US1017620A - Method of denitrogenizing practically pure iron. - Google Patents

Method of denitrogenizing practically pure iron. Download PDF

Info

Publication number
US1017620A
US1017620A US62919111A US1911629191A US1017620A US 1017620 A US1017620 A US 1017620A US 62919111 A US62919111 A US 62919111A US 1911629191 A US1911629191 A US 1911629191A US 1017620 A US1017620 A US 1017620A
Authority
US
United States
Prior art keywords
denitrogenizing
titanium
pure iron
practically pure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US62919111A
Inventor
Robert D Campbell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US62919111A priority Critical patent/US1017620A/en
Application granted granted Critical
Publication of US1017620A publication Critical patent/US1017620A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00

Definitions

  • This invention relates to an improved method of denitrogenizing practically pure iron.
  • Nitrogen in such product in amounts exceeding .007 percentum is highly deleterious, while even in this amount it is a well known cause of brittleness"; and failure in service.
  • the danger arisingfrom excessive nitrogen content is all the greater inasmuch as it is dificult to detect or forecast by any of the ordinary methods of analysis.
  • the object of the present invention is to so treat the metal in the course of manufacture as to eliminate a large percentage of the nitrogen ordinarily remaining in the iron as before mentioned.
  • l preferably charge a basic open hearth furnace with the metal to be treated, in. any suitable or preferred form, and treat the same by the improved open hearth method.
  • the metal may be treated in an electric furnace by the ordinary electro-metallurgical method, or in any other form of a paratus or by any other method.
  • I add to the molten metal, either-in the furnace, in the converter, or in the ladle, before,
  • a suitable amount or amounts of the metal titanium-either as such, or as any other alloy or substance containing titanium,and thereby the nitrogen is practically completely removed from the metal; or at all events reduced to at least .004 percentum.
  • the temperature of the molten metal has not exceeded 1575 degrees centigrade.
  • the titanium becomes most effec- 'tive as a denitrogenizing and deoxidizing agent when the molten metal has been brought to a temperature of from 1575 to 1700 centigrade.
  • the metal remains liquid for a long period and thereby permits the free escape of practically all the resulting titanium oxid as well as of the gases which are concurrently liberated from the "molten metal.
  • I produce a product that is structurally safe, highly ductile and malleable and whichtmay be rolled into plates and sheets of excellent surface and Without exhibiting hot-shortness at the medium red temperatures, or which may be drawn into wire with comparatively little anneal.
  • the metal so produced is also so freed from gaseous and other impurities that it will solidify without blow holes or spongy top, andwith little or no piping, forming a sound ingot that may be rolled Without showing any surface defect.
  • the titanium, or titaniferous substance may be added in such quantity and in such manner that it passes ofi entirely with the slag, or else in such excess and manner as to provide for any desired percentage of titanium in the finished product.
  • the method of denitrogenizing iron consisting'in introducing into the molten metal titanium preheated to a temperature not exceeding 500 degrees centigrade.
  • the method of denitrogenizing iron consisting in introducing into the molten metal titanium preheated to a temperature not exceeding 500 degrees Centigrade, the molten metal being at a temperature of not less than 157 5 degrees centigrade.

Description

BGBER-T D.
CAMPBELL, OF PITTSBURGH, PENNSYLVANIA.
METHOD F DENITROGENIZING vLE'RJBtC-EIICAIJLH PURE IRON.
No Drawing.
To all whom it may concern:
Be it known that 1, ROBERT D. CAMPBELL,
. a citizen of the -United States, residing at Pittsburgh, in the county of Allegheny and State of Pennsylvania, have invented new and useful Improvements in Methods of Denitrogenizing Practically Pure Iron, of which the following is a specification.
This invention 'relates to an improved method of denitrogenizing practically pure iron.
In the manufacture of practically pure iron as carried out in the basic open hearth process and in the electric furnace, great pains are taken to effect the. highest degree of purity practically attainable with reference to carbon, silicon, manganese, phosphorus, sulfur and oxygen. No account, however, is taken of the most noxious known impurity in the iron, namely, nitrogen. This element-either occluded, dissolved, combined, or otherwise held,consequently remains in the otherwise practically pure iron to theigreat detriment of the latter, producing, as is well known, brittleness and unreliability, conditions all the more dangerms in that they may not be anticipated and are difficult to detect. Nitrogen in such product in amounts exceeding .007 percentum is highly deleterious, while even in this amount it is a well known cause of brittleness"; and failure in service. The danger arisingfrom excessive nitrogen content is all the greater inasmuch as it is dificult to detect or forecast by any of the ordinary methods of analysis.
The object of the present invention is to so treat the metal in the course of manufacture as to eliminate a large percentage of the nitrogen ordinarily remaining in the iron as before mentioned.
. In carrying out my improved process, l preferably charge a basic open hearth furnace with the metal to be treated, in. any suitable or preferred form, and treat the same by the improved open hearth method. I do not desire to limit myself in this particular, however, as the metal may be treated in an electric furnace by the ordinary electro-metallurgical method, or in any other form of a paratus or by any other method. In addition to the foregoing treatment and as a step in my improved process I add to the molten metal, either-in the furnace, in the converter, or in the ladle, before,
Specification of Letters Patent.
Patented Feb. 13, 1912.
Application filed May 2%, 1911. Serial No. 629,191.
E during or after tapping, a suitable amount or amounts of the metal titanium-either as such, or as any other alloy or substance containing titanium,and thereby the nitrogen is practically completely removed from the metal; or at all events reduced to at least .004 percentum.
It is common practice and generally recommended by metallurgists that when titanium is added to a metal bath, the same should be added in a coldstate. I have found however, that when cold titanium is added to the bath the time required. for the molten metal to heat the same is so great that'the titanium floats to the top of the bath before it becomes fully efiective. To overcome this condition I preheat the titanium before introducing the same into the molten metal. I have also found, however, by experiment, that when the titanium is overheated it becomes pasty and floats to the top of the molten metal in a mass and without accomplishing the effect desired. As the result of these experiments I have determined that it is not safe to preheat the titanium to a greater temperature than 500 degrees centigrade, and for the purposes of my process I keep within this maximum.
As far as I am aware, inthe processes involving the use of titanium. as heretofore carried out, the temperature of the molten metal has not exceeded 1575 degrees centigrade. In producing a metal low in carbon and with the high percentage of metallic iron as contemplated in my process-,1 have found that the titanium becomes most effec- 'tive as a denitrogenizing and deoxidizing agent when the molten metal has been brought to a temperature of from 1575 to 1700 centigrade. When heated to these temperatures the metal remains liquid for a long period and thereby permits the free escape of practically all the resulting titanium oxid as well as of the gases which are concurrently liberated from the "molten metal.
From the foregoing it will be noted that I produce a product that is structurally safe, highly ductile and malleable and whichtmay be rolled into plates and sheets of excellent surface and Without exhibiting hot-shortness at the medium red temperatures, or which may be drawn into wire with comparatively little anneal. The metal so produced is also so freed from gaseous and other impurities that it will solidify without blow holes or spongy top, andwith little or no piping, forming a sound ingot that may be rolled Without showing any surface defect.
As my process is carried out the titanium, or titaniferous substance may be added in such quantity and in such manner that it passes ofi entirely with the slag, or else in such excess and manner as to provide for any desired percentage of titanium in the finished product. v
By practically pure iron as used in this specification and in the claims, I desire to be understood as referring to an iron product containing not more than .10 percentum of the ordinary impurities such as carbon, manganese, silicon, sulfur and phosphorus in the aggregate, and not exceeding .04 percentum of oxygen and occluded slag.
I claim as my invention 1. The method of denitrogenizing iron consisting'in introducing into the molten metal titanium preheated to a temperature not exceeding 500 degrees centigrade.
2. The method of denitrogenizing iron consisting in introducing into the molten metal titanium preheated to a temperature not exceeding 500 degrees Centigrade, the molten metal being at a temperature of not less than 157 5 degrees centigrade.
In testimony whereof I have hereunto set my hand in presence of tWo subscribing Witnesses.
ROBERT D. CAMPBELL. Witnesses A. H. MONAMEE, ANNA R. L HAN.
US62919111A 1911-05-24 1911-05-24 Method of denitrogenizing practically pure iron. Expired - Lifetime US1017620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US62919111A US1017620A (en) 1911-05-24 1911-05-24 Method of denitrogenizing practically pure iron.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US62919111A US1017620A (en) 1911-05-24 1911-05-24 Method of denitrogenizing practically pure iron.

Publications (1)

Publication Number Publication Date
US1017620A true US1017620A (en) 1912-02-13

Family

ID=3085922

Family Applications (1)

Application Number Title Priority Date Filing Date
US62919111A Expired - Lifetime US1017620A (en) 1911-05-24 1911-05-24 Method of denitrogenizing practically pure iron.

Country Status (1)

Country Link
US (1) US1017620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036910A (en) * 1958-03-13 1962-05-29 Walter W Eichenberger Synthetic ferro-titanium briquette

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036910A (en) * 1958-03-13 1962-05-29 Walter W Eichenberger Synthetic ferro-titanium briquette

Similar Documents

Publication Publication Date Title
US1017620A (en) Method of denitrogenizing practically pure iron.
JP7126103B2 (en) Melting method of high manganese steel
JP7147734B2 (en) Method for producing slag containing two liquid phases and method for producing artificial phosphate rock
US198733A (en) Improvement in manufacture of iron and steel
US1945260A (en) Composition of matter and process of treating molten metals
US1786806A (en) Process of refining iron and steel
CN108588340A (en) A kind of method that low-temperature refining prepares low aluminium calcium impurities Antaciron
US411205A (en) Frank l
US1932252A (en) Process of producing alloys
US1535311A (en) Process of producing substantially pure iron
US866562A (en) Process of producing ferro-vanadium.
US724140A (en) Process of rephosphorizing steel.
US3899321A (en) Method of producing a vaccum treated effervescing boron steel
US1715867A (en) Vanadium alloy
US476091A (en) Process of purifying
US1017473A (en) Method of producing practically pure iron.
US1858386A (en) Process for preparing and purifying alloys
US2064441A (en) Process of making manganese chromium steel
US1853544A (en) Process of making silicon steel from silicon scrap
US1019531A (en) Method of treating aluminum.
US1842536A (en) Process of making silicon steel from silicon scrap
US284574A (en) Basic process for the manufacture of homogeneous ingot iron and steel
US747661A (en) Manufacture of open-hearth steel.
JPS6141712A (en) Removal of contamination metal form pig iron, steel, other metals and metal alloy
US1095184A (en) Manufacture of steel.