US10206727B2 - Apparatus for the fixation of proximal humerus fractures - Google Patents
Apparatus for the fixation of proximal humerus fractures Download PDFInfo
- Publication number
- US10206727B2 US10206727B2 US14/760,316 US201414760316A US10206727B2 US 10206727 B2 US10206727 B2 US 10206727B2 US 201414760316 A US201414760316 A US 201414760316A US 10206727 B2 US10206727 B2 US 10206727B2
- Authority
- US
- United States
- Prior art keywords
- calcar
- humerus
- fasteners
- openings
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8061—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8004—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones
- A61B17/8019—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with means for distracting or compressing the bone or bones where the means are a separate tool rather than being part of the plate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8033—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
- A61B17/8042—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers the additional component being a cover over the screw head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/809—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates with bone-penetrating elements, e.g. blades or prongs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/8866—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices for gripping or pushing bones, e.g. approximators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1778—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the shoulder
Definitions
- a proximal humerus fracture occurs, it is sometimes necessary to fix the bone fragments together to ensure proper healing and restore correct function of the arm and shoulder.
- fixation can be achieved by securing a plate to the lateral side of the humerus adjacent the head of the humerus using screws or pins.
- varus collapse occurs in which the head of the humerus collapses and forms an undesirably acute angle (e.g., 80 to 90°) with the neck of the humerus. It is important to prevent such collapse because it can alter the biomechanics of the shoulder joint, decrease range of motion, and lead to unsuccessful outcomes.
- FIG. 1 is a perspective view of a first embodiment of a humerus plate that can be used to fix a proximal humerus fracture.
- FIG. 2 is a side view of the humerus plate of FIG. 1 .
- FIG. 3 is a top view of a second embodiment of a humerus plate that can be used to fix a proximal humerus fracture.
- FIG. 4 is a side view of a humerus bone after a humerus plate has been affixed to the bone using bone screws.
- FIG. 5 is a top view of a compression device that can be used in a proximal humerus fixation procedure.
- FIG. 6 is a side view of the compression device of FIG. 5 .
- FIG. 7 is a perspective view of an embodiment of an aiming apparatus that can be used in a proximal humerus fixation procedure.
- FIG. 8 is a perspective view of a humerus bone during an example proximal humerus fixation procedure.
- FIG. 9 is a top view of a locking plate that can be used to prevent loosening of fasteners used to secure a humerus plate to a humerus bone.
- FIG. 10 is a top view of a humerus plate to which the locking plate of FIG. 9 has been applied.
- the apparatus includes a humerus plate that is provided with a plurality of openings in a calcar region of the plate that enables fasteners to be placed within the inferomedial neck of the humerus.
- a plurality of small screws can be used to stabilize that region of the humerus to prevent varus collapse.
- further fasteners can be threaded directly into the head of the humerus from the medial side of the bone to provide further reinforcement.
- an aiming apparatus that attaches to the humerus plate can be used to control the trajectory of the medial fasteners, and potentially the fasteners that extend through the humerus plate as well.
- FIGS. 1 and 2 illustrate an embodiment of an implantable humerus plate 10 that can be used to secure bone fragments of the proximal humerus together.
- the illustrated humerus plate 10 is unitarily formed from a single piece of material, such as stainless steel or titanium.
- the humerus plate 10 is generally flat, narrow, and elongated so as to be well suited for attachment to the lateral portion of the head, neck, and shaft of the humerus bone.
- the proximal portion 12 of the humerus plate 10 has a gentle curvature that is adapted to match the convex curvature of the head of the humerus bone (see FIG. 4 ).
- the central portion 14 and the distal portion 16 of the humerus plate 10 can be generally linear (when viewed from the side).
- the humerus plate 10 is approximately 80 to 100 mm long and approximately 2 to 5 mm thick.
- the proximal portion 12 of the humerus plate 10 is wider than the central and distal portions 14 , 16 of the plate.
- the proximal portion 12 is approximately 18 to 20 mm wide and the central and distal portions 14 , 16 are approximately 10 to 14 mm wide.
- the proximal portion 12 can have a generally rectangular shape that is defined in part by generally linear lateral edges 17 .
- the lateral edges 17 include notches 19 that, as described below, facilitate attachment of another device to the humerus plate 10 during the fixation procedure.
- each of the portions 12 - 16 of the humerus plate 10 comprises its own opening or openings.
- the relatively large openings 18 are approximately 3 to 5 mm in diameter and the relatively small openings 20 are approximately 2 to 3 mm in diameter.
- the relatively large openings 18 are adapted to receive fasteners that will extend into the proximal head of the humerus bone and the relatively small openings 20 are adapted to receive fasteners that will extend into the medial calcar of the humerus bone.
- the relatively large openings 18 may be referred to as proximal openings and the relatively small openings 20 may be referred to as calcar openings.
- the calcar openings can be considered as being located in a calcar region of the humerus plate, which is located at a position approximately one-fourth to one-third of the length of the humerus plate, as measured from its proximal end.
- the proximal portion 12 of the humerus plate 10 can further include at least one drill guide opening 21 that, as described below, can be used to secure another device, such as a drill guide, to the plate during the fixation procedure.
- the central portion 14 includes a single elongated opening 22 and the distal portion 16 includes two openings 24 .
- the elongated opening 22 is approximately 3 to 6 mm wide and approximately 12 to 20 mm long.
- the openings 24 can each comprise dual openings 26 that are joined together at their edges and that enable two independent fasteners to pass.
- the openings 26 are each approximately 3 to 6 mm in diameter.
- FIG. 3 illustrates a second embodiment of an implantable humerus plate 30 that can be used to secure bone fragments of the proximal humerus together.
- the humerus plate 30 is very similar to the humerus plate 10 shown in FIG. 1 .
- the humerus plate 30 can be unitarily formed from a single piece of generally flat material and can generally comprise a proximal portion 32 , a central portion 34 , and a distal portion 36 .
- the proximal portion 32 can have a gentle curvature that is adapted to match the curvature of the head of the humerus bone.
- the humerus plate 30 can be approximately 80 to 100 mm long and approximately 2 to 5 mm thick.
- the proximal portion 32 of the humerus plate 30 is wider than the central and distal portions 34 , 36 of the plate.
- the proximal portion 32 is approximately 18 to 20 mm wide and the central and distal portions 34 , 36 are approximately 10 to 14 mm wide.
- the proximal portion 32 can have a generally rectangular shape that is defined in part by generally linear lateral edges 37 .
- the lateral edges 37 include notches 39 that, as described below, facilitate attachment of another device to the humerus plate 30 during the fixation procedure.
- each of the portions 32 - 36 of the humerus plate 30 comprises its own opening or openings.
- the proximal portion 32 can comprise relatively large proximal openings 38 ( ⁇ 3 to 5 mm in diameter) and relatively small calcar openings 40 ( ⁇ 2 to 3 mm in diameter).
- the proximal portion 32 of the humerus plate 30 can further include at least one drill guide opening 41 that can be used to secure another device to the plate during the fixation procedure.
- the central portion 34 includes a single elongated opening 42 .
- the distal portion 36 of the humerus plate 30 includes an elongated opening 44 and a circular opening 46 .
- the elongated openings 42 , 44 are approximately 3 to 6 mm wide and approximately 12 to 20 mm long and the circular opening 46 is approximately 3 to 6 mm in diameter.
- Humerus plates of the type described above can be attached to the humeral head, neck, and shaft to fix the bone fragments together and ensure proper healing.
- the humerus plate can be applied to the lateral side of the humerus bone and fasteners can be passed through the openings in the plate and into the bone to secure the plate in place, so as to stabilize the bone fragments.
- the humerus plate can be secured using bone screws.
- FIG. 4 illustrates such a scenario.
- a humerus plate 50 having a similar construction to those described above is shown attached to the lateral side of the head, neck, and shaft of a humerus bone 52 with multiple screws.
- relatively large proximal screws 54 have been passed through the proximal openings and into the humeral head
- relatively small calcar screws 56 have been passed through the calcar openings and into the medial calcar of the humerus
- relatively large central and distal screws 58 have been passed through the central and distal openings and into the shaft of the humerus. Because of the multiple calcar screws 56 inserted into the medial calcar, greater structural integrity is provided to the calcar and the likelihood of varus collapse is greatly reduced.
- the proximal screws 54 and the calcar screws 56 can be inserted into the humerus 52 at an angle.
- the proximal screws 54 form an angle of approximately 90 to 135° with the horizontal direction (when the patient is in an upright orientation) and the calcar screws 54 form an angle of approximately 90 to 135° with the horizontal direction (again when the patient is in an upright orientation).
- the openings of the humerus plate 50 are configured so that the screws 54 - 58 can only pass through the plate at a predetermined angle.
- the screws 54 - 58 can either be solid screws or cannulated screws that have an internal passage that enables them to be passed over a guide, such as a metal pin.
- the proximal, central, and distal screws 54 , 58 each have a diameter of approximately 3 to 5 mm and the calcar screws 56 each have a diameter of approximately 2 to 3 mm. It is noted that, while bone screws are illustrated in FIG. 4 , other fasteners, such as pegs or pins, may be used instead.
- fixation of the bone fragments can be achieved by compressing the bone fragments together before inserting all of the fasteners.
- FIGS. 5 and 6 illustrate an example apparatus suited for this purpose. More particularly, these figures show a compression device 60 that can be used to press the bone fragments together. As indicated FIG. 5 , the compression device 60 includes two members 62 and 64 that are connected to each other at a central location along their lengths to form a hinge 65 . The proximal portions of the members 62 , 64 form grip handles 66 , 68 that can be squeezed together by a surgeon or other user.
- the device 60 includes a spring element 70 that provides resistance to such squeezing and a locking ratchet mechanism 72 that locks the position of the handles 66 , 68 when they are released. As the handles 66 , 68 are squeezed together, the distance between distal ends 74 and 76 of the members 62 , 64 is decreased. As indicated in FIGS. 5 and 6 , pins 78 and 80 extend through the distal ends 74 , 76 of the members 62 , 64 . These pins 78 , 80 can be driven into the humerus bone using an appropriate driving device, such as a wire driver.
- an appropriate driving device such as a wire driver.
- the humerus plate can be attached to the humerus bone using one or more fasteners.
- the fastener or fasteners can be inserted through the humerus plate and into the bone using a drill guide (not shown) that attaches to the humerus plate.
- the humerus plate can be attached to the shaft of the bone using one or more distal screws.
- the compression device 60 can be positioned relative to the humerus plate so that one of the pins 78 , 80 aligns with one of the openings of the plate (e.g., a calcar opening) and one fragment of the bone and the other of the pins aligns with another fragment of the bone that is exposed to the side of the plate.
- the pins 78 , 80 can then be driven into the bone (one passing through the plate and one not).
- the grip handles 66 , 68 can be squeezed to press the bone fragments together and then the remainder of the fasteners can be passed through the humerus plate and into the bone to secure the fragments while they are in the pressed together state. In this manner, the humerus plate can be affixed while the bone fragments are in an optimal relative position for healing purposes.
- further fasteners can be inserted directly into the head of the humerus to provide additional reinforcement. More particularly, medial fasteners that extend in an anterior-to-posterior direction can be inserted into the humeral head that are perpendicular to the lateral fasteners that pass through the humerus plate. In such cases, an aiming apparatus can be utilized to ensure that the medial fasteners do not intersect the lateral fasteners.
- FIG. 7 shows an embodiment of an aiming apparatus 90 that can be used for the above-described purpose.
- the aiming apparatus 90 generally comprises a body 92 that is adapted to attach to the proximal portion of a humerus plate and an elongated arm 94 that extends laterally from the body and that curves to extend in a direction that is generally perpendicular to the plane in which the body resides.
- the body 92 is configured as a generally flat rectangular plate that includes openings 96 that are adapted to align with the proximal openings of the proximal portion of the humerus plate.
- the aiming apparatus 90 can be used as a guide for the fasteners that are to be passed through the proximal portion of the humerus plate and into the humeral head.
- the body 92 further comprises tabs (not visible in FIG. 7 ) that are adapted to be received by the notches of the proximal portion of the humerus plate (see FIG. 1 or FIG. 3 ) so that the body 92 can snap-fit onto the proximal portion of the humerus plate (see FIG. 8 ).
- the body 92 can include a further opening 98 that is adapted to align with a drill guide opening provided in the proximal portion of the humerus plate to facilitate secure fastening of the aiming apparatus 90 to the humerus plate.
- the body 92 can include a handle 99 that can be used to grip and manipulate the body.
- the aiming apparatus 90 also comprises a guide member 100 that is mounted to the arm 94 .
- the guide member 100 secures to the arm 94 with a central fastener 102 that passes through an elongated slot 104 provided in the arm.
- the guide member 100 can be moved along the length of the arm 94 .
- the fastener 102 is tightened, however, the position of the guide member 100 along the arm 94 is fixed. With such a configuration, the guide member 100 can be moved along the length of the arm 94 either toward or away from the body 92 and, once the desired position has been reached, the fastener 102 can be tightened to fix the position of the guide member along the arm.
- the guide member 100 further comprises multiple guide elements 106 through which pins 108 can be passed.
- the orientations guide elements 106 are adjustable such that the orientations of the elements relative to the guide member 100 can be changed and fixed in desired orientations. Such adjustability enables the user to control the trajectory of each of the pins 108 so that the pins can be pressed into the head of the humerus with a desired trajectory (i.e., one in which they do not intersect the screws that extend through the humerus plate).
- FIG. 8 shows the aiming apparatus 90 attached to a humerus plate 110 , which has been secured to a humerus bone 112 with multiple proximal screws 114 .
- the aiming apparatus 90 can be used to ensure that the medial fasteners (e.g., screws) that will extend in an anterior-to-posterior direction within the humerus head will not intersect the proximal screws 114 .
- the pins 108 can be passed through the guide elements 106 of the guide member 110 and into the bone 112 .
- the pins 108 can be removed, their trajectories can be changed, and they can be reinserted to see if they clear the screws.
- fasteners such as cannulated screws, can be passed over the pins and the pins can be removed.
- FIG. 9 illustrates an example locking plate 120 that can be used for this purpose.
- the plate 120 can comprise a plate of biocompatible material (e.g., stainless steel or titanium).
- the locking plate 120 can be sized and configured so as to cover the openings, and therefore fasteners, of the proximal portion of the humerus plate 122 .
- the locking plate 120 can be secured to the humerus plate 122 using a fastener (not shown) that passes through an opening 124 that aligns with the drill guide opening formed in the humerus plate.
- fixation and no-fixation specimens were designated as the fixation and no-fixation specimens, respectively.
- the constructs were loaded to failure at a rate of 10 cm/min with use of a uniaxial servo-hydraulic 858 Mini Bionix materials testing system (MTS Systems, Eden Prairie, Minn.). Actuator force and displacement were recorded with use of TestStar software (MTS Systems). Each trial was also recorded with a video camera to observe the onset and progression of the different modes of failure and to establish the point of failure on load-displacement curves.
- the specimens with medial comminution were observed to angulate immediately upon application of the load with slippage along the medial fracture line, which was accompanied by pullout of the proximal screws.
- the maximum load prior to closure of the medial cortical defect was considered as the load to failure.
- the non-comminuted specimens were initially stiffer and resisted angulation on application of the load.
- the medial fracture line expanded as a result of shearing and simultaneous angulation of the humeral head.
- the load to failure was simply taken as the maximum load observed during the test.
- actuator load and displacement data were transferred to Excel software (Microsoft, Redmond, Wash.) to create load-displacement curves. Values of load to failure, energy to failure, and displacement at the time of failure were determined from the load-displacement curves obtained for each construct. In addition, stiffness (defined as the slope of the linear portion of the load-displacement curve) was also determined for each specimen.
- the medial comminution group without calcar fixation had the lowest values of load to failure, energy to failure, and stiffness. Each of these values increased, in ascending order, for the medial comminution group with calcar fixation, the no-comminution group without calcar fixation, and the non-comminution with calcar fixation (see Table I).
- the average bone mineral density values for the comminuted and non-comminuted groups were 0.50 and 0.65, respectively. Bone mineral density was not a significant predictor of any outcome measure, regardless of fracture type or the presence of calcar fixation. However, bone mineral density improved the overall multivariate regression model fit and was included in each regression model as a linear term.
- the final models included terms for fracture type, calcar stability, and bone mineral density but did not include interaction terms as interactions were not significant. In the regression analyses, the interaction effects were small compared with the main effects. Therefore, interactions again were not included, resulting in equal slopes among the regressions. The effect of bone mineral density was linear. The final models contained terms for fracture type, calcar stability, and bone mineral density, all without any interactions.
- Stiffness was calculated as the slope of the linear portion of the load-displacement curve from the point of initial contact until marked discontinuity was observed, indicating failure. Although mean stiffness was 19% lower with comminuted specimens compared with non-comminuted specimens and 18% higher with calcar fixation than without, these differences were not statistically significant (p>0.1 for both). An increasing trend in average stiffness was observed among the different test groups (Table I), with the comminuted specimens (without calcar fixation) having the lowest value and the non-comminuted specimens (with calcar fixation) having the highest.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Surgical Instruments (AREA)
Abstract
Description
TABLE 1 |
Biomechanical Properties of the Four Constructs Tested* |
P Value |
Calcar Fixation | Fracture | Calcar |
Outcome | No | Yes | Overall | Type | Fixation |
Load to failure | 0.015 | 0.002 | |||
(N) | |||||
Comminuted | 463 | 682 | 564 | ||
Noncomminuted | 985 | 1205 | 1087 | ||
Overall | 716 | 935 | |||
Energy to failure | 0.13 | 0.006 | |||
(Nmm) | |||||
Comminuted | 1976 | 3255 | 2554 | ||
Noncomminuted | 3985 | 5264 | 4563 | ||
Overall | 2919 | 4198 | |||
Stiffness (N/mm) | 0.25 | 0.14 | |||
Comminuted | 117 | 140 | 127 | ||
Noncomminuted | 146 | 170 | 157 | ||
Overall | 131 | 154 | |||
Displacement at | 0.77 | 0.20 | |||
failure (mm) | |||||
Comminuted | 6.9 | 7.6 | 7.2 | ||
Noncomminuted | 7.3 | 7.9 | 7.6 | ||
Overall | 7.1 | 7.7 | |||
*The estimated means and p values from the regression model are adjusted for bone mineral density. |
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/760,316 US10206727B2 (en) | 2013-01-11 | 2014-01-10 | Apparatus for the fixation of proximal humerus fractures |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361751485P | 2013-01-11 | 2013-01-11 | |
PCT/US2014/011113 WO2014110421A1 (en) | 2013-01-11 | 2014-01-10 | Apparatus for the fixation of proximal humerus fractures |
US14/760,316 US10206727B2 (en) | 2013-01-11 | 2014-01-10 | Apparatus for the fixation of proximal humerus fractures |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150359576A1 US20150359576A1 (en) | 2015-12-17 |
US10206727B2 true US10206727B2 (en) | 2019-02-19 |
Family
ID=51167407
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/760,316 Active 2035-04-01 US10206727B2 (en) | 2013-01-11 | 2014-01-10 | Apparatus for the fixation of proximal humerus fractures |
US14/796,251 Active 2035-07-29 US10206728B2 (en) | 2013-01-11 | 2015-07-10 | Fixation device for proximal humerus fractures |
US16/246,793 Active 2034-03-11 US10869706B2 (en) | 2013-01-11 | 2019-01-14 | Fixation device for proximal humerus fractures |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/796,251 Active 2035-07-29 US10206728B2 (en) | 2013-01-11 | 2015-07-10 | Fixation device for proximal humerus fractures |
US16/246,793 Active 2034-03-11 US10869706B2 (en) | 2013-01-11 | 2019-01-14 | Fixation device for proximal humerus fractures |
Country Status (6)
Country | Link |
---|---|
US (3) | US10206727B2 (en) |
JP (1) | JP2016506774A (en) |
CN (1) | CN105007848A (en) |
AU (2) | AU2014205267B2 (en) |
CA (1) | CA2897974C (en) |
WO (1) | WO2014110421A1 (en) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3026934B1 (en) * | 2014-10-08 | 2016-11-11 | 3S Ortho | INSTRUMENT USABLE ON THE PLACEMENT OF A PROSTHESIS OF SHOULDER OR A PROSTHETIC ELEMENT ON A HUMERUS |
US20160270830A1 (en) * | 2015-03-22 | 2016-09-22 | Rahul Vaidya | Method and Apparatus for Minimally Invasive Subcutaneous Treatment of Humerus Fractures |
USD816840S1 (en) | 2015-04-22 | 2018-05-01 | Flower Orthopedics Corporation | Proximal humeral fracture plate |
US10238438B2 (en) | 2015-04-22 | 2019-03-26 | Flower Orthopedics Corporation | Proximal humeral fracture plate |
GB201511646D0 (en) * | 2015-07-02 | 2015-08-19 | Nottingham University Hospitals Nhs Trust | Improvements relating to bone anchors |
US11076898B2 (en) * | 2015-08-27 | 2021-08-03 | Globus Medical, Inc. | Proximal humeral stabilization system |
US11197682B2 (en) | 2015-08-27 | 2021-12-14 | Globus Medical, Inc. | Proximal humeral stabilization system |
US10687874B2 (en) | 2015-08-27 | 2020-06-23 | Globus Medical, Inc | Proximal humeral stabilization system |
US10130402B2 (en) | 2015-09-25 | 2018-11-20 | Globus Medical, Inc. | Bone fixation devices having a locking feature |
US9974581B2 (en) | 2015-11-20 | 2018-05-22 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US9795411B2 (en) | 2016-03-02 | 2017-10-24 | Globus Medical, Inc. | Fixators for bone stabilization and associated systems and methods |
US10531905B2 (en) | 2016-04-19 | 2020-01-14 | Globus Medical, Inc. | Implantable compression screws |
US10383668B2 (en) | 2016-08-17 | 2019-08-20 | Globus Medical, Inc. | Volar distal radius stabilization system |
US11197701B2 (en) | 2016-08-17 | 2021-12-14 | Globus Medical, Inc. | Stabilization systems |
US10575884B2 (en) | 2016-08-17 | 2020-03-03 | Globus Medical, Inc. | Fracture plates, systems, and methods |
US11331128B2 (en) | 2016-08-17 | 2022-05-17 | Globus Medical Inc. | Distal radius stabilization system |
US11213327B2 (en) | 2016-08-17 | 2022-01-04 | Globus Medical, Inc. | Fracture plates, systems, and methods |
US10420596B2 (en) | 2016-08-17 | 2019-09-24 | Globus Medical, Inc. | Volar distal radius stabilization system |
US10687873B2 (en) | 2016-08-17 | 2020-06-23 | Globus Medical Inc. | Stabilization systems |
US10751098B2 (en) | 2016-08-17 | 2020-08-25 | Globus Medical Inc. | Stabilization systems |
US11141204B2 (en) | 2016-08-17 | 2021-10-12 | Globus Medical Inc. | Wrist stabilization systems |
US11432857B2 (en) | 2016-08-17 | 2022-09-06 | Globus Medical, Inc. | Stabilization systems |
US10299847B2 (en) | 2016-09-22 | 2019-05-28 | Globus Medical, Inc. | Systems and methods for intramedullary nail implantation |
CN106725794B (en) * | 2016-11-30 | 2024-07-16 | 武勇 | Fibula locking plate |
CN107049457A (en) * | 2017-01-19 | 2017-08-18 | 上海市第六人民医院 | A kind of capitulum of humerus locking bone fracture plate |
US10881438B2 (en) | 2017-03-10 | 2021-01-05 | Globus Medical, Inc. | Clavicle fixation system |
US10905477B2 (en) | 2017-03-13 | 2021-02-02 | Globus Medical, Inc. | Bone stabilization systems |
US10368928B2 (en) | 2017-03-13 | 2019-08-06 | Globus Medical, Inc. | Bone stabilization systems |
DE102017107259A1 (en) * | 2017-04-04 | 2018-10-04 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Skull bone segment positioning device, positioning device manufacturing method and positioning device system with attachment devices |
US11096730B2 (en) | 2017-09-13 | 2021-08-24 | Globus Medical Inc. | Bone stabilization systems |
US10856920B2 (en) | 2017-09-13 | 2020-12-08 | Globus Medical Inc. | Bone stabilization systems |
CA3078249A1 (en) | 2017-10-11 | 2019-04-18 | Tornier, Inc. | Humeral fixation plate guides |
US11071570B2 (en) | 2018-03-02 | 2021-07-27 | Globus Medical, Inc. | Distal tibial plating system |
US11224468B2 (en) | 2018-03-02 | 2022-01-18 | Globus Medical, Inc. | Distal tibial plating system |
US11141172B2 (en) | 2018-04-11 | 2021-10-12 | Globus Medical, Inc. | Method and apparatus for locking a drill guide in a polyaxial hole |
US11202663B2 (en) | 2019-02-13 | 2021-12-21 | Globus Medical, Inc. | Proximal humeral stabilization systems and methods thereof |
US11129627B2 (en) | 2019-10-30 | 2021-09-28 | Globus Medical, Inc. | Method and apparatus for inserting a bone plate |
US11666347B2 (en) * | 2019-11-14 | 2023-06-06 | Sure Orthopedics LLC | Surgical retractor and resection guide |
US11723647B2 (en) | 2019-12-17 | 2023-08-15 | Globus Medical, Inc. | Syndesmosis fixation assembly |
DE212021000375U1 (en) * | 2020-05-08 | 2023-03-01 | Lifespans Limited | Bone fixation system and elements thereof |
BE1028532B1 (en) | 2020-08-05 | 2022-03-07 | Bv Dr Guy Putzeys | PROXIMAL HUMERAL FIXATION SYSTEM |
US12064150B2 (en) | 2022-01-19 | 2024-08-20 | Globus Medical Inc. | System and method for treating bone fractures |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040225291A1 (en) | 2003-04-01 | 2004-11-11 | Andy Schwammberger | Implant |
US20050165395A1 (en) | 2004-01-23 | 2005-07-28 | Orbay Jorge L. | System for stabilization of fractures of convex articular bone surfaces including subchondral support structure |
US20060264956A1 (en) | 2005-05-20 | 2006-11-23 | Orbay Jorge L | Methods and apparatus for bone fastener implantation |
US20090069851A1 (en) | 2007-07-19 | 2009-03-12 | Acumed Llc | Bone fixation with slender spanning members disposed outside bone |
US7655029B2 (en) * | 2001-05-28 | 2010-02-02 | Synthes Usa, Llc | Bone plate |
US20100076436A1 (en) | 2007-08-16 | 2010-03-25 | Nutek Orthopaedics, Inc. | Apparatus for external fixation of a fractured distal radius with angularly adjustable pin clamping means |
US20100324602A1 (en) | 2004-04-22 | 2010-12-23 | Acumed Llc | Expanded fixation of bones |
US7896886B2 (en) * | 2005-01-28 | 2011-03-01 | Depuy Products, Inc. | Nail plate and implantation jig therefor |
US7927333B2 (en) * | 2003-10-18 | 2011-04-19 | Intercus Gmbh | System for the minimally invasive treatment of a bone fracture, especially of a proximal humeral or femoral fracture |
CN201920886U (en) | 2010-12-24 | 2011-08-10 | 常州市康辉医疗器械有限公司 | Bone fracture plate for locking and pressurizing near end of shoulder bone |
US20110224736A1 (en) | 2010-03-09 | 2011-09-15 | Humphrey C Scott | Proximal humerus fracture repair plate and system |
US8142432B2 (en) * | 2007-02-05 | 2012-03-27 | Synthes Usa, Llc | Apparatus for repositioning portions of fractured bone and method of using same |
WO2012058448A2 (en) | 2010-10-27 | 2012-05-03 | Toby Orthopaedics, Llc | System and method for fracture replacement of comminuted bone fractures or portions thereof adjacent bone joints |
EP2474278A2 (en) | 2011-01-10 | 2012-07-11 | Ascension Orthopedics, Inc. | Bone plate system for repair of proximal humeral fracture |
US8231662B2 (en) * | 2006-10-17 | 2012-07-31 | Acumed Llc | Bone fixation with a strut-stabilized bone plate |
CN102835998A (en) | 2012-08-17 | 2012-12-26 | 苏州瑞华医院有限公司 | Novel internally fixing and locking bone fracture plate for curing of humerus collum chirurgicum fractures |
US20130096629A1 (en) | 2010-07-09 | 2013-04-18 | Medartis Ag | Osteosynthesis System |
US20140128921A1 (en) | 2012-11-07 | 2014-05-08 | Arthrex, Inc. | Bone plate with suture holes for soft tissue reattachments on the diaphyseal region of the plate |
US9089375B2 (en) * | 2013-10-12 | 2015-07-28 | Interfix, Llc | Combined intramedullary and extramedullary surgical aiming system and method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0418875B8 (en) * | 2004-06-01 | 2021-06-22 | Synthes Gmbh | osteosynthesis plate |
US20060264947A1 (en) * | 2005-05-20 | 2006-11-23 | Orbay Jorge L | Bone fixation system |
JP5283956B2 (en) * | 2008-04-08 | 2013-09-04 | 瑞穂医科工業株式会社 | Fracture treatment device |
US8167891B2 (en) * | 2008-07-21 | 2012-05-01 | Osteomed Llc | System and method for fracture reduction |
US9011507B2 (en) * | 2009-10-28 | 2015-04-21 | Orthopro Llc | Compression plate kit and methods for repairing bone discontinuities |
EP2389884B1 (en) * | 2010-05-25 | 2013-07-31 | Stryker Trauma SA | Implant for bone fixation |
US20120191104A1 (en) * | 2011-01-21 | 2012-07-26 | Jost Reto | Depth Probe for the Humeral Head |
-
2014
- 2014-01-10 CA CA2897974A patent/CA2897974C/en active Active
- 2014-01-10 JP JP2015552823A patent/JP2016506774A/en active Pending
- 2014-01-10 AU AU2014205267A patent/AU2014205267B2/en active Active
- 2014-01-10 WO PCT/US2014/011113 patent/WO2014110421A1/en active Application Filing
- 2014-01-10 CN CN201480005139.3A patent/CN105007848A/en active Pending
- 2014-01-10 US US14/760,316 patent/US10206727B2/en active Active
-
2015
- 2015-07-10 US US14/796,251 patent/US10206728B2/en active Active
-
2017
- 2017-06-09 AU AU2017203925A patent/AU2017203925B2/en active Active
-
2019
- 2019-01-14 US US16/246,793 patent/US10869706B2/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7655029B2 (en) * | 2001-05-28 | 2010-02-02 | Synthes Usa, Llc | Bone plate |
US20040225291A1 (en) | 2003-04-01 | 2004-11-11 | Andy Schwammberger | Implant |
US7927333B2 (en) * | 2003-10-18 | 2011-04-19 | Intercus Gmbh | System for the minimally invasive treatment of a bone fracture, especially of a proximal humeral or femoral fracture |
US20050165395A1 (en) | 2004-01-23 | 2005-07-28 | Orbay Jorge L. | System for stabilization of fractures of convex articular bone surfaces including subchondral support structure |
US20100324602A1 (en) | 2004-04-22 | 2010-12-23 | Acumed Llc | Expanded fixation of bones |
US7896886B2 (en) * | 2005-01-28 | 2011-03-01 | Depuy Products, Inc. | Nail plate and implantation jig therefor |
US20060264956A1 (en) | 2005-05-20 | 2006-11-23 | Orbay Jorge L | Methods and apparatus for bone fastener implantation |
US8231662B2 (en) * | 2006-10-17 | 2012-07-31 | Acumed Llc | Bone fixation with a strut-stabilized bone plate |
US8142432B2 (en) * | 2007-02-05 | 2012-03-27 | Synthes Usa, Llc | Apparatus for repositioning portions of fractured bone and method of using same |
US20090069851A1 (en) | 2007-07-19 | 2009-03-12 | Acumed Llc | Bone fixation with slender spanning members disposed outside bone |
US20100076436A1 (en) | 2007-08-16 | 2010-03-25 | Nutek Orthopaedics, Inc. | Apparatus for external fixation of a fractured distal radius with angularly adjustable pin clamping means |
US20110224736A1 (en) | 2010-03-09 | 2011-09-15 | Humphrey C Scott | Proximal humerus fracture repair plate and system |
US8968371B2 (en) * | 2010-03-09 | 2015-03-03 | Shoulder Options, Inc. | Proximal humerus fracture repair plate and system |
US20130096629A1 (en) | 2010-07-09 | 2013-04-18 | Medartis Ag | Osteosynthesis System |
WO2012058448A2 (en) | 2010-10-27 | 2012-05-03 | Toby Orthopaedics, Llc | System and method for fracture replacement of comminuted bone fractures or portions thereof adjacent bone joints |
CN201920886U (en) | 2010-12-24 | 2011-08-10 | 常州市康辉医疗器械有限公司 | Bone fracture plate for locking and pressurizing near end of shoulder bone |
EP2474278A2 (en) | 2011-01-10 | 2012-07-11 | Ascension Orthopedics, Inc. | Bone plate system for repair of proximal humeral fracture |
US20120179208A1 (en) | 2011-01-10 | 2012-07-12 | Ascension Orthopedics, Inc. | Bone plate system for repair of proximal humeral fracture |
CN102835998A (en) | 2012-08-17 | 2012-12-26 | 苏州瑞华医院有限公司 | Novel internally fixing and locking bone fracture plate for curing of humerus collum chirurgicum fractures |
US20140128921A1 (en) | 2012-11-07 | 2014-05-08 | Arthrex, Inc. | Bone plate with suture holes for soft tissue reattachments on the diaphyseal region of the plate |
US9089375B2 (en) * | 2013-10-12 | 2015-07-28 | Interfix, Llc | Combined intramedullary and extramedullary surgical aiming system and method |
Non-Patent Citations (8)
Title |
---|
Examination report No. 1 issued in connection with Australian patent application No. 2017203925, dated Dec. 4, 2017, 4 pages. |
First Office Action issued for corresponding Chinese patent application No. 201480005139.3, dated Oct. 24, 2016, 16 pages. |
International Search Report and Written Opinion issued for corresponding International patent application No. PCT/US2014/011113, dated Apr. 7, 2014, 17 pages. |
Office Action issued in connection with Canadian patent application No. 2,897,974, dated Dec. 19, 2017, 4 pages. |
Patent Examination Report No. 1 issued for corresponding Australian patent application No. 2014205267, dated Feb. 23, 2016, 3 pages. |
Patent Examination Report No. 2 issued for corresponding Australian patent application No. 2014205267, dated Feb. 15, 2017, 6 pages. |
Second Office Action issued for Chinese patent application No. 201480005139.3, dated Jun. 20, 2017, 17 pages. |
Third Office Action issued in connection with Chinese patent application No. 201480005139.3, dated Jan. 3, 2018, 8 pages. |
Also Published As
Publication number | Publication date |
---|---|
AU2014205267A1 (en) | 2015-07-30 |
WO2014110421A1 (en) | 2014-07-17 |
US10869706B2 (en) | 2020-12-22 |
JP2016506774A (en) | 2016-03-07 |
CN105007848A (en) | 2015-10-28 |
US20190167321A1 (en) | 2019-06-06 |
AU2017203925A1 (en) | 2017-07-06 |
US20150359576A1 (en) | 2015-12-17 |
AU2017203925B2 (en) | 2018-11-22 |
AU2014205267B2 (en) | 2017-03-16 |
US10206728B2 (en) | 2019-02-19 |
US20150313653A1 (en) | 2015-11-05 |
CA2897974C (en) | 2020-07-14 |
CA2897974A1 (en) | 2014-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10206727B2 (en) | Apparatus for the fixation of proximal humerus fractures | |
US20230111443A1 (en) | Bone staple storage, inserter, and method for use therewith | |
US11123118B2 (en) | Periprosthetic bone plates | |
US10610218B2 (en) | Staples for generating and applying compression within a body | |
US9839455B2 (en) | Bone fixation system and method of use | |
US20200222091A1 (en) | Plates for generating, applying and maintaining compression within a body | |
US8419745B2 (en) | Bone plate bender system | |
US20170303978A1 (en) | Rigid fixation systems for cardiothoracic fixation | |
US20150039029A1 (en) | Implant device and system for stabilized fixation of bone and soft tissue | |
CN109069195A (en) | Dynamic stability vertebral implant and surgical operation packet including the dynamic stability vertebral implant | |
US20150134013A1 (en) | Bone treatment implants, and springs therefore | |
Cotrel et al. | A new technic for segmental spinal osteosynthesis using the posterior approach | |
US20100268230A1 (en) | Method and apparatus for dens fracture fixation | |
Lucas et al. | Biomechanical comparison of first metatarsophalangeal joint arthrodeses using triple-threaded headless screws versus partially threaded lag screws | |
US20200222094A1 (en) | Device for implanting compression plate within a body | |
CN109069193A (en) | Dynamic stability intervertebral implant and the tool for placing the dynamic stability intervertebral implant | |
US11678921B2 (en) | Methods of long bone repair utilizing continuous compression implants | |
DeCoster et al. | Stability of Talar Neck Fracture Fixation: A Biomechanical Comparison of 4.0 Cannulated Headed Screws and Conical Headless Screws | |
DE10030730A1 (en) | Bone fragment join by screws uses convergibly jawed screw head clamps taking wires tightenably joining respective screws against displacement. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PONCE, BRENT A., DR., ALABAMA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE UAB RESEARCH FOUNDATION;REEL/FRAME:036846/0898 Effective date: 20151016 |
|
AS | Assignment |
Owner name: PONCE, BRENT ANDREW, DR., ALABAMA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WHITCOMB, JOHN, MR.;REEL/FRAME:039426/0625 Effective date: 20160810 |
|
AS | Assignment |
Owner name: MIDCAP FINANCIAL TRUST, AS AGENT, MARYLAND Free format text: SECURITY INTEREST;ASSIGNOR:WRIGHT MEDICAL TECHNOLOGY, INC.;REEL/FRAME:041257/0126 Effective date: 20161223 |
|
AS | Assignment |
Owner name: WRIGHT MEDICAL TECHNOLOGY, INC., TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PONCE, BRENT A., DR.;REEL/FRAME:043935/0227 Effective date: 20171017 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: WRIGHT MEDICAL GROUP, INC., TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: BIOMIMETIC THERAPEUTICS CANADA, INC., TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: TORNIER, INC., MINNESOTA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: TROOPER HOLDINGS INC., MINNESOTA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: WHITE BOX ORTHOPEDICS, LLC, TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: BIOMIMETIC THERAPEUTICS, LLC, TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: WRIGHT MEDICAL GROUP INTELLECTUAL PROPERTY, INC., TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: WRIGHT MEDICAL GROUP N.V., NETHERLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: WRIGHT MEDICAL TECHNOLOGY, INC., TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: TORNIER US HOLDINGS, INC., MINNESOTA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: INBONE TECHNOLOGIES, INC., TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: BIOMIMETIC THERAPEUTICS USA, INC., TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: SOLANA SURGICAL, LLC, TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: ORTHOHELIX SURGICAL DESIGNS, INC., MINNESOTA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: WRIGHT MEDICAL CAPITAL, INC., TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 Owner name: ORTHOPRO, L.L.C., TENNESSEE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MIDCAP FUNDING IV TRUST;REEL/FRAME:054480/0001 Effective date: 20201112 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |