculum blade 13 a, 13 b for contacting an optimal location in the patient's nose with regard to potential retraction size and protection of the intranasal tissue. In cases where the patient has a deviated septum, standard retractors typically will not create a large enough working area due to the irregular septal surface, thus preventing proper retraction. By adding adjustability to both angular deviation and vertical displacement with respect to the device arms 21 a, 21 b, a user can adjust the blade 13 a to a position where it can properly contact the irregular surface of the septum. This may prevent the need for a septoplasty in many cases when it would not be necessary for other reasons. The angular deviation and vertical displacement of the speculum blades 13 a, 13 b will be determined and set on a case-by-case basis based on the unique structure of each nostril.
FIG. 3 depicts the retractor 10 in a preset position that may be set by a user after inspection of the patient's nasal features and before insertion into the nostril. As seen in FIG. 3, the configuration takes advantage of the individual angular adjustability of each speculum blade 13 a, 13 b. The proximal speculum joint 19 b of the lateral speculum blade 13 b is at a slight downward angle of deviation, since minimal vertical offset is necessary, and the distal speculum joint 15 b of the corresponding blade 13 b is set to a downward angle. The speculum blade 13 b can be used to retract and protect the patient's inferior turbinate. In this hypothetical patient, the location of the inferior turbinate is slightly more posterior that a typical patient, so that the speculum blade 13 b has been adjusted to contact the turbinate's center. The speculum blade 13 a, adjusted for contacting the septum, is positioned for a situation where the hypothetical patient's deviated septum is more accepting of a blade coming from a lower vertical position and at an upward angle. Therefore, the speculum joint 19 a of the first arm 21 a is angled more sharply downward than the proximal speculum joint 19 b of the lateral speculum blade 13 b, utilizing the intermediate member 17 a for vertical displacement, and the distal speculum joint 15 a is angled only slightly downward to create the necessary upward angle of the speculum blade 13 a from the lower position. This is purely a hypothetical configuration, as each patient will require different adjustment based on the procedure and nostril characteristics. The angles in FIG. 3 are exaggerated to help depict the features being discussed.
FIG. 4 shows a change in the angle of the proximal speculum joints 19 and distal speculum joints 15 that can be performed during a procedure. In the first configuration, shown in solid lines, both joint angles are downward, similar to the orientation in FIG. 2. This orientation may be advantageous for insertion of the speculum blades 13 into the nostril because it allows a user to align the speculum blades 13 with the arms 21, while slightly displacing the arms 21 so that there is a direct line of sight between the blades 13 and into the nose. Once the septum and nostril are retracted, a surgeon will typically insert multiple tools, often including a rigid endoscope and forceps, which are operated by lengthy handles. A relatively large movement of the handle may be necessary for a small movement of the tool head. Accordingly, a large working area below the nose may be required. If the retractor 10 maintains its position in the location directly below the nostril, it may hinder the movement of the user, potentially increasing the time of the operation or decreasing the quality of work performed. Therefore, it would be beneficial to move the non-critical portions of the retractor 10 out of this working area. The dashed lines show the retractor 10 in a second orientation that would be advantageous for the portion of the operation where instruments are inserted into the nostril. The speculum joints 15, 19 are pivoted up so the handles 25 and arms 21 are positioned above the patient's head, giving the user an unobstructed working area to maneuver the handles of the tools inserted in the nostril.
Referring back to the preferred embodiment illustrated in FIG. 1, the blades 13 a, 13 b of the speculum are designed in a way that avoids damaging the tissue within the nostril when inserted, retracted, and adjusted. This is achieved through preventing points of high stress, which may damage the tissue. The end of the blades 13 a, 13 b and all of their edges are rounded to remove sharp points that can cut the tissue or provide points of stress concentration. A superior edge of each blade 13 a, 13 b tapers out from the distal to proximal end in order to match the shape of the nostril. By shaping the blades 13 a, 13 b according to the shape of the nostril channel, the blades 13 a, 13 b maintain contact with a maximum surface area on the sides of the nostril without adding undue stress due to conflicting shapes. Each blade 13 a, 13 b curves inward around its longitudinal axis, providing an external surface that matches the shape of the nostril entrance.
The retractor 10 should create a large working corridor for visualization inside the nostril and to give the user an area to work within the nostril. The curved shape of the speculum blades 13 a, 13 b creates a conical working corridor for the tools to access the inner nose or trans-nasal region. The tools cannot be designed with the same non-damaging characteristics as the speculum blades 13 a, 13 b, since they need to perform their intended functions, which, in many cases, include damaging tissue. For instance, a knife must to be sharp in order to properly perform its duties of cutting. The corridor created by the speculum blades 13 a, 13 b provides a necessary protective barrier for the surrounding tissue. When a knife is inserted into the nostril, contact will be made with the speculum blades 13 a, 13 b, instead of the tissue, thereby preventing possible damage to the tissue.
The speculum blades 13 a, 13 b may specifically be designed for different procedures where various size and shape characteristics are beneficial. For example, a trans-nasal procedure, including procedures in the sellar, infrasellar, and supraseller regions, may benefit from having longer blades with a less severe taper at the tip. This will allow the blades to be inserted further into the nostril, creating a longer protective corridor. Trans-nasal blades may also flair out slightly at the distal-most end. The outward flair can further retract soft tissue directly adjacent the site of the tissue being operated on, giving the user more space to visualize the area and maneuver the multiple tools.
Alternatively, the speculum blades 13 a, 13 b may be specifically designed for intra-septal procedures. Often, a patient's septum may be an irregular shape, which won't properly conform to the shape of a generic speculum blade. In these cases, it may be beneficial to contour the outer edge or surface of the septum-contacting speculum blade to match or counter the septum's shape. In other instances where specific mucoperichondral flaps or turbinates need to be retracted, the blade intended to engage these specific structures can be shaped in a way that optimizes retraction.
FIG. 5 shows an embodiment of the self-retaining mechanism 27 a-27 e. The self-retaining mechanism 27 a-27 e allows a user to lock the arms 21 a, 21 b at a specific angular relation to one another, therefore maintaining a retracted state without requiring a user to hold the instrument. This affords the user a free hand for use in other aspects of the procedure.
The self-retaining mechanism 27 a-27 e in FIG. 5 comprises an arcuate guide 27 a attached at its one end to the first arm 21 a with the lateral end extending through a hole 27 e in the second arm 21 b. When pivoting the arms 21 a, 21 b, the guide 27 a slides freely through the hole 27 e, guiding the relative movement of the arms 21 a, 21 b. A lower surface of the guide 27 a is fitted with a row of extending teeth 27 d spread across its length. The teeth 27 d are configured to engage a locking handle 27 b attached to the freely pivoting arm 21 b, thereby preventing the arm 21 b from sliding freely on the guide 27 a, effectively locking it in place. The locking handle 27 b is connected to the lateral arm 21 b by a locking holder 27 c which biases the locking handle 27 b towards the teeth 27 d in order to maintain the locked position, in which teeth on the locking handle 27 b are mated with the teeth 27 d on the guide. A user can unlock the self-retaining mechanism 27 a-27 e to change the angular relation between the arms 21 a, 21 b by applying a proximally directed force to the locking handle 17 b with a free finger. The force exerted by the user will overcome the bias set by the locking holder 27 c and separate the locking handle 27 b from the teeth 27 d. Once the teeth 27 d and locking handle 27 b are separated, the arms 21 a, 21 b can freely pivot to any desired angular relation. The device may also include a mechanism for locking the handle in a freely movable position so that the user doesn't not need to maintain pressure on the handle in situations where locking is not necessary or a hindrance. Alternatively, other locking mechanisms known in the art are contemplated for use with this device. Such mechanism may include a threaded bolt that adjusts the width through twisting the bolt or an electrically powered locking mechanism that the user operates through a user interface.
The retractor 10 described above may be manufactured out of stainless steel, titanium, cobalt-chromium alloys or any other biocompatible metals having proper strength and stiffness characteristics. The external metal surface present the risk of reflecting light into the user's eyes during an inspection, especially when a user is shining a beam of light into the nostril. Therefore, it may be beneficial to ebonize the surfaces of the instrument as a measure to prevent light reflection.
Disposable retractors 10 may be made out of polymers, such as polypropylene, polyvinyl chloride, polycarbonate, polyurethane, polyethersulfone, polytetrafluoroethylene, polyetherimide, polysulfone, or any other biocompatible polymers having proper strength and stiffness characteristics.
The speculum blades 13 a, 13 b are contemplated as being within the range of 2 cm to 8 cm in length, preferably 5 cm, along their longitudinal axis La, which is the axis directed into the nostril when inserted. The tip width WT of the speculum blades 13 a, 13 b, the portion spanning the nostril passage, is contemplated to be within the range of 4 mm to 12 mm, preferably 8 mm. The intermediate members 17 a, 17 b connecting the two speculum joints 15, 19 are contemplated as being within the range of 0.5 cm to 3 cm in length, preferably 1 cm. This distance from the arm joint 23 connecting the handles 25 to the proximal speculum joints 19 is contemplated as being within the range of 5 cm to 15 cm, preferably 10 cm. Nasal structures are sized and shaped differently on different people. Therefore, sizes outside of these ranges are contemplated when a patient's features require the instrument to have a dimension not listed.
The speculum joints 15, 19 are contemplated as having up to three hundred and sixty degrees of rotation, and the arm joint 23 is contemplated as having up to 180° of rotation. However, it is understood that different joint configurations can restrict the angular range.
A method of nasal retraction with the above described retractor may begin with an inspection, by a surgeon, of the nostril that is being retracted. The surgeon takes note of specific feature, such as the location of the inferior turbinate and/or shape and location of a septum deviation. Based on the findings, the surgeon will adjust the proximal speculum hinges 19 and distal speculum hinges 15, separately for each of the speculum blades 13 a and 13 b to a location the surgeon believes will offer the best retraction and protection for the patient. The speculum blade 13 a is adjusted based on the shape of a user's septum and the speculum blade 13 b is adjusted based on the opposing wall feature being retracted, typically the inferior turbinate. The user may test the adjusted retractor 10 in the patient's nostril and readjust if necessary. The properly oriented speculum blades 13 are then inserted into the patient's nostril with the blade 13 a placed against the septum and the blade 13 b placed against the opposing wall, typically against at least the inferior turbinate. Once the retractor 10 is inserted and checked for proper position, the user will spread the speculum blades 13 by pulling on the locking handle 27 b to separate the teeth 27 d and then squeeze the handles 25 to retract the speculum blades. A minimal amount force is exerted by the user to prevent damage to the patient's nostril tissue. If the device fails to satisfactorily retract the nostril, a user may adjust the position or angles of the speculum blades. Once the nostril is satisfactorily retracted, the locking handle 27 b is released by the user, locking the retractor in its retracted position. At this point, the arms 21 and handles 25 of the retractor 10 may be pivoted up above the patient's forehead to create more space below the nose for performing the procedure. The surgeon proceeds with the procedure by using the working channel created by the speculum blades 13, making sure to use the curved speculum blades 13 a, 13 b as guides for the tools so that damage to surrounding tissue is minimized. Once the procedure is completed, the user will pull on the locking handle 27 b, separating it from the teeth 27 d of the locking guide 27 a, and close the speculum blades 13 a, 13 b for removal.
Some procedures this device may be used for include submucosal resection of the nasal septum (S.M.R.); septorhinoplasty; removal of suprasellar, sellar, and infrasellar tumors; microscopic sinus or otic surgery; myringtomy and grommet insertion; polypectomy; and stapedectomy. This is by no means an exhaustive list but it gives an indication of many procedures than can use the described retractor. The retractor 10 may also be used for other surgical procedures requiring retraction in locations other than the nose.
It is to be understood that the self-retaining nasal septum retractor is not limited to the specific embodiments described above, but encompasses any and all embodiments within the scope of the generic language of the following claims enabled by the embodiments described herein, or otherwise shown in the drawings or described above in terms sufficient to enable one of ordinary skill in the art to make and use the claimed subject matter.

Claims (8)

I claim:
1. A self-retaining nasal septum retractor, comprising:
a first arm and a second arm, each of the arms having a proximal portion, a distal portion, and an intermediate portion between the proximal portion and the distal portion;
an arm joint pivotally connecting the first and second arms at their intermediate portions;
a first intermediate member and a second intermediate member;
a first nasal speculum blade and a second nasal speculum blade, each of the speculum blades consisting of an elongated blade portion and an integral connecting portion disposed perpendicular to the elongated blade portion;
a first proximal speculum joint pivotally connecting the first intermediate member to the distal portion of the first arm and a second proximal speculum joint pivotally connecting the second intermediate member to the distal portion of the second arm, the first and second proximal speculum joints being independently adjustable, wherein the independent adjustability is a user-adjustable pivoting stiffness;
a first distal speculum joint pivotally connecting the first nasal speculum blade connecting portion directly to the first intermediate member and a second distal speculum joint pivotally connecting the second nasal speculum blade connecting portion directly to the second intermediate member, the first and second distal speculum joints being independently adjustable, wherein the independent adjustability is a user-adjustable pivoting stiffness; and
a self-retaining mechanism attached to the first arm and the second arm, the self-retaining mechanism selectively locking the first and second arms with the first and second nasal speculum blades at a user-selectable angular separation.
2. The self-retaining nasal septum retractor according to claim 1, wherein:
the self-retaining mechanism comprises an arcuate guide rigidly attached to the first arm;
the second arm has a guide aperture defined therein, the guide being slidable through the guide aperture in the second arm.
3. The self-retaining nasal septum retractor according to claim 2, wherein:
the arcuate guide has a lower surface and a plurality of teeth extending from the lower surface; and
the self-retaining mechanism further comprises a locking handle pivotally attached to the second arm, the locking handle having at least one interlocking tooth extending therefrom selectively interlocking with the teeth extending from the lower surface of the arcuate guide to prevent further pivoting of the first and second arms relative to each other, the locking handle being pivotal between a locked position in which the at least one tooth is interlocked with the teeth extending from the lower surface of the arcuate guide and an unlocked position in which the arcuate guide is free to slide through the guide aperture.
4. The self-retaining nasal septum retractor according to claim 1, wherein the proximal and distal speculum joints pivot in a plane perpendicular to a plane in which the arm joint pivots.
5. The self-retaining nasal septum retractor according to claim 1, wherein each speculum elongated blade portion has a longitudinal axis, each speculum elongate blade portion being curved around its own longitudinal axis in a direction toward the opposing speculum blade.
6. The self-retaining nasal septum retractor according to claim 1, wherein each of the speculum blades have a peripheral edge, wherein each of the peripheral edges are configured to be smooth and rounded to prevent tissue damage.
7. The self-retaining nasal septum retractor according to claim 1, wherein the proximal portions of said first arm and said second arm each define finger loops adapted for grasping by a user with fingers and thumb to pivot said arms to separate said nasal speculum blades to a selectable angle for retraction of a nasal septum.
8. The self-retaining nasal septum retractor according to claim 1, wherein the proximal and distal speculum joints permit independent adjustment of said first and second nasal speculum blades relative to said first and second arms for retracting a patient's nasal septum to allow sufficient room for access for endoscopic surgical instruments.
US16/124,130 2018-09-06 2018-09-06 Self-retaining nasal septum retractor Active - Reinstated US10299670B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/124,130 US10299670B1 (en) 2018-09-06 2018-09-06 Self-retaining nasal septum retractor
SA119410016A SA119410016B1 (en) 2018-09-06 2019-09-04 Self-retaining nasal septum retractor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/124,130 US10299670B1 (en) 2018-09-06 2018-09-06 Self-retaining nasal septum retractor

Publications (1)

Publication Number Publication Date
US10299670B1 true US10299670B1 (en) 2019-05-28

Family

ID=66636075

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/124,130 Active - Reinstated US10299670B1 (en) 2018-09-06 2018-09-06 Self-retaining nasal septum retractor

Country Status (2)

Country Link
US (1) US10299670B1 (en)
SA (1) SA119410016B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD877329S1 (en) * 2018-09-20 2020-03-03 King Saud University Self-retaining nasal septum retractor
CN112137572A (en) * 2020-10-26 2020-12-29 张帆 Double nasal pituitary speculum
US20210307876A1 (en) * 2020-04-07 2021-10-07 Chieh-Mao Lin Hand tool with molar as resistance point
CN113476085A (en) * 2021-06-29 2021-10-08 新疆维吾尔自治区人民医院 Convenient-to-use eyelid retractor for medical ophthalmology
WO2022080325A1 (en) * 2020-10-15 2022-04-21 株式会社Mirai Eye Eyelid opening device
USD957634S1 (en) * 2020-04-06 2022-07-12 University Of Malta Surgical device
CN115300011A (en) * 2022-08-11 2022-11-08 中国人民解放军陆军特色医学中心 Hypophysis tumour operation saddle diaphragm spreader
US20250057625A1 (en) * 2023-08-17 2025-02-20 Sarah Jane Ellsworth Separation device, systems, and methods
US12263322B1 (en) * 2024-04-17 2025-04-01 King Saud University Epistaxis controlling device and method of using the same
US20250114134A1 (en) * 2023-10-05 2025-04-10 Shukla Medical Arthroscopic washer extractor
US20250345053A1 (en) * 2019-10-23 2025-11-13 Endovision Co., Ltd. Retractor for spinal surgery

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US569839A (en) * 1896-10-20 John t
US3038467A (en) * 1960-08-29 1962-06-12 Sklar Mfg Co J Surgical instrument
US3470872A (en) * 1966-11-25 1969-10-07 Herman R Grieshaber Pivoted retractor with shielded spacer teeth
US5176129A (en) * 1991-03-01 1993-01-05 Tekdyne, Inc. Self-retaining refractor
US5297538A (en) * 1992-04-10 1994-03-29 Daniel Elie C Surgical retractor/compressor
US5529571A (en) * 1995-01-17 1996-06-25 Daniel; Elie C. Surgical retractor/compressor
US5772582A (en) * 1997-04-08 1998-06-30 Bionix Development Corp. Nasal speculum
US5846193A (en) * 1997-05-01 1998-12-08 Wright; John T. M. Midcab retractor
WO1999008587A1 (en) 1997-08-13 1999-02-25 Rainer Wohlrab Nasal speculum
US5931777A (en) * 1998-03-11 1999-08-03 Sava; Gerard A. Tissue retractor and method for use
US5993385A (en) * 1997-08-18 1999-11-30 Johnston; Terry Self-aligning side-loading surgical retractor
US6102852A (en) * 1999-06-18 2000-08-15 Liu; Yen-Huang Disposable nasal speculum
FR2792821A3 (en) 1999-04-29 2000-11-03 Yen Huang Liu Disposable nasal speculum comprises rods having curved tongues at one end and handles at other end, second rod has elbow in center connected by short flexible rod to other rod
US6196969B1 (en) * 1999-05-21 2001-03-06 Lab Engineering & Manufacturing, Inc. Tissue retractor adapted for the attachment of an auxiliary element
US6224546B1 (en) 1998-05-17 2001-05-01 Kalil Jiraki Stabilized cephalic medical apparatus, and method of using same
USD448080S1 (en) 2001-01-11 2001-09-18 Innovative Surgical Design, Llc Episiotomy retractor
US6302842B1 (en) * 2001-01-11 2001-10-16 Innovative Surgical Design Llc Episiotomy retractor
US6354995B1 (en) * 1998-04-24 2002-03-12 Moshe Hoftman Rotational lateral expander device
US20020133060A1 (en) * 2001-03-13 2002-09-19 Doyle Donald E. Combined nasal speculum and aspirator
US6663562B2 (en) * 2001-09-14 2003-12-16 David Chang Surgical retractor
US20040024291A1 (en) * 2002-08-01 2004-02-05 Zinkel John L. Method and apparatus for spinal surgery
US6712825B2 (en) * 1998-10-02 2004-03-30 Max Aebi Spinal disc space distractor
US20050027170A1 (en) * 2003-07-10 2005-02-03 Showa Ika Kohgyo Co., Ltd. Surgical retractors
US20050215864A1 (en) * 2004-03-24 2005-09-29 Su-Yeon Jang Retracting and dissecting apparatus for surgical operation, and minimal incision penile augmentation using the same
US20050267336A1 (en) * 1996-04-10 2005-12-01 Bertolero Arthur A Surgical retractor and stabilizing device and method for use
US7141015B2 (en) * 2003-05-09 2006-11-28 Bernard Joseph Ruane Expandable and pivotally adjustable surgical retractor
US20070213596A1 (en) * 2006-02-07 2007-09-13 Hamada James S Minimal incision maximal access spine surgery instruments and method
USD566268S1 (en) * 2007-05-24 2008-04-08 Koros Tibor B Hinge retractor
US7481766B2 (en) * 2003-08-14 2009-01-27 Synthes (U.S.A.) Multiple-blade retractor
US20090187081A1 (en) 2008-01-23 2009-07-23 Mizuho America Endonasal speculum
CN201436016U (en) 2009-05-07 2010-04-07 上海交通大学医学院附属新华医院 A kind of forceps nasal speculum for infants
JP2010119455A (en) 2008-11-17 2010-06-03 Sanwa Shoji Kk Nasal mirror
USD617456S1 (en) * 2008-08-25 2010-06-08 Karl Storz Gmbh & Co. Kg Retractor
US20120064484A1 (en) * 2010-09-14 2012-03-15 Ali Hassani Inferior alveolar nerve (ian) protector instrument
US9301674B2 (en) * 2011-11-14 2016-04-05 Biomet Manufacturing, Llc Self-retaining retractor
US9408596B2 (en) * 2013-03-11 2016-08-09 Spinal Elements, Inc. Method of using a surgical tissue retractor
US9550277B1 (en) * 2014-10-17 2017-01-24 Matthew E. Williams Alignment and adjustment clamp

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US569839A (en) * 1896-10-20 John t
US3038467A (en) * 1960-08-29 1962-06-12 Sklar Mfg Co J Surgical instrument
US3470872A (en) * 1966-11-25 1969-10-07 Herman R Grieshaber Pivoted retractor with shielded spacer teeth
US5176129A (en) * 1991-03-01 1993-01-05 Tekdyne, Inc. Self-retaining refractor
US5297538A (en) * 1992-04-10 1994-03-29 Daniel Elie C Surgical retractor/compressor
US5529571A (en) * 1995-01-17 1996-06-25 Daniel; Elie C. Surgical retractor/compressor
US20050267336A1 (en) * 1996-04-10 2005-12-01 Bertolero Arthur A Surgical retractor and stabilizing device and method for use
US5772582A (en) * 1997-04-08 1998-06-30 Bionix Development Corp. Nasal speculum
US5846193A (en) * 1997-05-01 1998-12-08 Wright; John T. M. Midcab retractor
WO1999008587A1 (en) 1997-08-13 1999-02-25 Rainer Wohlrab Nasal speculum
US5993385A (en) * 1997-08-18 1999-11-30 Johnston; Terry Self-aligning side-loading surgical retractor
US5931777A (en) * 1998-03-11 1999-08-03 Sava; Gerard A. Tissue retractor and method for use
US6354995B1 (en) * 1998-04-24 2002-03-12 Moshe Hoftman Rotational lateral expander device
US6224546B1 (en) 1998-05-17 2001-05-01 Kalil Jiraki Stabilized cephalic medical apparatus, and method of using same
US6712825B2 (en) * 1998-10-02 2004-03-30 Max Aebi Spinal disc space distractor
FR2792821A3 (en) 1999-04-29 2000-11-03 Yen Huang Liu Disposable nasal speculum comprises rods having curved tongues at one end and handles at other end, second rod has elbow in center connected by short flexible rod to other rod
US6196969B1 (en) * 1999-05-21 2001-03-06 Lab Engineering & Manufacturing, Inc. Tissue retractor adapted for the attachment of an auxiliary element
US6102852A (en) * 1999-06-18 2000-08-15 Liu; Yen-Huang Disposable nasal speculum
USD448080S1 (en) 2001-01-11 2001-09-18 Innovative Surgical Design, Llc Episiotomy retractor
US6302842B1 (en) * 2001-01-11 2001-10-16 Innovative Surgical Design Llc Episiotomy retractor
US20020133060A1 (en) * 2001-03-13 2002-09-19 Doyle Donald E. Combined nasal speculum and aspirator
US6663562B2 (en) * 2001-09-14 2003-12-16 David Chang Surgical retractor
US20040024291A1 (en) * 2002-08-01 2004-02-05 Zinkel John L. Method and apparatus for spinal surgery
US7141015B2 (en) * 2003-05-09 2006-11-28 Bernard Joseph Ruane Expandable and pivotally adjustable surgical retractor
US20050027170A1 (en) * 2003-07-10 2005-02-03 Showa Ika Kohgyo Co., Ltd. Surgical retractors
US7481766B2 (en) * 2003-08-14 2009-01-27 Synthes (U.S.A.) Multiple-blade retractor
US20050215864A1 (en) * 2004-03-24 2005-09-29 Su-Yeon Jang Retracting and dissecting apparatus for surgical operation, and minimal incision penile augmentation using the same
US20070213596A1 (en) * 2006-02-07 2007-09-13 Hamada James S Minimal incision maximal access spine surgery instruments and method
USD566268S1 (en) * 2007-05-24 2008-04-08 Koros Tibor B Hinge retractor
US20090187081A1 (en) 2008-01-23 2009-07-23 Mizuho America Endonasal speculum
USD617456S1 (en) * 2008-08-25 2010-06-08 Karl Storz Gmbh & Co. Kg Retractor
JP2010119455A (en) 2008-11-17 2010-06-03 Sanwa Shoji Kk Nasal mirror
CN201436016U (en) 2009-05-07 2010-04-07 上海交通大学医学院附属新华医院 A kind of forceps nasal speculum for infants
US20120064484A1 (en) * 2010-09-14 2012-03-15 Ali Hassani Inferior alveolar nerve (ian) protector instrument
US9301674B2 (en) * 2011-11-14 2016-04-05 Biomet Manufacturing, Llc Self-retaining retractor
US9408596B2 (en) * 2013-03-11 2016-08-09 Spinal Elements, Inc. Method of using a surgical tissue retractor
US9550277B1 (en) * 2014-10-17 2017-01-24 Matthew E. Williams Alignment and adjustment clamp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Horizontal Retractor," © 2013 by Precision Medical Devices, Inc., http://cenmed.com/pdf_html/or.htm, p. 84.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD877329S1 (en) * 2018-09-20 2020-03-03 King Saud University Self-retaining nasal septum retractor
US20250345053A1 (en) * 2019-10-23 2025-11-13 Endovision Co., Ltd. Retractor for spinal surgery
USD957634S1 (en) * 2020-04-06 2022-07-12 University Of Malta Surgical device
US20210307876A1 (en) * 2020-04-07 2021-10-07 Chieh-Mao Lin Hand tool with molar as resistance point
WO2022080325A1 (en) * 2020-10-15 2022-04-21 株式会社Mirai Eye Eyelid opening device
CN112137572A (en) * 2020-10-26 2020-12-29 张帆 Double nasal pituitary speculum
CN113476085A (en) * 2021-06-29 2021-10-08 新疆维吾尔自治区人民医院 Convenient-to-use eyelid retractor for medical ophthalmology
CN113476085B (en) * 2021-06-29 2022-11-11 新疆维吾尔自治区人民医院 Convenient-to-use eyelid retractor for medical ophthalmology
CN115300011A (en) * 2022-08-11 2022-11-08 中国人民解放军陆军特色医学中心 Hypophysis tumour operation saddle diaphragm spreader
US20250057625A1 (en) * 2023-08-17 2025-02-20 Sarah Jane Ellsworth Separation device, systems, and methods
US20250114134A1 (en) * 2023-10-05 2025-04-10 Shukla Medical Arthroscopic washer extractor
US12263322B1 (en) * 2024-04-17 2025-04-01 King Saud University Epistaxis controlling device and method of using the same

Also Published As

Publication number Publication date
SA119410016B1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US10299670B1 (en) Self-retaining nasal septum retractor
US12245774B2 (en) Surgical instrument with articulating region
US6663562B2 (en) Surgical retractor
US9386970B2 (en) Medical instrument with shaft rotatable relative to handle
US8900137B1 (en) Cervical retractor
US8206293B2 (en) Retractor
ES2232206T3 (en) DEVICES FOR PERCUTANEOUS SURGERY.
US7850608B2 (en) Minimal incision maximal access MIS spine instrumentation and method
US8568306B2 (en) Surgical retractor system
US11944323B2 (en) Surgical tool
US20070135686A1 (en) Tools and methods for epicardial access
US9888910B2 (en) Eyelid speculum
KR20130069566A (en) Spinal surgery instrument sets and methods
KR20050109916A (en) Surgical retractor system
US20200315602A1 (en) Retractor Blade Including A Pair Of Clips
US20250359862A1 (en) Retractor system
JP4301944B2 (en) Intervertebral body fusion method and instrument
CN113925547B (en) Variable angle V type binary channels work sheath that backbone endoscope operation was used
KR101558543B1 (en) Surgical retractor
EP3527152B1 (en) Tool for a microinvasive surgical instrument and microinvasive surgical instrument
US12201309B2 (en) Decompression system and methods of use
US20250169851A1 (en) Knife for cannulated surgery

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230528

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL. (ORIGINAL EVENT CODE: M2558); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20250603

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE