US10224650B2 - Coaxial frequency-separating connector - Google Patents

Coaxial frequency-separating connector Download PDF

Info

Publication number
US10224650B2
US10224650B2 US15/859,034 US201715859034A US10224650B2 US 10224650 B2 US10224650 B2 US 10224650B2 US 201715859034 A US201715859034 A US 201715859034A US 10224650 B2 US10224650 B2 US 10224650B2
Authority
US
United States
Prior art keywords
frequency
coaxial
connector
sleeve element
contacting end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/859,034
Other languages
English (en)
Other versions
US20180294583A1 (en
Inventor
Kung-Yu SHEN
Ta-Lun Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRAND-TEK TECHNOLOGY Co Ltd
Original Assignee
GRAND-TEK TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRAND-TEK TECHNOLOGY Co Ltd filed Critical GRAND-TEK TECHNOLOGY Co Ltd
Assigned to GRAND-TEK TECHNOLOGY CO., LTD. reassignment GRAND-TEK TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, TA-LUN, SHEN, KUNG-YU
Publication of US20180294583A1 publication Critical patent/US20180294583A1/en
Application granted granted Critical
Publication of US10224650B2 publication Critical patent/US10224650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/03Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections
    • H01R9/05Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections for coaxial cables
    • H01R9/0521Connection to outer conductor by action of a nut
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/026Transitions between lines of the same kind and shape, but with different dimensions between coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • H01R24/42Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • H01R24/50Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency mounted on a PCB [Printed Circuit Board]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/03Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections
    • H01R9/05Connectors arranged to contact a plurality of the conductors of a multiconductor cable, e.g. tapping connections for coaxial cables
    • H01R9/0503Connection between two cable ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2103/00Two poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • H01R24/52Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency mounted in or to a panel or structure

Definitions

  • the present invention relates to a connector, and more particularly relates to a coaxial frequency-separating connector able to perform a frequency dividing operation.
  • a communication device Due to a large amount of signal transmission, a communication device usually configured with a plurality of board-type RF components on a circuit board to receive signals having respective different frequencies on one frequency band and then to add the signals together so as to increase the signal transmitting amount on one frequency band.
  • the board-type RF component on the circuit board is an electronic component with small size such that it is with comparatively poor signal quality. Therefore, an extra transmission component such as a coaxial cable or an antenna is required to externally connect to the board-type RF component for strengthening the transmitting signal.
  • a coaxial connector is therefore provided to connect the board-type RF component with the transmission component in such a manner that the coaxial connector is connected between the board-type RF component and a casing of the communication device to which a transmission component is connected.
  • one drawback of the conventional coaxial connector in a prior art is that a casing of communication device has insufficient accommodation for receiving as many amount as more than two coaxial connectors. Therefore, an improvement is required.
  • one of the objectives of the present invention is to provide a coaxial frequency-separating connector allowing the commutation device to reduce the amount of coaxial connector to solve the space problem for installing the coaxial connectors.
  • the present invention overcomes the technical problems in the conventional art and provides a coaxial frequency-separating connector, comprising: a sleeve element having a through hole space inside; a first conducting element fastened and disposed in the through hole space, a front end of the first conducting element being conductively connected to a multi-frequency transmission element; a frequency dividing element fastened and disposed in the through hole space and conductively connected to a rear end of the first conducting element, the frequency dividing element including a multi-frequency contacting end, a multi-frequency dividing circuit, a first frequency contacting end and a second frequency contacting end, one end of the multi-frequency dividing circuit being connected to the multi-frequency contacting end, the other end of the multi-frequency dividing circuit being branched to connect to both the first frequency contacting end and the second frequency contacting end so as to perform a signal transfer between frequency combining and frequency dividing for the multi-frequency contacting end in relation to the first frequency contacting end and the second frequency contacting end; and a second conducting element
  • the frequency of the first frequency contacting end and the frequency of the second frequency contacting end are 2.4 GHz and 5 GHz, respectively.
  • both front ends of the first conducting element and the sleeve element are formed with a universal RF connector selected one from a group comprising SMA, PR-SMA, Type-N-female, and PR-TNL-female connectors.
  • a threaded portion is formed on an external surface of a front end of the sleeve element.
  • both the first frequency connector and the second frequency connector are board-side connectors selected from SMP, MCX, MMCX, U.FL, I-PEX and Mini-coaxial connectors.
  • a front cushion and a rear retainer are provided on an external surface of a rear end of the sleeve element, the front cushion protruding in an axial direction of the sleeve element on a rear external surface of the sleeve element, the rear retainer being removable disposed at the sleeve element in a position relatively behind the front cushion, and a slot being formed between the front cushion and the rear retainer for pressing against a casing of a communication device so as to fix the sleeve element on the casing.
  • the front end of the first conducting element is a connecting terminal that conducts a frequency signal to a dual-frequency antenna.
  • the coaxial frequency-separating connector of the present invention applies a first conducting element to receive a multi-frequency signal from a multi-frequency transmission element, and applies a multi-frequency dividing circuit to divide the multi-frequency signal to a plurality of different frequency signals such that the different frequency signals are respectively transmitted to the first coaxial cable and the second coaxial cable of a second conducting element. Furthermore, a first frequency contacting end to which a first RF element is connected and a second frequency contacting end to which a second RF element is connected are respectively connected on one end of the first coaxial cable and one end of the second coaxial cable. Accordingly, two RF elements with two different frequency bands can use only one coaxial frequency-separating connector to connect to a transmission element. Therefore, the amount that the coaxial frequency-separating connector needed to be installed in a communication device is less. It therefore avoids the interference among/between the coaxial frequency-separating connector.
  • FIG. 1 is a schematic stereogram illustrating a coaxial frequency-separating connector according to one embodiment of the present invention
  • FIG. 2 is an exploded view illustrating a coaxial frequency-separating connector according to the embodiment of the present invention
  • FIG. 3 is a cross-section view illustrating a coaxial frequency-separating connector according to the embodiment of the present invention.
  • FIG. 4 is a schematic drawing illustrating a coaxial frequency-separating connector in use according to the embodiment of the present invention.
  • a coaxial frequency-separating connector 100 includes: a sleeve element 1 , a first conducting element 2 , a frequency dividing element 3 and a second conducting element 4 .
  • one end of the coaxial frequency-separating connector 100 is connected to a multi-frequency transmission element A, and the other end is installed on a casing C 1 of a communication device C in a manner that signals are branched to connect to a first RF element C 21 and a second RF element C 22 on a PCB C 2 of the communication device C.
  • the present invention is not limited to this and the coaxial frequency-separating connector 100 may be applied to connect between any electronic communication components such as coaxial cables, RF elements, and RF antennas.
  • the sleeve element 1 has a through hole space 11 inside.
  • the sleeve element 1 covers the outer surface of the first conducting element 2 and the frequency dividing element 3 so as to protect the first conducting element 2 and the frequency dividing element 3 by disposing them inside the through hole space 11 .
  • the front end of the sleeve element 1 is formed with a transmission sleeve 12 for connecting to the multi-frequency transmission element A (a dual-frequency antenna element).
  • a threaded portion 121 is provided on the external surface of the transmission sleeve 12 for fastening the corresponding multi-frequency transmission element A.
  • a stopper 122 may be added to the transmission sleeve 12 for stopping the multi-frequency transmission element A.
  • a communication sleeve 13 is formed on the rear end of the sleeve element 1 for installing the communication device C.
  • a front cushion 131 and a rear retainer 132 are provided on the external surface of the communication sleeve 13 .
  • the front cushion 131 protrudes in an axial direction of the communication sleeve 13 and the rear retainer 132 is removable disposed at the sleeve element 1 in a position relatively behind the front cushion 131 .
  • the rear retainer 132 is a nut fastened to the thread on the external surface of the communication sleeve 13 such that a slot is formed between the front cushion 131 and the rear retainer 132 .
  • the sleeve element 1 is connected by inserting the communication sleeve 13 into an installing opening on the casing C 1 of the communication device C and using the front cushion 131 to remain on the external surface of the casing C 1 .
  • the rear retainer 132 can be rotated relatively to a corresponding threaded portion to move toward and press against the internal surface of the casing C 1 such that the slot is firmly fastened on the casing C 1 so as to fix the sleeve element 1 on the casing C 1 .
  • a waterproof cushion can be provided in between the front cushion 131 and the casing C 1 such that the front cushion can be more affixed to the casing and prevent water from entering the installing opening of a casing, as shown in FIG. 3 .
  • a washer 133 may be added in between the rear retainer 132 and the casing C 1 to further fasten the casing C 1 , as shown in FIG. 3 .
  • the first conducting element 2 is fastened and disposed in the through hole space 11 ,
  • the present invention is not limited to this and the first conducting element 2 may be disposed partially outside the through hole space 11 .
  • the first conducting element 2 has a conducting pin disposed at the center of the transmission sleeve 12 , the front end of conducting pin used to conductively connect a conductor inside the multi-frequency transmission element A.
  • a universal RF connector 21 is formed by the front end of the conducting pin in the first conducting element 2 and the transmission sleeve 12 .
  • the universal RF connector 21 is formed by the transmission sleeve 12 and an internal sleeve 123 .
  • the universal RF connector 21 is one selected from a group comprising SMA, PR-SMA, Type-N-female, and PR-TNL-female connectors corresponding to the multi-frequency transmission element A such that the universal RF connector 21 can be directly installed in and connected to the multi-frequency transmission element A.
  • the present invention is not limited to this and other types of connectors or a directly conductive connection without connectors can also be applied to connect the multi-frequency transmission element A.
  • the universal RF connector 21 is a Type-N-female connector that can directly conductively connect a contacting end of a dual-frequency antenna.
  • the frequency dividing element 3 is a frequency division PCB fastened and disposed at the through hole space 11 inside communication sleeve 13 behind the first conducting element 2 .
  • the frequency dividing element 3 includes a multi-frequency contacting end 31 , a first frequency contacting end 33 and second frequency contacting end 34 .
  • the multi-frequency contacting end 31 is disposed in the front end of the PCB and the first frequency contacting end 33 and the second frequency contacting end 34 are respectively disposed in the rear end of the PCB.
  • a multi-frequency dividing circuit 32 disposed in the middle of the PCB, is connected between the multi-frequency contacting end 31 , the first frequency contacting end 33 , and second frequency contacting end 34 .
  • the multi-frequency contacting end 31 is connected to the rear end of the conducting pin of the first conducting element 2 .
  • the multi-frequency dividing circuit 32 is a complicated multi-frequency dividing circuit configured to perform a signal transfer between frequency combining and frequency dividing for the multi-frequency contacting end 31 in relation to the first frequency contacting end 33 and the second frequency contacting end 34 so as to divide the multi-frequency from the first conducting element 2 into first frequency and second frequency via the multi-frequency dividing circuit.
  • the multi-frequency dividing circuit 32 is used to perform a frequency dividing operation between multi-frequency, 2.4 GHz and 5 GHz.
  • the frequency of the first frequency contacting end 33 and the frequency of the second frequency contacting end 34 are 2.4 GHz, and 5 GHz, which are the commonly used frequencies.
  • the second conducting element 4 includes a first coaxial cable 41 and a second coaxial cable 42 .
  • one end of the first coaxial cable 41 applies a contacting end to conductively connect to the first frequency contacting end 33 and is embedded in one installing opening of the rear end of sleeve element 1 .
  • a first frequency connector 411 is provided at the other end of the first coaxial cable 41 .
  • One end of the second coaxial cable 42 applies a contacting end to conductively connect to the second frequency contacting end 34 and is embedded in one another installing opening of the rear end of sleeve element 1 .
  • a second frequency connector 421 is provided at the other end of the second coaxial cable 42 .
  • both the first frequency connector 411 and the second frequency connector 421 are board-side connectors selected from a group comprising SMP, MCX, MMCX, U.FL, I-PEX and Mini-coaxial connectors, which can be connected to the corresponding first RF element and second RF element.
  • the present invention is not limited to this and the conductor inside the cable of the first frequency connector 411 and the second frequency connector 421 can also be used as connectors.
  • the conductor can be welded directly to the first RF element C 21 and the second RF element C 22 on the PCB C 2 of the communication device C.
  • the conductor can also applies the other type of connectors to connect to the first RF element C 21 and the second RF element C 22 on the PCB C 2 of the communication device C.
  • the coaxial frequency-separating connector 100 applies the first conducting element 2 to receive a multi-frequency signal from a multi-frequency transmission element A, and applies a multi-frequency dividing circuit 3 to divide the multi-frequency signal to a plurality of different frequency signals such that the different frequency signals are respectively transmitted to the first coaxial cable 41 and the second coaxial cable 42 of a second conducting element 4 . Furthermore, a first frequency contacting end 33 to which a first RF element C 21 is connected and a second frequency contacting end 34 to which a second RF element C 22 is connected are respectively connected on one end of the first coaxial cable 41 and one end of the second coaxial cable 42 .
  • two RF elements with two different frequency bands can use only one coaxial frequency-separating connector 100 to connect to a transmission element. Therefore, the amount that the coaxial frequency-separating connectors 100 needed to be installed in a communication device C is less and the transmission speed of the RF elements in two frequency bands is faster.

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
US15/859,034 2017-04-11 2017-12-29 Coaxial frequency-separating connector Active US10224650B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW106112092A 2017-04-11
TW106112092 2017-04-11
TW106112092A TWI629838B (zh) 2017-04-11 2017-04-11 同軸連接器

Publications (2)

Publication Number Publication Date
US20180294583A1 US20180294583A1 (en) 2018-10-11
US10224650B2 true US10224650B2 (en) 2019-03-05

Family

ID=63640666

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/859,034 Active US10224650B2 (en) 2017-04-11 2017-12-29 Coaxial frequency-separating connector

Country Status (2)

Country Link
US (1) US10224650B2 (zh)
TW (1) TWI629838B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749281B1 (en) * 2018-09-04 2020-08-18 Genesis Technology Usa, Inc. Shear and torque resistant F-connector assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916901B2 (en) * 2018-11-07 2021-02-09 Filconn Inc. Electrical connectors with electrical bonding features
EP3979436B1 (de) * 2020-10-01 2024-05-08 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Elektrischer steckverbinder, leiterplattenanordnung und verfahren zur montage einer leiterplattenanordnung

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019622A (en) * 1997-03-03 2000-02-01 Uro Denshi Kogyo Kabushiki Kaisha Termination coaxial connector
US6238218B1 (en) * 1999-05-20 2001-05-29 Radiall Device for electrically connecting a coaxial line to a printed circuit card
US7186144B1 (en) * 2005-12-01 2007-03-06 Adc Telecommunications, Inc. Connector including media converter
US7262672B2 (en) * 2002-04-01 2007-08-28 Gigalane Co., Ltd. Coaxial connector and connection structure including the same
US7278887B1 (en) * 2006-05-30 2007-10-09 John Mezzalingua Associates, Inc. Integrated filter connector
US7306484B1 (en) * 2006-06-26 2007-12-11 Scientific-Atlanta, Inc. Coax-to-power adapter
US7442084B2 (en) * 2006-06-21 2008-10-28 John Mezzalingua Associates, Inc. Filter housing
US7540773B2 (en) * 2007-06-08 2009-06-02 Hon Hai Precision Ind. Co., Ltd. Connector assembly with improved strain relief structure
US7621753B1 (en) * 2008-11-05 2009-11-24 Taiwan Line Tek Electronic Co., Ltd. Magnetic power socket and plug and combination thereof
US7753689B1 (en) * 2009-05-12 2010-07-13 Hon Hai Precision Ind. Co., Ltd. Plug connector with right angle cover
US8366482B2 (en) * 2009-07-14 2013-02-05 Corning Gilbert Inc. Re-enterable hardline coaxial cable connector
US8961223B2 (en) * 2012-08-29 2015-02-24 Genesis Technology Usa, Inc. F-connector with chamfered lock ring
US8975520B2 (en) * 2008-07-27 2015-03-10 Steren Electronics International, Llc Ground loop isolator for a coaxial cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425844B (en) * 2003-12-24 2007-07-11 Cascade Microtech Inc Active wafer probe
US7813451B2 (en) * 2006-01-11 2010-10-12 Mobileaccess Networks Ltd. Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting
TWM300920U (en) * 2006-05-19 2006-11-11 Poni Tek Co Ltd Malleable signal distributor
TWM450847U (zh) * 2012-11-20 2013-04-11 Sun Shen Entpr Co Ltd 電氣連接器
TWM527632U (zh) * 2016-01-25 2016-08-21 啟碁科技股份有限公司 無線網路基地台及其無線保真濾波連接器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019622A (en) * 1997-03-03 2000-02-01 Uro Denshi Kogyo Kabushiki Kaisha Termination coaxial connector
US6238218B1 (en) * 1999-05-20 2001-05-29 Radiall Device for electrically connecting a coaxial line to a printed circuit card
US7262672B2 (en) * 2002-04-01 2007-08-28 Gigalane Co., Ltd. Coaxial connector and connection structure including the same
US7186144B1 (en) * 2005-12-01 2007-03-06 Adc Telecommunications, Inc. Connector including media converter
US7278887B1 (en) * 2006-05-30 2007-10-09 John Mezzalingua Associates, Inc. Integrated filter connector
US7442084B2 (en) * 2006-06-21 2008-10-28 John Mezzalingua Associates, Inc. Filter housing
US7306484B1 (en) * 2006-06-26 2007-12-11 Scientific-Atlanta, Inc. Coax-to-power adapter
US7540773B2 (en) * 2007-06-08 2009-06-02 Hon Hai Precision Ind. Co., Ltd. Connector assembly with improved strain relief structure
US8975520B2 (en) * 2008-07-27 2015-03-10 Steren Electronics International, Llc Ground loop isolator for a coaxial cable
US7621753B1 (en) * 2008-11-05 2009-11-24 Taiwan Line Tek Electronic Co., Ltd. Magnetic power socket and plug and combination thereof
US7753689B1 (en) * 2009-05-12 2010-07-13 Hon Hai Precision Ind. Co., Ltd. Plug connector with right angle cover
US8366482B2 (en) * 2009-07-14 2013-02-05 Corning Gilbert Inc. Re-enterable hardline coaxial cable connector
US8961223B2 (en) * 2012-08-29 2015-02-24 Genesis Technology Usa, Inc. F-connector with chamfered lock ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749281B1 (en) * 2018-09-04 2020-08-18 Genesis Technology Usa, Inc. Shear and torque resistant F-connector assembly

Also Published As

Publication number Publication date
TW201838267A (zh) 2018-10-16
US20180294583A1 (en) 2018-10-11
TWI629838B (zh) 2018-07-11

Similar Documents

Publication Publication Date Title
US10224650B2 (en) Coaxial frequency-separating connector
US7742787B2 (en) Wireless data communication card with compact antenna
US7252555B2 (en) Pin connector
CN112086784B (zh) 用于传输超高频信号的同轴线缆阳连接器
US6947011B2 (en) Connector unit
US20200203902A1 (en) Connectors for coaxial cables
US11322835B2 (en) Antenna system with independent ground planes
US10084228B2 (en) System of integrated module with antenna
EP3998681A1 (en) Multiple coaxial cable connector
US20220393347A1 (en) Cavity phase shifter and base station antenna
US20220393409A1 (en) Connector and method for connecting a coaxial cable to a printed circuit board
CN113300096A (zh) 拼接式pcb天线
US8406002B2 (en) Low noise block down-converter with integrated feed
KR20200025870A (ko) Rf케이블 일체형 전력분배기
US20140213122A1 (en) Coaxial connector
KR20150090655A (ko) 튜너 모듈
US20080077968A1 (en) Receiver and multiple receiver apparatus
TWI730805B (zh) 用於傳輸超高頻訊號之同軸纜線公連接器
EP1786063B1 (en) Dipole antenna for broadband transmission
US20200244017A1 (en) Coaxial cable connector
TWM547200U (zh) 同軸連接器
KR20210033762A (ko) 튜너 및 이를 포함하는 튜너 장치
WO2022055499A1 (en) Hybrid antennas
US20140242842A1 (en) Integrated radio frequency connector
KR20140037590A (ko) 무선통신모듈

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

AS Assignment

Owner name: GRAND-TEK TECHNOLOGY CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHEN, KUNG-YU;LEE, TA-LUN;REEL/FRAME:044753/0792

Effective date: 20170810

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4