US10261929B2 - Enhanced ground bounce immunity on USB type-C power delivery communication - Google Patents

Enhanced ground bounce immunity on USB type-C power delivery communication Download PDF

Info

Publication number
US10261929B2
US10261929B2 US15/046,610 US201615046610A US10261929B2 US 10261929 B2 US10261929 B2 US 10261929B2 US 201615046610 A US201615046610 A US 201615046610A US 10261929 B2 US10261929 B2 US 10261929B2
Authority
US
United States
Prior art keywords
cable
power mode
higher power
host
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/046,610
Other versions
US20170242814A1 (en
Inventor
Thomas E. Voor
Merle J. Wood, III
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dell Products LP
Original Assignee
Dell Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dell Products LP filed Critical Dell Products LP
Priority to US15/046,610 priority Critical patent/US10261929B2/en
Assigned to DELL PRODUCTS L.P. reassignment DELL PRODUCTS L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VOOR, THOMAS E., WOOD, MERLE J., III
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS FIRST LIEN COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS FIRST LIEN COLLATERAL AGENT SUPPLEMENT TO PATENT SECURITY AGREEMENT (NOTES) Assignors: DELL PRODUCTS L.P., DELL SOFTWARE INC., WYSE TECHNOLOGY, L.L.C.
Assigned to BANK OF AMERICA, N.A., AS COLLATERAL AGENT reassignment BANK OF AMERICA, N.A., AS COLLATERAL AGENT SUPPLEMENT TO PATENT SECURITY AGREEMENT (TERM LOAN) Assignors: DELL PRODUCTS L.P., DELL SOFTWARE INC., WYSE TECHNOLOGY, L.L.C.
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SUPPLEMENT TO PATENT SECURITY AGREEMENT (ABL) Assignors: DELL PRODUCTS L.P., DELL SOFTWARE INC., WYSE TECHNOLOGY, L.L.C.
Assigned to SECUREWORKS, CORP., DELL SOFTWARE INC., DELL PRODUCTS L.P., WYSE TECHNOLOGY L.L.C. reassignment SECUREWORKS, CORP. RELEASE OF REEL 038665 FRAME 0001 (ABL) Assignors: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT
Assigned to SECUREWORKS, CORP., DELL SOFTWARE INC., DELL PRODUCTS L.P., WYSE TECHNOLOGY L.L.C. reassignment SECUREWORKS, CORP. RELEASE OF REEL 038664 FRAME 0908 (NOTE) Assignors: BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT
Assigned to DELL SOFTWARE INC., DELL PRODUCTS L.P., WYSE TECHNOLOGY L.L.C., SECUREWORKS, CORP. reassignment DELL SOFTWARE INC. RELEASE OF REEL 038665 FRAME 0041 (TL) Assignors: BANK OF AMERICA, N.A., AS COLLATERAL AGENT
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT SECURITY AGREEMENT Assignors: ASAP SOFTWARE EXPRESS, INC., AVENTAIL LLC, CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL SYSTEMS CORPORATION, DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., MAGINATICS LLC, MOZY, INC., SCALEIO LLC, SPANNING CLOUD APPS LLC, WYSE TECHNOLOGY L.L.C.
Assigned to CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT reassignment CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: ASAP SOFTWARE EXPRESS, INC., AVENTAIL LLC, CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL SOFTWARE INC., DELL SYSTEMS CORPORATION, DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., MAGINATICS LLC, MOZY, INC., SCALEIO LLC, SPANNING CLOUD APPS LLC, WYSE TECHNOLOGY L.L.C.
Publication of US20170242814A1 publication Critical patent/US20170242814A1/en
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. SECURITY AGREEMENT Assignors: CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., WYSE TECHNOLOGY L.L.C.
Publication of US10261929B2 publication Critical patent/US10261929B2/en
Application granted granted Critical
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (NOTES) Assignors: DELL PRODUCTS L.P., EMC CORPORATION, EMC IP Holding Company LLC, WYSE TECHNOLOGY L.L.C.
Assigned to THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. reassignment THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. SECURITY AGREEMENT Assignors: CREDANT TECHNOLOGIES INC., DELL INTERNATIONAL L.L.C., DELL MARKETING L.P., DELL PRODUCTS L.P., DELL USA L.P., EMC CORPORATION, EMC IP Holding Company LLC, FORCE10 NETWORKS, INC., WYSE TECHNOLOGY L.L.C.
Assigned to FORCE10 NETWORKS, INC., SCALEIO LLC, EMC CORPORATION, DELL SYSTEMS CORPORATION, WYSE TECHNOLOGY L.L.C., MAGINATICS LLC, DELL PRODUCTS L.P., DELL SOFTWARE INC., AVENTAIL LLC, CREDANT TECHNOLOGIES, INC., DELL INTERNATIONAL, L.L.C., DELL MARKETING L.P., DELL USA L.P., ASAP SOFTWARE EXPRESS, INC., EMC IP Holding Company LLC, MOZY, INC. reassignment FORCE10 NETWORKS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH
Assigned to EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), DELL USA L.P., DELL INTERNATIONAL L.L.C., DELL PRODUCTS L.P., DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), SCALEIO LLC, EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.) reassignment EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.) RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Assigned to DELL PRODUCTS L.P., SCALEIO LLC, EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), DELL USA L.P., EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), DELL INTERNATIONAL L.L.C., DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.) reassignment DELL PRODUCTS L.P. RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Assigned to EMC CORPORATION, DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO WYSE TECHNOLOGY L.L.C.), DELL PRODUCTS L.P., EMC IP Holding Company LLC reassignment EMC CORPORATION RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (050724/0466) Assignors: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/382Information transfer, e.g. on bus using universal interface adapter
    • G06F13/385Information transfer, e.g. on bus using universal interface adapter for adaptation of a particular data processing system to different peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips

Definitions

  • the present invention relates to information handling systems. More specifically, embodiments of the invention relate to enhancing ground bounce immunity of cables such as USB type-C cables.
  • An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information.
  • information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated.
  • the variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications.
  • information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
  • USB universal serial bus
  • USB Type-C USB Type-C
  • USB 3.1 defines a limit on ground (GND) bounce as well as voltage drop on the various signal paths including the ground signal paths due to cable resistance which often requires a high power cable and or the use of large diameter wires for the ground lines.
  • GND ground
  • ground bounce immunity is enhanced by making use of alternate modes of operation of cables conforming to the USB 3.1 specification to achieve a higher power over a cable that conforms to the USB 3.1 voltage drop specification requirements on the ground signal paths when the cable is operating at normal power levels (i.e., at a power level supported by the USB 3.1 specification).
  • a cable with 3 Amps of current can have 0.25V of I*R drop on the GND return signal paths.
  • An electronic marker (E-marker) in this cable identifies the cable as having a 3 Amp current limit.
  • the E-marker can identify availability of an alternate mode of operation if a host and a device coupled to the other end of the cable each support changing a control signal path (e.g., a configuration channel (CC) signal path) reference voltage.
  • CC signal path communication is briefly suspended, the USB port controllers in the Host, cable, and device all change their reference voltage and increase the voltage swing on CC signal path, then resume communication in this new mode of operation.
  • a higher current e.g., 4.2 Amps of current
  • the I*R voltage drop on the ground signal paths is now 0.35V. Because the voltage swing and reference voltage on control signal path (e.g., the CC signal path) has increased, the control signal path can also accommodate 0.35V of GND bounce with no disruption in control communication.
  • the negotiation of the higher power mode of operation is only performed when a particular manufacturer host system, docking cable of the particular manufacturer and I/O device of the particular manufacturer are connected. In certain embodiments, the negotiation of the higher power mode of operation prevents other manufacturer's devices from accessing the higher power when connected to the particular manufacturer's power delivery devices.
  • FIG. 1 shows a general illustration of components of an information handling system as implemented in the system and method of the present invention.
  • FIG. 2 shows a block diagram of an environment for enhancing ground bounce immunity of cables.
  • FIG. 3 shows a flow chart of a ground bounce immunity enhance operation.
  • aspects of this disclosure include a recognition that the communication of the configuration channel (CC) signal path of USB Type-C interface is normally 1.1V peak to peak, and is not normally tolerant to higher than 0.25V of GND bounce.
  • Cables that support 60 Watts (via e.g., 20V and 3 Amps) with 0.25V of I*R voltage drop on GND wires can be configured with acceptable cable bundle diameter and flexibility. For example, when a cable bundle is 4.8 mm in diameter, a strain relief collar can be provided which maintain a 6.5 mm outside Z dimension. When a USB Type-C plug with a 6.5 mm Z dimension is attached to a tablet, the tablet and cable can lay on a flat table without interference.
  • the connector when the Z dimension of the USB Type-C plug is larger than 6.5 mm, the connector will cause the tablet to lift off of the resting surface and the weight of the tablet bears down on the Type-C plug. This force can cause reliability and user satisfaction issues.
  • workstations which have higher power requirements (e.g., 90 Watts or 130 Watts) would require a larger diameter cable bundle (e.g., a cable bundle having 7.6 mm diameter). Such a larger diameter cable bundle is likely not acceptable from a usability perspective and might not even fit into an over mold of standard USB Type-C plug which 6.5 mm thick.
  • aspects of this disclosure include a recognition that it would be desirable to provide a cable bundle carry 130 Watts of power, is acceptable for usability, and can fit into the Type-C plug over mold housing.
  • an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes.
  • an information handling system may be a personal computer, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price.
  • the information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory.
  • FIG. 1 is a generalized illustration of an information handling system 100 that can be used to implement the system and method of the present invention.
  • the information handling system 100 includes a processor (e.g., central processor unit or “CPU”) 102 , input/output (I/O) devices 104 , such as a display, a keyboard, a mouse, and associated controllers, a hard drive or disk storage 106 , and various other subsystems 108 .
  • the information handling system 100 also includes network port 110 operable to connect to a network 140 , which is likewise accessible by a service provider server 142 .
  • the information handling system 100 likewise includes system memory 112 , which is interconnected to the foregoing via one or more buses 114 .
  • System memory 112 further comprises operating system (OS) 116 and in various embodiments may also comprise active cable control module 118 .
  • OS operating system
  • I/O devices 104 of the information handling system 100 comprise an integrated I/O controller 150 as well as an integrated I/O connector 152 .
  • the integrated I/O controller 150 comprises a Thunderbolt 3 type integrated I/O controller,
  • the integrated I/O connector comprises a USB Type-C connector.
  • a multi-modal cable 154 may be coupled to the connector 152 . Additionally, in certain embodiments the multi-modal cable 154 may be coupled with an I/O connection device 156 such as a docking station.
  • the multi-modal cable 154 provides enhanced ground bounce immunity.
  • ground bounce immunity may be defined as a power level above which communication on the cable is immune to ground bounce (i.e., where a transmission voltage appears as less than a local ground potential). More specifically, in certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of cables conforming to the USB 3.1 specification to achieve a higher power over a cable that conforms to the USB 3.1 voltage drop specification requirements on the ground signal paths when the cable is operating at normal power levels (i.e., at a power level supported by the USB 3.1 specification). For example, according to the USB 3.1 specification, a cable with 3 Amps of current can have 0.25V of I*R drop on the GND return signal paths.
  • An E-marker in this cable identifies the cable as having a 3 Amp current limit.
  • the E-marker can identify, availability of an alternate mode of operation if a host and a device coupled to the other end of the cable each support changing a control signal path (e.g., a configuration channel (CC) signal path) reference voltage.
  • CC signal path communication is briefly suspended, the USB port controllers in the host, cable, and device all change their reference voltage and increase the voltage swing on CC signal path, then resume communication in this new mode of operation.
  • a higher current e.g., 4.2 Amps of current
  • the PR voltage drop on the ground signal paths is now 0.35V. Because the voltage swing and reference voltage on control signal path (e.g., the CC signal path) has increased, the control signal path can also accommodate 0.35V of GIN bounce with no disruption in control communication.
  • ground bounce immunity is enhanced by making use of alternate modes of operation of USB3.1 type cables and standard use USB3.1 power delivery negotiation protocol to allow a host and end device to negotiate higher power than what would normally conform to the USB 3.1 Specification.
  • the host might comprise a work station type laptop requiring 130 Watts power.
  • the USB 3.1 specification might have a maximum supported power limit of 100 Watts. This negotiation is only performed with systems that can safely operate in a higher power mode of operation (e.g., a 130 Watts mode of operation) and I/O systems (e.g., docking stations) that can safely deliver this power.
  • the negotiation of the higher power mode of operation enables the diameter of the cable to be minimized when compared to the diameter that would be required without use of the negotiation operation. For example, with certain cables, the diameter of the wires included within the cable would need to be increased to accommodate 4.2 Amps of current with 0.25V of I*R voltage drop on the ground signal paths. Such an increased diameter would make the cable less flexible, and the diameter of the bundle larger. Additionally, this negotiation of the higher power mode of operation enables a cable bundle that can fit properly with an over mold housing of a USB Type-C plug.
  • FIG. 2 is a block diagram of an environment 200 for enhancing ground bounce immunity of cables. More specifically, the environment 200 includes an information handling system 210 (which may include some or all of the elements of information handling system 100 ) and a power adapter 212 . The environment 200 also includes a ground bounce enhanced cable 220 (which may include some or all of the elements of multi-modal cable 154 ). In certain embodiments the ground bounce enhanced cable 220 conforms to some or all of the portions of a USB Type-C cable.
  • the ground bounce enhanced cable 220 includes a power signal path (VBUS), a ground signal path (GND) and a configuration channel signal path (CC).
  • ground bounce immunity is enhanced by making use of alternate modes of operation of cables conforming to the USB 3.1 specification to achieve a higher power over a cable that conforms to the USB 3.1 voltage drop specification requirements on the ground signal paths when the cable is operating at normal power levels (i.e., at a power level supported by the USB 3.1 specification).
  • a cable with 3 Amps of current can have 0.25V of I*R drop on the GND return signal paths.
  • the operation 300 begins at step 310 when the cable is first connected between an information handling system and an adapter.
  • an E-marker in the cable identifies the cable as having a 3 Amp current limit.
  • the operation 300 determines whether the adapter 212 and the information handling system 210 are both capable of generating and receiving a higher current (i.e., of operating in an alternate higher power mode of operation).
  • the alternate higher power mode of operation involves changing a control signal path (e.g., a configuration channel (CC) signal path) reference voltage. If either the information handing system 210 or the power adapter 212 are not capable of operating in an alternate higher power mode of operation then the operation 300 completes.
  • CC configuration channel
  • the E-marker identifies the availability of the alternate higher power mode of operation.
  • communication on the CC signal path is briefly suspended and at step 332 the power adapter 212 and the information handling system 210 enter into the alternate higher power mode of operation.
  • USB port controllers (not shown) in the information handling system 210 , the cable 220 and the power adapter 212 all change their reference voltage and increase the voltage swing on the CC signal path.
  • the information handling system 210 and the power adapter 212 resume communication using the new mode of operation.
  • ground bounce immunity is enhanced by making use of alternate modes of operation of USB3.1 type cables and standard use USB3.1 power delivery negotiation protocol to allow a host (e.g., an information handling system) and an end device (e.g., a power adapter or other type of I/O device such as a docking station) to negotiate higher power than what would normally conform to the USB 3.1 Specification.
  • a host e.g., an information handling system
  • an end device e.g., a power adapter or other type of I/O device such as a docking station
  • the host might comprise a work station type laptop requiring 130 Watts power.
  • the USB 3.1 specification might have a maximum supported power limit of 100 Watts. This negotiation is only performed with systems that can safely operate in a higher power mode of operation a 130 Watts mode of operation) and I/O systems (e.g., docking stations) that can safely deliver this power.
  • the negotiation of the higher power mode of operation is only performed when a particular manufacturer host system, docking cable of the particular manufacturer and I/O device of the particular manufacturer are connected. In certain embodiments, the negotiation of the higher power mode of operation prevents other manufacturer's devices from accessing the higher power when connected to the particular manufacturer's power delivery devices.
  • the present invention may be embodied as a method, system, or computer program product. Accordingly, embodiments of the invention may be implemented entirely in hardware, entirely in software (including firmware, resident software, micro-code, etc.) or in an embodiment combining software and hardware. These various embodiments may all generally be referred to herein as a “circuit,” “module,” or “system.” Furthermore, the present invention may take the form of a computer program product on a computer-usable storage medium having computer-usable program code embodied in the medium.
  • the computer-usable or computer-readable medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device. More specific examples (a non-exhaustive list) of the computer-readable medium would include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a portable compact disc read-only memory (CD-ROM), an optical storage device, or a magnetic storage device.
  • a computer-usable or computer-readable medium may be any medium that can contain, store, communicate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
  • Computer program code for carrying out operations of the present invention may be written in an object oriented programming language such as Java, Smalltalk, C++ or the like. However, the computer program code for carrying out operations of the present invention may also be written in conventional procedural programming languages, such as the “C” programming language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider for example, AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • the computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Power Sources (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)

Abstract

A system and method for enhancing ground bounce immunity of cables such as USB type-C cables. More specifically, in certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of cables conforming to the USB 3.1 specification to achieve a higher power over a cable that conforms to the USB 3.1 voltage drop specification requirements on the ground signal paths when the cable is operating at normal power levels (i.e., at a power level supported by the USB 3.1 specification). In certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of USB 3.1 type cables and standard use USB3.1 power delivery negotiation protocol to allow a host and end device to negotiate higher power than what would normally conform to the USB 3.1 specification.

Description

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to information handling systems. More specifically, embodiments of the invention relate to enhancing ground bounce immunity of cables such as USB type-C cables.
Description of the Related Art
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
It is known to communicate among components of information handling systems via a serial bus. For example, serial buses which conform to various universal serial bus (USB) specifications are known. An example of the USB specification is the USB 3.1 specification (often referred to as USB Type-C). One issue relating to cables implementing a serial bus which correspond to the USB 3.1 specification is ground bounce immunity.
The USB 3.1 specification defines a limit on ground (GND) bounce as well as voltage drop on the various signal paths including the ground signal paths due to cable resistance which often requires a high power cable and or the use of large diameter wires for the ground lines. However, it is often desirable from a user experience perspective to provide cables which are relatively long as well as relatively flexible. For example, it would be desirable to provide flexible cables with lengths such as 1 -2 meters (+/−15%).
SUMMARY OF THE INVENTION
A system and method are disclosed for enhancing ground bounce immunity of cables such as USB type-C cables. More specifically, in certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of cables conforming to the USB 3.1 specification to achieve a higher power over a cable that conforms to the USB 3.1 voltage drop specification requirements on the ground signal paths when the cable is operating at normal power levels (i.e., at a power level supported by the USB 3.1 specification). For example, according to the USB 3.1 specification, a cable with 3 Amps of current can have 0.25V of I*R drop on the GND return signal paths. An electronic marker (E-marker) in this cable identifies the cable as having a 3 Amp current limit. However, the E-marker can identify availability of an alternate mode of operation if a host and a device coupled to the other end of the cable each support changing a control signal path (e.g., a configuration channel (CC) signal path) reference voltage. When this alternate mode is entered into, CC signal path communication is briefly suspended, the USB port controllers in the Host, cable, and device all change their reference voltage and increase the voltage swing on CC signal path, then resume communication in this new mode of operation. A higher current (e.g., 4.2 Amps of current) is allowed on the GND return signal paths. Because the cable resistance stays constant, the I*R voltage drop on the ground signal paths is now 0.35V. Because the voltage swing and reference voltage on control signal path (e.g., the CC signal path) has increased, the control signal path can also accommodate 0.35V of GND bounce with no disruption in control communication.
In certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of USB3.1 type cables and standard use USB3.1 power delivery negotiation protocol to allow a host and end device to negotiate higher power than what would normally conform to the USB 3.1 Specification. For example, in certain embodiments the host might comprise a work station type laptop requiring 130 Watts power. For example, the USB 3.1 specification might have a maximum supported power limit of 100 Watts. This negotiation is only performed with systems that can safely operate in a higher power mode of operation (e.g., a 130 Watts mode of operation) and I/O systems (e.g., docking stations) that can safely deliver this power. In certain embodiments, the negotiation of the higher power mode of operation is only performed when a particular manufacturer host system, docking cable of the particular manufacturer and I/O device of the particular manufacturer are connected. In certain embodiments, the negotiation of the higher power mode of operation prevents other manufacturer's devices from accessing the higher power when connected to the particular manufacturer's power delivery devices.
The negotiation of the higher power mode of operation enables the diameter of the cable to be minimized when compared to the diameter that would be required without use of the negotiation operation. For example, with certain cables, the diameter of the wires included within the cable would need to be increased to accommodate 4.2 Amps of current with 0.25V of VR voltage drop on the ground signal paths. Such an increased diameter would make the cable less flexible, and the diameter of the bundle larger. Additionally, this negotiation of the higher power mode of operation enables a cable bundle that can fit properly with an over mold housing of a USB Type-C plug.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
FIG. 1 shows a general illustration of components of an information handling system as implemented in the system and method of the present invention.
FIG. 2 shows a block diagram of an environment for enhancing ground bounce immunity of cables.
FIG. 3 shows a flow chart of a ground bounce immunity enhance operation.
DETAILED DESCRIPTION
Aspects of this disclosure include a recognition that the communication of the configuration channel (CC) signal path of USB Type-C interface is normally 1.1V peak to peak, and is not normally tolerant to higher than 0.25V of GND bounce. Cables that support 60 Watts (via e.g., 20V and 3 Amps) with 0.25V of I*R voltage drop on GND wires can be configured with acceptable cable bundle diameter and flexibility. For example, when a cable bundle is 4.8 mm in diameter, a strain relief collar can be provided which maintain a 6.5 mm outside Z dimension. When a USB Type-C plug with a 6.5 mm Z dimension is attached to a tablet, the tablet and cable can lay on a flat table without interference. However, when the Z dimension of the USB Type-C plug is larger than 6.5 mm, the connector will cause the tablet to lift off of the resting surface and the weight of the tablet bears down on the Type-C plug. This force can cause reliability and user satisfaction issues. However, workstations which have higher power requirements (e.g., 90 Watts or 130 Watts) would require a larger diameter cable bundle (e.g., a cable bundle having 7.6 mm diameter). Such a larger diameter cable bundle is likely not acceptable from a usability perspective and might not even fit into an over mold of standard USB Type-C plug which 6.5 mm thick.
Aspects of this disclosure include a recognition that it would be desirable to provide a cable bundle carry 130 Watts of power, is acceptable for usability, and can fit into the Type-C plug over mold housing. In certain embodiments, the cable bundle has a diameter of substantially 5.6 mm (i.e., =/−10%).
For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
FIG. 1 is a generalized illustration of an information handling system 100 that can be used to implement the system and method of the present invention. The information handling system 100 includes a processor (e.g., central processor unit or “CPU”) 102, input/output (I/O) devices 104, such as a display, a keyboard, a mouse, and associated controllers, a hard drive or disk storage 106, and various other subsystems 108. In various embodiments, the information handling system 100 also includes network port 110 operable to connect to a network 140, which is likewise accessible by a service provider server 142. The information handling system 100 likewise includes system memory 112, which is interconnected to the foregoing via one or more buses 114. System memory 112 further comprises operating system (OS) 116 and in various embodiments may also comprise active cable control module 118.
Additionally, in various embodiments, I/O devices 104 of the information handling system 100 comprise an integrated I/O controller 150 as well as an integrated I/O connector 152. In certain embodiments, the integrated I/O controller 150 comprises a Thunderbolt 3 type integrated I/O controller, In certain embodiments, the integrated I/O connector comprises a USB Type-C connector. A multi-modal cable 154 may be coupled to the connector 152. Additionally, in certain embodiments the multi-modal cable 154 may be coupled with an I/O connection device 156 such as a docking station.
In certain embodiments, the multi-modal cable 154 provides enhanced ground bounce immunity. For the purposes of this disclosure ground bounce immunity may be defined as a power level above which communication on the cable is immune to ground bounce (i.e., where a transmission voltage appears as less than a local ground potential). More specifically, in certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of cables conforming to the USB 3.1 specification to achieve a higher power over a cable that conforms to the USB 3.1 voltage drop specification requirements on the ground signal paths when the cable is operating at normal power levels (i.e., at a power level supported by the USB 3.1 specification). For example, according to the USB 3.1 specification, a cable with 3 Amps of current can have 0.25V of I*R drop on the GND return signal paths. An E-marker in this cable identifies the cable as having a 3 Amp current limit. However, the E-marker can identify, availability of an alternate mode of operation if a host and a device coupled to the other end of the cable each support changing a control signal path (e.g., a configuration channel (CC) signal path) reference voltage. When this alternate mode is entered into, CC signal path communication is briefly suspended, the USB port controllers in the host, cable, and device all change their reference voltage and increase the voltage swing on CC signal path, then resume communication in this new mode of operation. A higher current (e.g., 4.2 Amps of current) is allowed on the GSI) return signal paths. Because the cable resistance stays constant, the PR voltage drop on the ground signal paths is now 0.35V. Because the voltage swing and reference voltage on control signal path (e.g., the CC signal path) has increased, the control signal path can also accommodate 0.35V of GIN bounce with no disruption in control communication.
In certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of USB3.1 type cables and standard use USB3.1 power delivery negotiation protocol to allow a host and end device to negotiate higher power than what would normally conform to the USB 3.1 Specification. For example, in certain embodiments the host might comprise a work station type laptop requiring 130 Watts power. For example, the USB 3.1 specification might have a maximum supported power limit of 100 Watts. This negotiation is only performed with systems that can safely operate in a higher power mode of operation (e.g., a 130 Watts mode of operation) and I/O systems (e.g., docking stations) that can safely deliver this power. In certain embodiments, the negotiation of the higher power mode of operation is only performed when a particular manufacturer host system, docking cable of the particular manufacturer and I/O device of the particular manufacturer are connected. In certain embodiments, the negotiation of the higher power mode of operation prevents other manufacturer's devices from accessing the higher power when connected to the particular manufacturer's power delivery devices.
The negotiation of the higher power mode of operation enables the diameter of the cable to be minimized when compared to the diameter that would be required without use of the negotiation operation. For example, with certain cables, the diameter of the wires included within the cable would need to be increased to accommodate 4.2 Amps of current with 0.25V of I*R voltage drop on the ground signal paths. Such an increased diameter would make the cable less flexible, and the diameter of the bundle larger. Additionally, this negotiation of the higher power mode of operation enables a cable bundle that can fit properly with an over mold housing of a USB Type-C plug.
FIG. 2 is a block diagram of an environment 200 for enhancing ground bounce immunity of cables. More specifically, the environment 200 includes an information handling system 210 (which may include some or all of the elements of information handling system 100) and a power adapter 212. The environment 200 also includes a ground bounce enhanced cable 220 (which may include some or all of the elements of multi-modal cable 154). In certain embodiments the ground bounce enhanced cable 220 conforms to some or all of the portions of a USB Type-C cable. The ground bounce enhanced cable 220 includes a power signal path (VBUS), a ground signal path (GND) and a configuration channel signal path (CC).
Referring to FIG. 3, a flow chart of a ground bounce immunity enhance operation 300 is shown. More specifically, in certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of cables conforming to the USB 3.1 specification to achieve a higher power over a cable that conforms to the USB 3.1 voltage drop specification requirements on the ground signal paths when the cable is operating at normal power levels (i.e., at a power level supported by the USB 3.1 specification). For example, according to the USB 3.1 specification, a cable with 3 Amps of current can have 0.25V of I*R drop on the GND return signal paths.
The operation 300 begins at step 310 when the cable is first connected between an information handling system and an adapter. Next at step 312, an E-marker in the cable identifies the cable as having a 3 Amp current limit. Next, at step 320, the operation 300 determines whether the adapter 212 and the information handling system 210 are both capable of generating and receiving a higher current (i.e., of operating in an alternate higher power mode of operation). In certain embodiments, the alternate higher power mode of operation involves changing a control signal path (e.g., a configuration channel (CC) signal path) reference voltage. If either the information handing system 210 or the power adapter 212 are not capable of operating in an alternate higher power mode of operation then the operation 300 completes.
Next, at step 322, the E-marker identifies the availability of the alternate higher power mode of operation. Next, at step 330, communication on the CC signal path is briefly suspended and at step 332 the power adapter 212 and the information handling system 210 enter into the alternate higher power mode of operation. When this alternate higher power mode of operation is entered, then at step 340 USB port controllers (not shown) in the information handling system 210, the cable 220 and the power adapter 212 all change their reference voltage and increase the voltage swing on the CC signal path. Next at step 342, the information handling system 210 and the power adapter 212 resume communication using the new mode of operation.
With the alternate higher power mode of operation, a higher current (e.g., 4.2 Amps of current) is allowed on the GND return signal paths. Because the cable resistance stays constant, the I*R voltage drop on the ground signal paths is now 0.35V. Because the voltage swing and reference voltage on control signal path (e.g., the CC signal path) has increased, the control signal path can also accommodate 0.35V of GND bounce with no disruption in control communication.
In certain embodiments, ground bounce immunity is enhanced by making use of alternate modes of operation of USB3.1 type cables and standard use USB3.1 power delivery negotiation protocol to allow a host (e.g., an information handling system) and an end device (e.g., a power adapter or other type of I/O device such as a docking station) to negotiate higher power than what would normally conform to the USB 3.1 Specification. For example, in certain embodiments the host might comprise a work station type laptop requiring 130 Watts power. For example, the USB 3.1 specification might have a maximum supported power limit of 100 Watts. This negotiation is only performed with systems that can safely operate in a higher power mode of operation a 130 Watts mode of operation) and I/O systems (e.g., docking stations) that can safely deliver this power. In certain embodiments, the negotiation of the higher power mode of operation is only performed when a particular manufacturer host system, docking cable of the particular manufacturer and I/O device of the particular manufacturer are connected. In certain embodiments, the negotiation of the higher power mode of operation prevents other manufacturer's devices from accessing the higher power when connected to the particular manufacturer's power delivery devices.
As will be appreciated by one skilled in the art, the present invention may be embodied as a method, system, or computer program product. Accordingly, embodiments of the invention may be implemented entirely in hardware, entirely in software (including firmware, resident software, micro-code, etc.) or in an embodiment combining software and hardware. These various embodiments may all generally be referred to herein as a “circuit,” “module,” or “system.” Furthermore, the present invention may take the form of a computer program product on a computer-usable storage medium having computer-usable program code embodied in the medium.
Any suitable computer usable or computer readable medium may be utilized. The computer-usable or computer-readable medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device. More specific examples (a non-exhaustive list) of the computer-readable medium would include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a portable compact disc read-only memory (CD-ROM), an optical storage device, or a magnetic storage device. In the context of this document, a computer-usable or computer-readable medium may be any medium that can contain, store, communicate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
Computer program code for carrying out operations of the present invention may be written in an object oriented programming language such as Java, Smalltalk, C++ or the like. However, the computer program code for carrying out operations of the present invention may also be written in conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Embodiments of the invention are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The present invention is well adapted to attain the advantages mentioned as well as others inherent therein. While the present invention has been depicted, described, and is defined by reference to particular embodiments of the invention, such references do not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts. The depicted and described embodiments are examples only, and are not exhaustive of the scope of the invention.
Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects.

Claims (18)

What is claimed is:
1. A computer-implementable method for enhancing ground bounce immunity of a cable, comprising:
determining whether a host and a device coupled to the cable are both capable of operating in a higher power mode of operation;
identifying availability of an alternate higher power mode of operation when the cable, the host and the device are all capable of operating in a higher power mode of operation, the cable indicating an availability of the higher power mode of operation via an electronic marker (E-marker), the E-marker indicating the availability of the higher power mode of operation when the host coupled to a first end of the cable and the device coupled to another end of the cable each support changing a configuration channel signal path reference voltage;
suspending communication between the host and the device prior to configuring the cable, the host and the device to operate in the higher power mode of operation;
configuring the cable, the host and the device to operate in the higher power mode of operation via a negotiation between the host and the device, the configuring comprising changing a reference voltage of the cable to operate in the higher power mode of operation; and,
communicating between the host and the device via the higher power mode of operation, the higher power mode of operation comprising changing the reference voltage to provide enhanced ground bounce immunity for the cable, the enhanced ground bounce immunity providing communication on the cable which is immune to ground bounce when compared to normal power levels of the cable, the normal power levels being defined by a specification for the cable, the ground bounce being defined as a transmission voltage which appears as less than a local ground potential; and
wherein the suspending communication includes suspending the configuration channel signal path while the host, the cable and the device all change their reference voltage and increase the voltage swing on the configuration channel signal path.
2. The method of claim 1, wherein:
the changing the reference voltage of the cable to operate in the higher power mode of operation comprises increasing the reference voltage on the configuration channel signal path whole maintaining a constant cable resistance.
3. The method of claim 1, wherein:
the cable corresponds to a USB type-C cable.
4. The method of claim 3, wherein:
the reference voltage is changed on the configuration channel signal path.
5. The method of claim 1, wherein:
a diameter of the cable is minimized when compared to a diameter that would be required without use of the negotiation operation.
6. The method of claim 1, wherein:
a cable bundle is configured to fit properly with an over mold housing of a USB Type-C plug while also enabling the higher power mode of operation.
7. A system comprising:
a processor;
a data bus coupled to the processor; and
a non-transitory, computer-readable storage medium embodying computer program code, the non-transitory, computer-readable storage medium being coupled to the data bus, the computer program code interacting with a plurality of computer operations and comprising instructions executable by the processor and configured for:
determining whether a host and a device coupled to the cable are both capable of operating in a higher power mode of operation;
identifying availability of an alternate higher power mode of operation when the cable, the host and the device are all capable of operating in a higher power mode of operation, the cable providing an availability of the higher power mode of operation via an electronic marker (E-marker), the E-marker indicating the availability of the higher power mode of operation when the host coupled to a first end of the cable and the device coupled to another end of the cable each support changing a configuration channel signal path reference voltage;
suspending communication between the host and the device prior to configuring the cable, the host and the device to operate in the higher power mode of operation;
configuring the cable, the host and the device to operate in the higher power mode of operation via a negotiation between the host and the device, the configuring comprising changing a reference voltage of the cable to operate in the higher power mode of operation; and,
communicating between the host and the device via the higher power mode of operation, the higher power mode of operation comprising changing the reference voltage to provide enhanced ground bounce immunity for the cable, the enhanced ground bounce immunity providing communication on the cable which is immune to ground bounce when compared to normal power levels of the cable, the normal power levels being defined by a specification for the cable, the ground bounce being defined as a transmission voltage which appears as less than a local ground potential; and
wherein
the suspending communication includes suspending the configuration channel signal path while the host, the cable and the device all change their reference voltage and increase the voltage swing on the configuration channel signal path.
8. The system of claim 7, wherein:
the changing the reference voltage of the cable to operate in the higher power mode of operation comprises increasing the reference voltage on the configuration channel signal path whole maintaining a constant cable resistance.
9. The system of claim 7, wherein:
the cable corresponds to a USB type-C cable.
10. The system of claim 9, wherein:
the reference voltage is changed on the configuration channel signal path.
11. The system of claim 7, wherein:
a diameter of the cable is minimized when compared to a diameter that would be required without use of the negotiation operation.
12. The system of claim 7, wherein:
a cable bundle is configured to fit properly with an over mold housing of a USB Type-C plug while also enabling the higher power mode of operation.
13. An environment for enhancing ground bounce immunity comprising:
a cable, the cable being capable of operating in a normal power mode of operation and a higher power mode of operation, the cable indicating an availability of the higher power mode of operation via an electronic marker (E-marker), the E-marker indicating the availability of the higher power mode of operation when the host coupled to a first end of the cable and the device coupled to another end of the cable each support changing a configuration channel signal path reference voltage;
a host coupled to an end of the cable, the host being capable of operating in a higher power mode of operation;
a device coupled to another end of the cable, the device being capable of operating in a higher power mode of operation,
the host and the device being configured to:
identify availability of an alternate higher power mode of operation when the host and the device are both capable of operating in a higher power mode of operation;
suspending communication between the host and the device prior to configuring the cable, the host and the device to operate in the higher power mode of operation;
configuring the cable, the host and the device to operate in the higher power mode of operation via a negotiation between the host and the device, the configuring comprising changing a reference voltage of the cable to operate in the higher power mode of operation; and,
communicating between the host and the device via the higher power mode of operation, the higher power mode of operation comprising changing the reference voltage to provide enhanced ground bounce immunity for the cable, the enhanced ground bounce immunity providing communication on the cable which is immune to ground bounce when compared to normal power levels of the cable, the normal power levels being defined by a specification for the cable, the ground bounce being defined as a transmission voltage which appears as less than a local ground potential; and
wherein
the suspending communication includes suspending the configuration channel signal path while the host, the cable and the device all change their reference voltage and increase the voltage swing on the configuration channel signal path.
14. The environment of claim 13, wherein:
the changing the reference voltage of the cable to operate in the higher power mode of operation comprises increasing the reference voltage on the configuration channel signal path whole maintaining a constant cable resistance.
15. The environment of claim 13, wherein:
the cable corresponds to a USB type-C cable.
16. The environment of claim 15, wherein:
the reference voltage is changed on the configuration channel signal path.
17. The environment of claim 13, wherein:
a diameter of the cable is minimized when compared to a diameter that would be required without use of the negotiation operation.
18. The environment of claim 13, wherein:
a cable bundle is configured to fit properly with an over mold housing of a USB Type-C plug while also enabling the higher power mode of operation.
US15/046,610 2016-02-18 2016-02-18 Enhanced ground bounce immunity on USB type-C power delivery communication Active 2036-03-18 US10261929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/046,610 US10261929B2 (en) 2016-02-18 2016-02-18 Enhanced ground bounce immunity on USB type-C power delivery communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/046,610 US10261929B2 (en) 2016-02-18 2016-02-18 Enhanced ground bounce immunity on USB type-C power delivery communication

Publications (2)

Publication Number Publication Date
US20170242814A1 US20170242814A1 (en) 2017-08-24
US10261929B2 true US10261929B2 (en) 2019-04-16

Family

ID=59629971

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/046,610 Active 2036-03-18 US10261929B2 (en) 2016-02-18 2016-02-18 Enhanced ground bounce immunity on USB type-C power delivery communication

Country Status (1)

Country Link
US (1) US10261929B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9998277B2 (en) * 2016-06-15 2018-06-12 Silicon Laboratories Inc. Controlling a reference voltage for a clock and data recovery circuit
US10289477B2 (en) * 2017-02-27 2019-05-14 Semiconductor Components Industries, Llc USB electronic marker circuit and method therefor
JP2019046066A (en) * 2017-08-31 2019-03-22 株式会社東芝 Electronic device and cable
CN112020706A (en) 2018-05-10 2020-12-01 惠普发展公司,有限责任合伙企业 Docking device communication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010032324A1 (en) * 1998-05-12 2001-10-18 Slaughter Gregory L. Highly available cluster message passing facility
US20120297207A1 (en) * 2011-05-18 2012-11-22 Nokia Corporation Method, apparatus, and computer program product for cable detection and power negotiation
US20150362984A1 (en) * 2014-06-13 2015-12-17 Texas Instruments Incorporated Power-saving mode for usb power delivery sourcing device
US20170052578A1 (en) * 2015-06-19 2017-02-23 Cypress Semiconductor Corporation Low-Power Type-C Receiver with High Idle Noise and DC-Level Rejection
US20170115711A1 (en) * 2015-10-23 2017-04-27 Nxp B.V. Communications for power delivery solutions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010032324A1 (en) * 1998-05-12 2001-10-18 Slaughter Gregory L. Highly available cluster message passing facility
US20120297207A1 (en) * 2011-05-18 2012-11-22 Nokia Corporation Method, apparatus, and computer program product for cable detection and power negotiation
US20150362984A1 (en) * 2014-06-13 2015-12-17 Texas Instruments Incorporated Power-saving mode for usb power delivery sourcing device
US20170052578A1 (en) * 2015-06-19 2017-02-23 Cypress Semiconductor Corporation Low-Power Type-C Receiver with High Idle Noise and DC-Level Rejection
US20170115711A1 (en) * 2015-10-23 2017-04-27 Nxp B.V. Communications for power delivery solutions

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Altera White Paper-Minimizing Ground Bounce & Vcc Sag-2001. *
Altera White Paper—Minimizing Ground Bounce & Vcc Sag—2001. *
Burke Henehan, Maximizing EOS and ESD Immunity in High-Performance Serial Buses, Feb. 1, 2007 http://www.edn.com/design/analog/4314519/Maximizing-EOS-and-ESD-immunity-in-high-performance-serial-buses.
Wikipedia.com, USB-C, https://en.wikipedia.org/wiki/USB-C, printed Aug. 17, 2017.

Also Published As

Publication number Publication date
US20170242814A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
US20170293347A1 (en) Intelligent Power Dongle
US10089251B2 (en) Multi-modal active cable for performing a mode identification operation
US10261929B2 (en) Enhanced ground bounce immunity on USB type-C power delivery communication
JP7029356B2 (en) How to handle impedance abnormalities in power adapters, terminals and charging circuits
CN108351677B (en) Port controller with power supply contract negotiation capability
KR102468187B1 (en) Eletronic device and external device charging method thereof
US20220261056A1 (en) Electronic device and power supply method for electronic device
EP2940592B1 (en) Pull-down circuitry for an apparatus
US10067545B2 (en) Universal serial bus active cable power management
TW201824006A (en) Usb type-c to legacy usb cable detection
US10663496B2 (en) Cable error signal
US10832536B2 (en) Guided cable management
US20180341315A1 (en) Power supply system, power receiving device and power supply device
US11095463B2 (en) Information handling system selective local and remote charger control
US10140221B2 (en) Method to handle host, device, and link's latency tolerant requirements over USB Type-C power delivery using vendor defined messaging for all alternate modes
JP2023027042A (en) Business data processing method, device, electronic apparatus, storage medium, and computer program
US20180018295A1 (en) Method for automatically exchanging device-to-host interface direction for usb type-c connections
CN109683917A (en) For the method for being deployed in application server, equipment and medium will to be applied
CN106155254B (en) Method, electronic equipment and the system equipment of power management
US11564573B2 (en) Communication bus
US10554695B2 (en) Networked device connection system
CN113131562B (en) Charging control method and device for electronic equipment and electronic equipment
US11437826B2 (en) Battery fast charging using multiple adaptor inputs
US8832341B2 (en) Dynamically determining a primary or slave assignment based on receiving a power signal from the cable at the port of a device
CN111708582A (en) Online configuration method and device and electronic equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VOOR, THOMAS E.;WOOD, MERLE J., III;REEL/FRAME:037763/0040

Effective date: 20160216

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text: SUPPLEMENT TO PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:DELL PRODUCTS L.P.;DELL SOFTWARE INC.;WYSE TECHNOLOGY, L.L.C.;REEL/FRAME:038665/0001

Effective date: 20160511

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: SUPPLEMENT TO PATENT SECURITY AGREEMENT (TERM LOAN);ASSIGNORS:DELL PRODUCTS L.P.;DELL SOFTWARE INC.;WYSE TECHNOLOGY, L.L.C.;REEL/FRAME:038665/0041

Effective date: 20160511

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS FIRST LIEN COLLATERAL AGENT, TEXAS

Free format text: SUPPLEMENT TO PATENT SECURITY AGREEMENT (NOTES);ASSIGNORS:DELL SOFTWARE INC.;WYSE TECHNOLOGY, L.L.C.;DELL PRODUCTS L.P.;REEL/FRAME:038664/0908

Effective date: 20160511

Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH

Free format text: SUPPLEMENT TO PATENT SECURITY AGREEMENT (TERM LOAN);ASSIGNORS:DELL PRODUCTS L.P.;DELL SOFTWARE INC.;WYSE TECHNOLOGY, L.L.C.;REEL/FRAME:038665/0041

Effective date: 20160511

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A

Free format text: SUPPLEMENT TO PATENT SECURITY AGREEMENT (NOTES);ASSIGNORS:DELL SOFTWARE INC.;WYSE TECHNOLOGY, L.L.C.;DELL PRODUCTS L.P.;REEL/FRAME:038664/0908

Effective date: 20160511

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NO

Free format text: SUPPLEMENT TO PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:DELL PRODUCTS L.P.;DELL SOFTWARE INC.;WYSE TECHNOLOGY, L.L.C.;REEL/FRAME:038665/0001

Effective date: 20160511

AS Assignment

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE OF REEL 038665 FRAME 0001 (ABL);ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040021/0348

Effective date: 20160907

Owner name: SECUREWORKS, CORP., GEORGIA

Free format text: RELEASE OF REEL 038665 FRAME 0001 (ABL);ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040021/0348

Effective date: 20160907

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF REEL 038665 FRAME 0001 (ABL);ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040021/0348

Effective date: 20160907

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE OF REEL 038665 FRAME 0001 (ABL);ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:040021/0348

Effective date: 20160907

AS Assignment

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE OF REEL 038665 FRAME 0041 (TL);ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040028/0375

Effective date: 20160907

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE OF REEL 038664 FRAME 0908 (NOTE);ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040027/0390

Effective date: 20160907

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE OF REEL 038664 FRAME 0908 (NOTE);ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040027/0390

Effective date: 20160907

Owner name: SECUREWORKS, CORP., GEORGIA

Free format text: RELEASE OF REEL 038665 FRAME 0041 (TL);ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040028/0375

Effective date: 20160907

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF REEL 038665 FRAME 0041 (TL);ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040028/0375

Effective date: 20160907

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE OF REEL 038665 FRAME 0041 (TL);ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040028/0375

Effective date: 20160907

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF REEL 038664 FRAME 0908 (NOTE);ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040027/0390

Effective date: 20160907

Owner name: SECUREWORKS, CORP., GEORGIA

Free format text: RELEASE OF REEL 038664 FRAME 0908 (NOTE);ASSIGNOR:BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:040027/0390

Effective date: 20160907

AS Assignment

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT, NORTH CAROLINA

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040134/0001

Effective date: 20160907

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040136/0001

Effective date: 20160907

Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040134/0001

Effective date: 20160907

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040136/0001

Effective date: 20160907

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., T

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES, INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:049452/0223

Effective date: 20190320

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES, INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:049452/0223

Effective date: 20190320

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A

Free format text: PATENT SECURITY AGREEMENT (NOTES);ASSIGNORS:DELL PRODUCTS L.P.;EMC CORPORATION;EMC IP HOLDING COMPANY LLC;AND OTHERS;REEL/FRAME:050724/0466

Effective date: 20191010

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT, TEXAS

Free format text: PATENT SECURITY AGREEMENT (NOTES);ASSIGNORS:DELL PRODUCTS L.P.;EMC CORPORATION;EMC IP HOLDING COMPANY LLC;AND OTHERS;REEL/FRAME:050724/0466

Effective date: 20191010

AS Assignment

Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNORS:CREDANT TECHNOLOGIES INC.;DELL INTERNATIONAL L.L.C.;DELL MARKETING L.P.;AND OTHERS;REEL/FRAME:053546/0001

Effective date: 20200409

AS Assignment

Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: MOZY, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: MAGINATICS LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: FORCE10 NETWORKS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: EMC IP HOLDING COMPANY LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: EMC CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL SYSTEMS CORPORATION, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL SOFTWARE INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL MARKETING L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL INTERNATIONAL, L.L.C., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: CREDANT TECHNOLOGIES, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: AVENTAIL LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

Owner name: ASAP SOFTWARE EXPRESS, INC., ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001

Effective date: 20211101

AS Assignment

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL INTERNATIONAL L.L.C., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (040136/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061324/0001

Effective date: 20220329

AS Assignment

Owner name: SCALEIO LLC, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MOZY, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: EMC CORPORATION (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO MAGINATICS LLC), MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO FORCE10 NETWORKS, INC. AND WYSE TECHNOLOGY L.L.C.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL INTERNATIONAL L.L.C., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL USA L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING L.P. (ON BEHALF OF ITSELF AND AS SUCCESSOR-IN-INTEREST TO CREDANT TECHNOLOGIES, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO ASAP SOFTWARE EXPRESS, INC.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (045455/0001);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:061753/0001

Effective date: 20220329

AS Assignment

Owner name: DELL MARKETING CORPORATION (SUCCESSOR-IN-INTEREST TO WYSE TECHNOLOGY L.L.C.), TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (050724/0466);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:060753/0486

Effective date: 20220329

Owner name: EMC IP HOLDING COMPANY LLC, TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (050724/0466);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:060753/0486

Effective date: 20220329

Owner name: EMC CORPORATION, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (050724/0466);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:060753/0486

Effective date: 20220329

Owner name: DELL PRODUCTS L.P., TEXAS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (050724/0466);ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT;REEL/FRAME:060753/0486

Effective date: 20220329

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4