US10116324B2 - High-linearity sigma-delta converter - Google Patents
High-linearity sigma-delta converter Download PDFInfo
- Publication number
- US10116324B2 US10116324B2 US15/551,878 US201615551878A US10116324B2 US 10116324 B2 US10116324 B2 US 10116324B2 US 201615551878 A US201615551878 A US 201615551878A US 10116324 B2 US10116324 B2 US 10116324B2
- Authority
- US
- United States
- Prior art keywords
- analogue
- signal
- digital
- law
- cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/358—Continuously compensating for, or preventing, undesired influence of physical parameters of non-linear distortion, e.g. instability
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
- H03M3/494—Sampling or signal conditioning arrangements specially adapted for delta-sigma type analogue/digital conversion systems
- H03M3/496—Details of sampling arrangements or methods
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/458—Analogue/digital converters using delta-sigma modulation as an intermediate step
- H03M3/462—Details relating to the decimation process
Definitions
- the present invention relates to the field of analogue-digital converters, and, more particularly, sigma-delta converters.
- a sigma-delta converter typically comprises a sigma-delta modulator and a digital filter.
- the analogue signal to be digitized is applied as input to the modulator, and is sampled thereby at a relatively high frequency (in relation to the maximum frequency of the input signal), called oversampling frequency.
- the modulator produces, at the oversampling frequency, binary samples representative of the analogue input signal.
- the output bit stream from the sigma-delta modulator is processed by the digital filter which extracts from it an N-bit digital value (N being the quantization resolution of the sigma-delta converter), representative of the input signal.
- N being the quantization resolution of the sigma-delta converter
- the sigma-delta modulator typically consists of a loop comprising at least an analogue integration circuit, a 1-bit analogue-digital converter, a 1-bit digital-analogue converter, and a subtractor.
- the analogue input signal is applied to the input of the integration circuit, which samples it at the oversampling frequency and supplies, at this same frequency, analogue samples representative of the difference between the input signal and an analogue feedback signal.
- the analogue output samples from the integration circuit are digitized by the 1-bit analogue-digital converter (typically a comparator). The binary samples thus obtained from the output signal of the modulator.
- the analogue integration circuit can comprise a single analogue integrator, or several cascaded analogue integrators. It can also comprise one or more subtractors, one or more summers, and/or one or more weighting coefficients.
- the number p of analogue integrators generally defines the order of the sigma-delta modulator. The higher the order p of the modulator, the more the number OSR of samples necessary to obtain a digital output value on N-bits can be reduced (given identical quantization noise levels). On the other hand, the sigma-delta modulators are all the more complex to produce when their order is high (stabilization is difficult).
- the digital filter comprises, depending on the structure of the modulator, one or more digital integrators (generally at least as many as there are analogue integrators in the modulator), for example counters, and performs a filtering function intended to extract the useful information from the bit stream produced by the sigma-delta modulator.
- the sigma-delta modulator formats the useful signal via its signal transfer function STF, and the quantization noise via its noise transfer function NTF.
- STF is the transfer function linking the analogue input signal to be digitized to the output signal of the modulator
- the NTF is the transfer function linking the quantization noise introduced by the 1-bit analogue-digital converter of the modulator on the output signal of the modulator.
- the NTF makes it possible to push back the quantization noise outside of the band of interest (in which the signal is located).
- the digital filter is designed so as to extract the signal in the frequency bands in which the attenuation of the quantization noise by the NTF is high (that is to say where the signal is located).
- a sigma-delta converter comprising a sigma-delta modulator suitable for supplying a series of binary samples representative of an analogue input signal to be digitized, the delivery of a binary sample of the series of binary samples being performed on completion of a cycle of operation of the modulator, a conversion phase comprising a number of cycles necessary to produce a digital converter output value, the modulator comprising at least one analogue filter receiving an internal analogue signal derived from the analogue input signal, in which the contribution to the analogue filter of the analogue signal internal to a given cycle is smaller than the contribution to the analogue filter of the analogue signal internal to the preceding cycle, the contributions to the different cycles being governed by a first law predetermined as a function of the rank of the cycle in the conversion phase.
- the analogue filter can be of different type, for example: high-pass, low-pass, bandpass or integrator.
- the converter further comprises a digital filter suitable for processing the binary samples output from the modulator, the digital filter receiving an internal digital signal in which the contribution to the digital filter of the digital signal internal to a given cycle is smaller than the contribution to the digital filter of the digital signal internal to the preceding cycle, the contributions to the different cycles being governed by a second law predetermined as a function of the rank of the cycle.
- the analogue filter and the digital filter are advantageously of the same type.
- the first and second predetermined laws are identical.
- the sigma-delta modulator comprises an analogue integration circuit, a 1-bit analogue-digital converter, and a feedback loop, and the analogue signal internal to the modulator is a signal internal to the analogue integration circuit.
- the analogue integration circuit comprises several cascaded analogue filters.
- the 1-bit analogue-digital converter comprises a comparator, the analogue input signal to be digitized is applied to an input node of the analogue integration circuit, and a constant potential is applied to a node of application of a comparison threshold potential of the comparator.
- the 1-bit analogue-digital converter comprises a comparator, the analogue input signal to be digitized is applied to a node of application of a comparison threshold potential of the comparator, and a constant potential is applied to an input node of the analogue integration circuit.
- the first predetermined variable law is applied to one or more analogue signals internal to the modulator so that all the analogue signals added or subtracted in the modulator are on the same scale with respect to the first law.
- the analogue signals can vary within one and the same rank of amplitude for a given rank of amplitude of the analogue input signal.
- the digital filter comprises at least one digital integrator, and the digital signal internal to the digital filter is an input signal of one of the at least one digital integrator.
- the digital filter comprises several cascaded digital integrators.
- the first law comprises at least one phase of decrease during a phase of conversion of an analogue input signal into a digital output signal by the converter.
- the first law is an exponential law decreasing as a function of the rank of the cycle.
- the first law is constant during a first part of the conversion phase, and decreases exponentially as a function of the rank of the cycle during a second part of the conversion phase.
- the first law is constant during a third part of the conversion phase.
- the analogue input signal is weighted by a coefficient at the input of the modulator, the coefficient being non-zero during a first part of the conversion phase, followed by a second part of the conversion phase during which the coefficient is zero.
- the first law is modified dynamically according to predetermined rules during the conversion phase.
- the first law is applied with a phase-shift in terms of number of cycles at the sigma-delta modulator and at the digital filter.
- At least two distinct laws are applied to distinct internal analogue signals of the modulator.
- the first variable law is applied by varying a variable capacitance during the conversion phase.
- variable capacitance comprises a plurality of switchable capacitances linked in parallel, the values of which correspond respectively to the values obtained by dichotomy from a base capacitance value, the sum of the values of the switchable capacitances being equal to the value of the base capacitance.
- the converter comprises, at the input of the filter, a weighting device for the internal analogue signal received by the analogue filter applying a variable weighting coefficient ⁇ k, a function of the rank k of the cycle.
- a weighting device for the internal analogue signal received by the analogue filter applying a variable weighting coefficient ⁇ k, a function of the rank k of the cycle.
- variable weighting coefficient ⁇ k decreases with the rank k of the cycle.
- said at least one analogue integrating filter is equivalent to a theoretical circuit comprising a summer between the value of an analogue signal received at the cycle k and an internal signal of the filter corresponding to a multiplication by a coefficient ⁇ of the output signal of the analogue filter obtained at the cycle k ⁇ 1.
- a coefficient ⁇ of the output signal of the analogue filter obtained at the cycle k ⁇ 1.
- the coefficient ⁇ increases with the rank k of the cycle.
- the converter is configured so that, during the conversion phase, the following sequence of operations is applied at least once:
- N being greater than 1 and less than the number OSR of cycles necessary to produce a digital output value from the converter, after an initial cycle, a decreasingly-variable weighting coefficient ⁇ k is applied to the internal analogue signal,
- the coefficient ⁇ of the analogue filter is strictly greater than 1.
- M is equal to 1 and the coefficient ⁇ of the analogue filter takes a value greater than or equal to the inverse of the weighting coefficient ⁇ N applied at the cycle N, such that the output signal of the analogue filter once again has an amplitude of variation corresponding to the amplitude of variation at the initial cycle and the coefficient ⁇ is reset at the end of the N+1 cycle to revert to its value at the initial cycle.
- FIGS. 1A and 1B illustrate, in block form, an example of a sigma-delta converter
- FIG. 2 is a detailed electrical circuit diagram of an exemplary embodiment of the sigma-delta modulator of FIG. 1A ;
- FIG. 3 is a timing diagram illustrating the trend, as a function of time, of control signals of the modulator of FIG. 2 ;
- FIG. 4 is a diagram illustrating the trend of the linearity and of the noise, as a function of the OSR, in a sigma-delta converter of the type described in relation to FIGS. 1 to 3 ;
- FIGS. 5A and 5B illustrate, in block form, an example of an embodiment of a sigma-delta converter
- FIG. 6 is a diagram illustrating the trend of the linearity and of the noise, as a function of the OSR, in a sigma-delta converter of the type described in relation to FIGS. 5A and 5B ;
- FIG. 7 is a diagram illustrating the trend of the linearity and of the noise, as a function of the OSR, in another exemplary sigma-delta converter of the type described in relation to FIGS. 5A and 5B ;
- FIG. 8 is a diagram illustrating the trend of the linearity and of the noise, as a function of the OSR, in another exemplary sigma-delta converter of the type described in relation to FIGS. 5A and 5B ;
- FIG. 9 illustrates, in block form, another example of an embodiment of a sigma-delta converter
- FIG. 10 illustrates, in block form, another example of an embodiment of a sigma-delta converter
- FIG. 11 is a diagram illustrating the behaviour of the sigma-delta converter of FIG. 10 ;
- FIG. 12 is an electrical circuit diagram of an exemplary embodiment of a circuit making it possible to dynamically vary a weighting coefficient of a sigma-delta modulator
- FIG. 13 illustrates, in block form, another example of an embodiment of a sigma-delta converter of order 1;
- FIG. 14 illustrates an exemplary embodiment of an analogue filter that can be implemented in the exemplary embodiment of FIG. 13 ;
- FIGS. 15 a and 15 b illustrate, in the form of a timing diagram, the trend, as a function of time, of coefficients applied to the modulator of the converter of FIG. 13 ;
- FIG. 16 illustrates, in block form, a generalization of the example of FIG. 13 to converters of order higher than 1.
- FIGS. 1A and 1B illustrate, in block form, an example of a 4 th order sigma-delta converter. More particularly, FIG. 1A represents the sigma-delta modulator of the converter, and FIG. 1B represents the digital filter of the converter.
- the sigma-delta modulator of FIG. 1A comprises an input terminal A 1 intended to receive an analogue input signal Vin to be digitized, and an output terminal A 2 intended to supply a series of binary samples BS representative of the signal Vin.
- the analogue input signal to be digitized is constant throughput the time needed to produce an N-bit digital output value, i.e. OSR*T OSR , T OSR being the oversampling period of the converter.
- OSR*T OSR the oversampling period of the converter.
- the modulator of FIG. 1A comprises an analogue integration circuit 101 comprising a first input connected to the terminal A 1 for application of the signal Vin, and an output A 3 linked to the input of a 1-bit analogue-digital conversion circuit 103 , for example a 1-bit comparator.
- the output of the converter 103 is connected to the output A 2 of the modulator, and is also linked by a feedback loop to a second input A 4 of the integration circuit 101 .
- the input signal Vin and the output signal BS of the modulator are normalized, that is to say that the value 0 of the binary signal BS corresponds to a voltage level equal to the smallest value that the analogue signal Vin can take, and that the value 1 of the signal BS corresponds to a voltage level equal to the greatest value that the signal Vin can take.
- the feedback loop is a simple conductive track linking the terminal A 2 to the terminal A 4 , and the feedback signal is directly the signal BS.
- the feedback loop can include a 1-bit digital-analogue converter between the terminals A 2 and A 4 , the feedback signal then being the output signal of the 1-bit digital-analogue converter.
- the integration circuit 101 takes an analogue sample Vin(k) of the input signal, and the modulator supplies, at the output of the 1-bit analogue-digital converter 103 , a binary sample BS(k) of the output signal.
- the integration circuit 101 comprises four cascaded analogue integrators Ia 1 , Ia 2 , Ia 3 and Ia 4 , and a summing circuit ⁇ .
- Each integrator comprises an input and an output, and has, for example, a z/(z ⁇ 1) transfer function, that is to say that, at each cycle, the integrated signal, or output signal of the integrator, is increased by the value of the signal applied at the input of the integrator.
- the integrator Ia 1 receives on its input a signal equal to the difference between the input signal Vin(k) weighted by a coefficient b 1 , and the feedback signal BS(k ⁇ 1) weighted by a coefficient a 1 .
- the integrator Ia 2 receives on its input a signal equal to the output signal of the integrator Ia 1 weighted by a coefficient c 1 .
- the integrator Ia 3 receives on its input a signal equal to the output signal of the integrator Ia 2 weighted by a coefficient c 2 .
- the integrator Ia 4 receives on its input a signal equal to the output signal of the integrator Ia 3 weighted by a coefficient c 3 .
- the summing circuit adds the input signal Vin(k) weighted by a coefficient b 5 , and the output signals of the integrators Ia 1 , Ia 2 , Ia 3 and Ia 4 , weighted respectively by coefficients c 7 , c 6 , c 5 and c 4 .
- the output of the summing circuit ⁇ is connected to the output terminal A 3 of the circuit 101 .
- sigma-delta modulators of order p greater than or equal to 1, in which each of the p analogue integrators Ia j , with j being an integer ranging from 1 to p, receives on its input a signal equal to the difference between the input signal Vin(k) weighted by a coefficient b j and the feedback signal BS(k ⁇ 1) weighted by a coefficient a j , to which is added, if the rank j of the integrator Ia j is greater than 1, the output signal of the modulator Ia j ⁇ 1 of preceding rank weighted by a coefficient c j ⁇ 1 .
- the summing circuit ⁇ adds the input signal Vin(k) weighted by a coefficient b p+1 , the output signal of the integrator Ia p of rank p weighted by a coefficient c p , and, if p is greater than 1, the output signal or signals of the integrators of rank p ⁇ l, with 1 being an integer ranging from 1 to p ⁇ 1, weighted respectively by coefficients c p+l .
- Some of the abovementioned coefficients can be zero. For example, in the 4 th order modulator of FIG. 1 , the coefficients b 2 , b 3 , b 4 , a 2 , a 3 and a 4 are zero.
- modulators further comprising one or more analogue inverse feedbacks from the output of an analogue integrator to the input of an upstream analogue integrator, through a specific weighting coefficient, and/or in which the output of an integrator of rank i is added, through a specific weighting coefficient, to the input of a downstream integrator of rank greater than or equal to i+2.
- delays can be introduced between the different stages of the circuit 101 , and/or between the circuit 101 and the converter 103 .
- the digital filter of a sigma-delta converter generally comprises a digital integrator, or several cascaded digital integrators.
- a pth order sigma-delta modulator is associated with a digital filter comprising a number greater than or equal to p of digital integrators.
- the digital filter comprises four cascaded digital integrators In 1 , In 2 , In 3 and In 4 .
- Each digital integrator for example a counter, comprises an input and an output and, at each cycle, the integrated signal, or output signal of the integrator, is increased by the value of the signal applied at the input of the integrator.
- the first integrator In 1 receives on its input the output binary signal BS of the sigma-delta modulator of FIG. 1A
- the second integrator In 2 receives on its input an output digital signal from the integrator In 1
- the third integrator In 3 receives on its input an output digital signal from the integrator In 2
- the fourth integrator In 4 receives on its input an output digital signal from the integrator In 3 .
- the filter of FIG. 1B performs a function of low-pass type intended to extract the useful information from the bit stream produced by the sigma-delta modulator. More generally, the digital filter extracts the signal at the frequencies where the attenuation of the NTF is greatest. Thus, depending on the structure of the modulator, the digital filter can perform a low-pass function, a bandpass function, or a high-pass function.
- the digital integration is performed at the oversampling frequency of the sigma-delta modulator.
- the four digital integrators In j are controlled simultaneously by the same control signal ⁇ comp _ d , of frequency 1/T OSR .
- the output of the last digital integrator In 4 is linked to a normalization block 105 whose function is to convert the signal supplied by the integrator In 4 into a digital code on N-bits, N being an integer greater than 1 corresponding to the resolution of the sigma-delta converter.
- the block 105 divides the signal that it receives by a reference value, for example equal to the value that this signal would take for the maximum value allowed for the signal Vin, and supplies on an output terminal A 5 of the converter an output value S d representative of the result of the division quantized on N bits.
- a reference value for example equal to the value that this signal would take for the maximum value allowed for the signal Vin
- the topology of the digital filter can be modified to approximate that of the sigma-delta modulator.
- the normalization circuit 105 can receive a signal equal to the sum of the output signals from the four integrators In 1 , In 2 , In 3 and In 4 .
- the internal digital signals of the digital filter can be weighted by coefficients identical to those of the modulator.
- FIG. 2 is a detailed electrical circuit diagram illustrating an exemplary (nonlimiting) embodiment of the sigma-delta modulator of FIG. 1A .
- each integrator Ia j comprises an operational amplifier AO whose input is linked to the output by an integrator capacitance Cij.
- the input and the output of the operational amplifier form, respectively, the input and the output of the integrator.
- Each integrator Ia j further comprises, in parallel to its integration capacitance Cij, a reset switch controlled by a signal ⁇ r.
- the switches of the modulator are designated by the same references as their respective control signals.
- the outputs of the integrators Ia 1 , Ia 2 , Ia 3 and Ia 4 are linked respectively to a first electrode of a capacitance Co 1 , to a first electrode of a capacitance Co 2 , to a first electrode of a capacitance Co 3 and to a first electrode of a capacitance Co 4 , by first, second, third and fourth switches ⁇ 1 d .
- first electrodes of the capacitors Co 1 , Co 2 , Co 3 and Co 4 are linked to a node R for application of a reference potential, for example equal to the average potential between the high output value DAC up and the low output value DAC dn of the feedback digital-analogue converter, respectively by first, second, third and fourth switches ⁇ 2 d .
- the second electrodes of the capacitors Co 1 , Co 2 and Co 3 are linked to the node R respectively by first, second and third switches ⁇ 1 .
- the second electrodes of the capacitors Co 1 , Co 2 and Co 3 are linked respectively to the input of the integrator Ia 2 , to the input of the integrator Ia 3 , and to the input of the integrator Ia 4 , by first, second and third switches ⁇ 2 .
- the second electrode of the capacitance Co 4 is linked to the node R by a fourth switch ⁇ 2 , and is also connected to the input A 3 of the analogue-digital converter 103 .
- the modulator of FIG. 2 further comprises a capacitance Cs 1 of which a first electrode is linked to the terminal A 1 for application of the input signal Vin by a fifth switch ⁇ 1 d , and of which the second electrode is linked to the input of the integrator Ia 1 by a fifth switch ⁇ 2 .
- the second electrode of the capacitance Cs 1 is also connected to the node R by a fourth switch ⁇ 1 .
- the first electrode of the capacitance Cs 1 is linked to a node for application of a potential DACup by a switch ⁇ dac, and to a node for application of a potential DACdn lower than the potential DACup by a switch ⁇ dac bar .
- the terminal A 1 for application of the input signal Vin is also linked to a first electrode of a capacitance Cs 5 by a sixth switch ⁇ 1 d .
- the first electrode of the capacitance Cs 5 is also linked to the node R by a fifth switch ⁇ 2 d .
- the second electrode of the capacitance Cs 5 is connected to the input node A 3 of the analogue-digital converter 103 .
- the first electrodes of the capacitors Co 1 , Co 2 and Co 3 are linked to the input node of the analogue-digital converter 103 respectively by capacitors Cff 1 , Cff 2 and Cff 3 .
- the 1-bit analogue-digital converter 103 comprises a comparator 201 and a flip-flop 203 .
- the input of the comparator 201 forms the input of the converter 103 .
- the output of the comparator 201 is connected to the input of the flip-flop 203 .
- the output of the flip-flop 203 forms the output A 2 of the converter 103 , supplying the output signal BS of the sigma-delta modulator.
- the output of the comparator 201 switches from a high state to a low state depending on whether the signal applied to the terminal A 3 is above or below a threshold, for example equal to the reference potential applied to the node R.
- the flip-flop 203 samples the output signal of the comparator 201 and copies it onto the output of the modulator on each rising or falling edge of a control signal ⁇ comp.
- the modulator of FIG. 2 further comprises two AND gates AND 1 and AND 2 each comprising two binary inputs and a binary output.
- the inputs of the gate AND 1 are connected respectively to the output A 2 of the converter 103 and to the control signal ⁇ 2 d , and the inputs of the gate AND 2 respectively receive a signal complementing the output signal of the converter 103 and the control signal ⁇ 2 d .
- the output of the gate AND 1 is connected to a control node of the switch ⁇ dac, and the output of the gate AND 2 is connected to a control node of the switch ⁇ dac bar .
- the integrators Ia 1 , Ia 2 , Ia 3 and Ia 4 , the capacitors Cs 1 , Co 1 , Co 2 , Co 3 , Co 4 , Cs 5 , Cff 1 , Cff 2 and Cff 3 , and the switches ⁇ 1 , ⁇ 2 , ⁇ 1 d and ⁇ 2 d form the analogue integration circuit 101 of the modulator.
- the switches ⁇ dac and ⁇ dac bar and the gates AND 1 and AND 2 form the 1-bit digital-analogue converter of the feedback loop of the modulator.
- FIG. 3 is a timing diagram illustrating the trend, as a function of time, of the control signals ⁇ 1 , ⁇ 1 d , ⁇ 2 , ⁇ 2 d and ⁇ comp of the modulator of FIG. 2 according to an exemplary method for controlling this modulator. More particularly, FIG. 3 illustrates the trend of the signals ⁇ 1 , ⁇ 1 d , ⁇ 2 , ⁇ 2 d and ⁇ comp during a cycle T OSR corresponding to an oversampling period of the modulator.
- the acquisition of a digital value on N bits representative of the input signal Vin can comprise an initial phase of reset of the analogue integrators Ia 1 , Ia 2 , Ia 3 and Ia 4 , during which the switches ⁇ r are closed so as to discharge the integrator capacitors Ci 1 , Ci 2 , Ci 3 and Ci 4 .
- the switches ⁇ r can be opened, then the control sequence of duration T OSR illustrated in FIG. 3 can be repeated OSR times (in the case of an incremental sigma-delta converter reset between two successive analogue-digital conversions, or more than OSR times if it is not an incremental converter).
- the switches ⁇ 1 and ⁇ 1 d are controlled to the closed state (control signals corresponding to the 1 state in this example), and the switches ⁇ 2 and ⁇ 2 d are controlled to the open state (control signals corresponding to the 0 state in this example).
- each capacitor Since the sampled signals are voltages, each capacitor stores a quantity of charges proportional to the product of the sampled voltage by the value of the sampling capacitor.
- the signals stored in the capacitors Cs 5 , Cff 1 , Cff 2 , Cff 3 and Co 4 are summed on the output node A 3 of the circuit 101 , which constitutes the summer ⁇ of FIG. 1A .
- the weighted summing of the signals stored in these capacitors is thus performed, the weighting applied resulting from the values of the capacitors.
- the signal ⁇ comp is set to the high state.
- the input signal of the analogue-digital converter 103 (voltage of the node A 3 ) is quantized on one bit by the converter 103 on the rising edge of the signal ⁇ comp.
- the binary value of the output signal BS is thus updated.
- the signal ⁇ 1 is set to the low state
- the signal ⁇ 1 d is set to the low state.
- the signals ⁇ 2 and ⁇ 2 d are set to the high state.
- the result therein is that the values of the integrators Ia 1 , Ia 2 , Ia 3 and Ia 4 are updated, that is to say that the sampled charges in the capacitors Cs 1 , Co 1 , Co 2 , Co 3 are integrated in the capacitors Ci 1 , Ci 2 , Ci 3 , Ci 4 respectively.
- the inverse feedback is activated, that is to say that the signal DACup or DACdn (depending on whether the signal BS is in the high or low state), is subtracted from the input signal of the capacitance Cs 1 .
- the signal ⁇ comp is reset to the low state.
- the signal ⁇ 2 is set to the low state
- the signal ⁇ 2 d is set to the low state.
- the output binary digital value BS(k) of the modulator obtained at each cycle T OSR is integrated by the digital filter at the oversampling frequency of the modulator, for example on the rising edges of the signal ⁇ comp _ d , which can be a delayed copy of the signal ⁇ comp (with a delay less than T OSR ).
- the non-linearity error is the maximum difference (peak-to-peak error), over the rank of operation of the converter, between the transfer function of the converter (which correlates a digital output code with each value of the analogue input signal), and the ideal linear transfer function.
- Another important feature of a sigma-delta converter is its output noise B, which can be defined as being the average, over the rank of operation [Vin min , Vin max ] of the converter (over a significant number of conversions for each point of the input dynamic range), of the standard deviations of the output digital codes of the converter of each level of the analogue input signal.
- FIG. 4 is a diagram illustrating the trend of the linearity L and of the noise B, as a function of the OSR, in a sigma-delta converter of the type described in relation to FIGS. 1 to 3 . More particularly, the curve 401 represents the trend of the linearity L (y axis on the left) as a function of the OSR (x axis), and the curve 403 represents the trend of the noise B expressed in LSB (y axis on the right) as a function of the OSR.
- an OSR equal to 100 makes it possible to have a linearity value L equal to 15 and a noise level B equal to 0.85 LSB, whereas an OSR equal to 60 gives only a linearity L equal to 12 and a noise level B equal to 2.4 LSB.
- a sigma-delta converter in which, during the acquisition of a digital value on N-bits representative of the analogue input signal, at least one weighting coefficient of the sigma-delta modulator varies dynamically according to a predetermined law f.
- at least one digital signal internal to the digital filter is also weighted by a predetermined variable law, for example, but not necessarily, by the same law f as that applied in the modulator.
- the weighting coefficient of the modulator to which the law f is applied can for example have an initial value (before modulation by the law f) equal to 1 (as an example, a link wire without apparent coefficient corresponds to a unitary coefficient, and it is possible to choose to apply the law f to this coefficient).
- the embodiments described are not however limited to this particular case.
- FIGS. 5A and 5B illustrate, in block form, an example of an embodiment of a sigma-delta converter.
- the converter is a 4 th order converter.
- FIG. 5A represents the sigma-delta modulator of the converter, and
- FIG. 5B represents the digital filter of the converter.
- the sigma-delta converter of FIGS. 5A and 5B has elements in common with the sigma-delta converter of FIGS. 1A and 1B . These elements will not be detailed again. Only the differences between the two converters will be explained hereinbelow.
- the sigma-delta modulator of FIG. 5A differs from the sigma-delta modulator of FIG. 1A essentially in that, in the modulator of FIG. 5A , the weighting coefficients c 2 , c 6 , c 7 and b 5 are modulated by a same predetermined variable law f.
- the value f(k) of the law f is capable of taking a new value.
- the law f(k) is preferably non-binary.
- the OSR f(k) values of the law f are for example stored in a memory of a control circuit (not represented) of the sigma-delta converter. An example of a circuit making it possible to apply a variable weighting law to coefficients of the modulator will be described in more detail hereinbelow in relation to FIG. 12 .
- the base values (not modulated by the law f) of the coefficients c 2 , c 6 , c 7 and b 5 can be determined by the usual methods for determining the coefficients of a sigma-delta modulator, for example according to the dimensioning rules described in the article entitled “Automatic coefficients design for high-order sigma-delta modulators” by Kuo, T. H., Chen, K. D., and Chen, J. R. (Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions, Volume 46, Issue 1), or in the document “Understanding Delta-Sigma Data Converters” (John Wiley & Sons, New York, 2004).
- the digital filter of FIG. 5B differs from the digital filter of FIG. 1B essentially in that, in the filter of FIG. 5B , the variable weighting law f applied to the coefficients c 2 , c 6 , c 7 and b 5 of the sigma-delta modulator is also applied to the digital input signal of the digital integrator of rank 3 In 3 .
- variable law f is applied at the digital filter with an advance cycle relative to the modulator, that is to say that, during a sampling cycle T OSR of the sigma-delta converter, if the weighting value f(k) is applied to the coefficients c 2 , c 6 , c 7 and b 5 of the modulator, the weighting value f(k+1) is applied to the input signal of the digital integrator In 3 .
- T OSR of the sigma-delta converter if the weighting value f(k) is applied to the coefficients c 2 , c 6 , c 7 and b 5 of the modulator, the weighting value f(k+1) is applied to the input signal of the digital integrator In 3 .
- T OSR of the sigma-delta converter if the weighting value f(k) is applied to the coefficients c 2 , c 6 , c 7 and b 5 of the modulator, the weighting value f(k+1) is applied to the input
- the law f can be applied in phase at the modulator and at the digital filter, or with an advance greater than one cycle in the digital filter, or with a delay of one cycle or more in the digital filter.
- the law f can be applied with a phase shift of one cycle or more to distinct coefficients of the modulator, or to distinct signals of the digital filter. For example, during one and the same cycle k of a phase of analogue-digital conversion of the input signal, the coefficient a 1 of the modulator can be weighted by the value f(k), and the coefficient b 1 by the value f(k+1).
- the embodiments described are not limited to the particular example of FIGS. 5A and 5B , in which the sigma-delta converter is a 4 th order converter and in which the weighting law f(k) is applied to the coefficients c 2 , c 6 , c 7 and b 5 of the modulator, and that input for the digital integrator of rank 3 of the digital filter.
- the sigma-delta converter is a 4 th order converter and in which the weighting law f(k) is applied to the coefficients c 2 , c 6 , c 7 and b 5 of the modulator, and that input for the digital integrator of rank 3 of the digital filter.
- the choice of the coefficient or coefficients of the modulator to which the weighting law f(k) is applied is preferably such that at least one input coefficient of an analogue integrator Ia j of the modulator is modulated by the law f.
- the analogue signals added or subtracted in the modulator prefferably, provision is also made for the analogue signals added or subtracted in the modulator to be to the same scale with respect to the law f(k), that is to say that they have been multiplied or divided a same number of times (possibly zero) by the law f(k).
- a rescaling allows the analogue signals to vary within a same range of amplitude for a given range of amplitude of the analogue input signal (Vin).
- the choice of the coefficient or coefficients of the modulator to which the weighting law f(k) is applied can for example be made such that all the samples that make up the integrated output signal of the analogue integration circuit 101 are to the same scale with respect to the law f(k).
- a signal is considered to scale with respect to the law f if it is situated on the path downstream of an integrator having an upstream coefficient weighted by the law f, or if it is itself directly weighted by the law f.
- the choice of the coefficient or coefficients of the modulator to which the weighting law f(k) is applied is made such that all the samples that make up the integrated output signal of the circuit 101 are multiplied (directly, or indirectly if the sample is an output sample of an integrator having an upstream coefficient weighted by the law f) by the law f(k).
- This rule is in particular observed in the modulator of FIG.
- the coefficients of the modulator to which the law f(k) is applied can be the coefficients b 1 , a 1 and b 5 , or in another variant the coefficients c 1 , b 5 and c 7 , or in another variant the coefficients c 3 , b 5 , c 5 , c 6 and c 7 .
- the weighting of the set of coefficients c 4 , c 5 , c 6 , c 7 and c 5 by the law f is, for its part, less advantageous in as much as no upstream coefficient of an analogue integrator is modulated by the law f.
- the weighting law f(k) can be applied to a signal other than the input signal of the digital integrator of rank 3 In 3 . More generally and as in the modulator, the choice of the digital signals to which the law f(k) is applied is preferably made such that the weighting law f(k) is applied as input of at least one digital integrator, preferably of the integrator of the same rank j as the analogue integrator Ia j at the input of which the law f(k) is applied in the modulator. Furthermore, as in the modulator, the choice of the digital signals to which the law f(k) is applied is preferably made such that the digital signals added or subtracted in the digital filter are to the same scale with respect to the law f(k).
- the digital filter comprises a number of cascaded digital integrators greater than or equal (preferably equal) to the order p of the sigma-delta modulator. Furthermore, if the digital filter has a topology similar to that of the modulator, the law f(k) can be applied substantially at the same points in the modulator and in the digital filter.
- some intermediate signals can be multiplied by the law f(k), and others divided by the law f(k).
- the coefficient c 2 can be multiplied by the law f(k) and the coefficients c 4 and c 5 divided by the law f(k) so as to conserve one and the same scale at the summer, the other coefficients of the modulator remaining constant.
- the weighting by the law f(k) at the digital filter can be identical to that which was described previously (multiplication of the input signal of the integrator In 3 by the law f(k)).
- the inventors have found that whatever the law f chosen, and in as much as the law f has at least one phase of decrease over the range of the indices k ranging from 1 to OSR, the application of a variable weighting coefficient to at least one analogue signal internal to the sigma-delta modulator and advantageously to at least one internal digital signal of the digital filter makes it possible to significantly improve the linearity of the sigma-delta converter (for a given OSR).
- the phase of decrease is a function of the rank k of the cycle.
- the phase of decrease generates a contribution to the analogue filter of the analogue signal internal to a given cycle (k) which is smaller than the contribution to the analogue filter of the same analogue signal internal to the preceding cycle (k ⁇ 1).
- the law f can be a law decreasing over all the range of the indices k ranging from 1 to OSR, for example a decreasing exponential law.
- the law f can be a constant law, for example equal to 1, over the range of the indices k ranging from 1 to t, with t being an integer lying between 1 and OSR, and decreasing (for example according to an exponential) over the range of the indices k ranging from t+1 to OSR.
- FIGS. 6, 7 and 8 are diagrams illustrating, for three distinct laws f, the trend of the linearity L and of the noise B as a function of the OSR in a sigma-delta converter of the type described in relation to FIGS. 5A and 5B .
- the curves 601 , respectively 701 , respectively 801 represent the trend of the linearity L (y axis on the left) as a function of the OSR (x axis), and the curves 603 , respectively 703 , respectively 803 , represent the trend of the noise B expressed in LSB (y axis on the right) as a function of the OSR.
- the curves of linearity 401 and of noise 403 of FIG. 4 which correspond to the same sigma-delta converter but in which no dynamic weighting of the signals is performed, have also been plotted in FIGS. 6, 7 and 8 for comparison purposes.
- the gain in linearity can differ according to the point of the modulator where the weighting by the law f(k) is applied.
- the more upstream the weighting is applied in the modulator the higher the gain in linearity, but the more the increase in the output noise will be significant if considering a modulator in which each block is subjected to a temporal noise.
- the initial (unweighted) values of the coefficients of the modulator can be determined by usual methods for determining the coefficients of a sigma-delta modulator.
- the values of the coefficients are chosen so as to maximize the signals internal to the modulator, but by taking care not to exceed the saturation threshold of the modulator.
- the use of a law f having weighting values f(k) greater than 1 then risks causing the saturation of the modulator.
- a law f will be preferred in which all the values are less than or equal to 1. If, on the other hand, the coefficients of the modulator are chosen such that the internal signals of the modulator always remain away from the saturation threshold, the law f can have values greater than 1, which makes it possible in particular to increase the signal-to-noise ratio.
- the law f can have constant variation phases and/or increasing variation phases to satisfy the various constraints of the sigma-delta converter, particularly in terms of noise and/or of continuity or of periodicity (cyclical law) of the law f if the analogue and digital integrators are not reset between two successive phases of acquisition of a digital value of the signal (for example in the case of a sigma-delta converter used to digitize variable signals).
- the law f however includes at least one decreasing variation phase during a phase of acquisition of a digital value of the input signal.
- a predetermined law should be understood to be a law that is defined in the design of the modulator or during a phase of configuration thereof.
- the law can possibly be adjusted dynamically according to predefined rules, during a phase of acquisition of a digital value of the input signal, for example in order to adapt the law to the characteristics of the signal being converted.
- the coefficient c 1 can be multiplied by a first variable law f 1 (k), and the coefficient c 2 by a second variable law f 2 (k) distinct from the law f 1 .
- the coefficient c 6 is multiplied by the law f 2
- the coefficient c 7 is multiplied by the law f 1 and by the law f 2
- the coefficient b 5 is multiplied by the law f 1 and by the law f 2
- the input signal of the digital integrator of rank 2 In 2 can be multiplied by the law f 1
- the input signal of the digital integrator of rank 3 In 3 is multiplied by the law f 2 .
- the coefficient c 2 can be multiplied by a first variable law f 1 (k).
- f 1 (k) the coefficients c 6 and c 7 are multiplied by the law f 1 (k).
- a second law f 2 (k) is applied to the feed coefficient a 1 .
- the coefficient b 5 is weighted by f 1 (k)*f 2 (k).
- a third law f 3 (k) is applied to the coefficient b 1 of the input signal Vin.
- the input signal of the digital integrator of rank 1 In 1 can be multiplied by the inverse feedback weighting law f 2 (k+1) and the input signal of the digital integrator of rank 3 In 3 can be multiplied by the law f 1 (k+1).
- the scaling rules in this example are not applied at all points, in particular between the coefficients b 1 and a 1 , modulated respectively by two distinct laws f 2 and f 3 .
- the application of the law f 3 is not here applied to the digital filter.
- the weighting law of the input signal of the filter differs in this example from that of the modulator.
- Some weightings can therefore be applied only to one of the coefficients of the modulator, upstream of an integrator, without downstream rescaling and without being applied to the filter.
- the law f 3 can be different from zero over the first j cycles, then set to 0 from a cycle k (with 1 ⁇ j ⁇ k ⁇ OSR).
- the quantization process can continue with a zero weighting of the input signal, without that reducing the gain in linearity.
- the proposed weighting process makes it possible to continue the quantization of the residue of the conversion of the input signal Vin, after having weighted Vin in a non-zero manner over j first cycles.
- FIGS. 5A, 5B, 6, 7 and 8 can be adapted to all the known architectures of sigma-delta converters of order p greater than or equal to 1.
- FIG. 9 illustrates an example of application to another type of sigma-delta converter architecture.
- FIG. 9 only the sigma-delta modulator of the converter has been represented.
- the digital filter of the converter is for example identical or similar to the digital filter of FIG. 5B .
- the sigma-delta modulator of FIG. 9 comprises elements in common with the sigma-delta modulator of FIG. 5A . Hereinbelow, only the differences between these two modulators will be detailed.
- the modulator of FIG. 9 differs from the modulator of FIG. 5A in particular in that, in the modulator of FIG. 9 , the weighting coefficients b 2 , a 2 , b 3 , a 3 , b 4 and a 4 are not zero, and the coefficients c 5 , c 6 and c 7 are zero.
- the weighting coefficients c 2 , b 3 , a 3 , b 4 , a 4 and b 5 are multiplied by a same predetermined variable law f.
- FIG. 10 illustrates, in block form, another example of an embodiment of a sigma-delta converter.
- the converter of FIG. 10 is a 1 st order converter, comprising a 1 st order sigma-delta modulator, and a 1 st order digital filter.
- the sigma-delta modulator of FIG. 10 comprises an input terminal A 1 intended to receive an analogue input signal Vin to be digitized, and an output terminal A 2 intended to supply a series of binary samples BS representative of the signal Vin.
- the modulator of FIG. 10 comprises an analogue integration circuit 101 comprising a first input connected to the terminal A 1 for application of the signal Vin, and an output A 3 linked to the input of a 1-bit analogue-digital conversion circuit 103 , for example a 1-bit comparator.
- the output of the converter 103 is connected to the output A 2 of the modulator, and is also linked by a feedback loop to a second input A 4 of the integration circuit 101 .
- the feedback loop comprises a 1-bit digital-analogue converter 107 (DAC) whose input is connected to the terminal A 2 and whose output is connected to the terminal A 4 .
- DAC digital-analogue converter
- the integration circuit 101 takes an analogue sample Vin(k) of the input signal, and the modulator supplies, at the output of the 1-bit analogue-digital converter 103 , a binary sample BS(k) of the output signal.
- the integration circuit 101 comprises a single analogue integrator Ia 1 , for example a simple analogue summing circuit comprising an input and an output, this circuit being adapted, at each cycle, to increment the value of the output signal (or integrated signal) by the value of the signal applied at the input of the integrator.
- the integrator Ia 1 receives on its input a signal equal to the difference between the input signal Vin(k) and the feedback signal applied to the terminal A 4 (corresponding to the analogue value of the signal BS(k ⁇ 1)), weighted by a variable coefficient f(k ⁇ 1) according to a predetermined law f.
- the difference operation is symbolized by a subtractor 108 .
- the output of the integrator Ia 1 is connected to the output terminal A 3 of the circuit 101 .
- the digital filter of the sigma-delta converter of FIG. 10 comprises a digital integrator (not represented), for example a counter, whose input is linked to the output A 2 of the modulator via a digital circuit for application of a variable weighting coefficient f(k) according to the law f.
- the variable law f is applied at the digital filter with an advance cycle in relation to the modulator.
- the input datum of the digital filter is the binary output datum of the sigma-delta modulator, and that the resolution of the internal data of the digital filter depends on the OSR and on the resolution of the weighting law f.
- the resolution of the weighting law fin the digital filter is preferably greater than or equal to the resolution of the law fin the modulator.
- ⁇ q ⁇ 0.5. It is also considered that the output vale BS(k) of the sigma-delta modulator can take the value 1 or ⁇ 1 for k ⁇ 1, and is initialized at 0 for k 0. In this example, the digital-analogue converter 107 supplies, on the terminal A 4 , an analogue value equal to 0.5*BS(k ⁇ 1).
- the output I(m) of the analogue integrator can be written as follows:
- the sequence U(m) representing the difference between the accumulated energy originating from the continuous input signal Vin and the accumulated energy originating from the inverse feedback performed by the sigma-delta modulator is defined as follows. This sequence U(m) represents the difference between the energy introduced by the signal and its estimate.
- the estimated value Vin q of the signal Vin is then defined by the equation (6) below, with an estimation error e q defined by the equation (7).
- FIG. 11 is a diagram illustrating the trend, as a function of the OSR, of the theoretical effective number of bits ENOB defined by
- FIG. 12 is an electrical circuit diagram of an exemplary embodiment of a circuit making it possible to dynamically vary a weighting coefficient of a sigma-delta modulator according to a variable law f.
- the capacitor C is, in this example, a capacitor with variable capacitance that can be controlled digitally, performed using a table of switched capacitances.
- the capacitor C is divided into n+1 capacitances CP 1 to CP n+1 .
- the values of the capacitances CP 1 to CP n are obtained by dichotomic division of the value of the capacitance C base corresponding to the base (unweighted) coefficient.
- the capacitances CP 1 , CP 2 , . . . CP n have, respectively, the values C base /2, C base /4, . . . C base /2n.
- the capacitance CP n+1 has, for its part, the same value as the capacitance CP n .
- the sum of the values of the capacitances CP 1 to CP n+1 is equal to C base .
- the variable capacitance capacitor C of FIG. 12 comprises, between conduction terminals E 1 and E 2 , n+1 parallel branches each comprising one of the n+1 capacitances CP q , with q being an integer ranging from 1 to n+1, and two switches s q controlled by a same control signal (or by control signals that are very slightly staggered, for example exhibiting a temporal offset less than 0.1*T OSR ), linking the electrodes of the capacitance CP q respectively to the terminal E 1 and to the terminal E 2 .
- a control circuit not represented can be provided to control the switches s q so as to dynamically vary the capacitance of a capacitor C during a phase of analogue-digital conversion of the input signal of the sigma-delta converter.
- the switches s n+1 are open, and the digital value on n bits of the law f(k) is applied to the control signals of the switches s 1 to s n , the most significant bit being applied to the switches s 1 , and the least significant bit being applied to the switches s n .
- One advantage of the circuit of FIG. 12 is that the weighting law f(k) can easily be reconfigured, for example if the needs of the application change.
- the embodiments described are not however limited to the exemplary circuit of FIG. 12 to dynamically vary the coefficients of a sigma-delta modulator according to a predetermined law. More generally, any other suitable circuit can be used, for example a circuit with variable capacitance with analogue or digital control.
- the analogue signal to be digitized is a voltage and is sampled on capacitances of the sigma-delta modulator (example of FIG. 2 ).
- the embodiments described are not limited to this particular case.
- the proposed solution can be adapted to sigma-delta modulators with current mode analogue input.
- the weighting of the signals internal to the modulator by a variable law can for example be performed by modulating the integration times of the currents on capacitances. For continuous-time modulators, the weighting law will no longer be discrete (f(k)) but continuous (f(t)).
- the proposed solution can be adapted to sigma-delta modulators of MASH (Multi-Stage Noise Shaping) type, that is to say modulators of order p greater than 1 consisting of the series arrangement of several sigma-delta modulators of order less than p, each modulator of order less than p comprising, as in the modulators described above, an analogue integration circuit, a 1-bit analogue-digital converter, and a feedback loop that can comprise a digital-analogue converter and a subtractor.
- MASH Multi-Stage Noise Shaping
- the signals to which the weighting law f(k) is applied are chosen such that at least one weighting by the law f(k) is performed upstream of an analogue integrator of the modulator and preferably such that the different signals added or subtracted in the modulator and/or in the digital filter of the converter are to the same scale.
- the analogue input signal is applied at the input of the analogue integration circuit 101 of the modulator, and the 1-bit analogue-digital converter 103 of the modulator compares an output signal of the circuit 101 to a constant reference signal.
- the input signal and the reference signal can be reversed.
- the inventors have found that if the coefficients of the modulator are set, the output noise of the sigma-delta converter is relatively high.
- the application of a variable weighting law to coefficients of the modulator makes it possible to significantly improve the precision of the converter.
- the reference input of the comparator 103 is a high-impedance input.
- the application of the signal to be converted directly to the comparator makes it possible to avoid drawing power from the signal to be digitized.
- sigma-delta modulators comprising one or more cascaded analogue integrators.
- the embodiments described are not limited to this particular case. More generally, in the embodiments described, the analogue integrators of the sigma-delta modulators can be replaced by other types of analogue filters.
- FIG. 13 illustrates, in block form, another example of an embodiment of a 1 st order sigma-delta converter.
- the analogue integration circuit 101 the 1-bit analogue-digital conversion circuit 103 and the 1-bit digital-analogue converter 107 and the subtractor 108 .
- the analogue filter 106 of the analogue integration circuit 101 represented in FIG. 13 comprises a summer 109 , a unitary gain delay operator 111 , denoted Z ⁇ 1 , and a multiplier 113 making it possible to multiply the output signal of the operator 111 by a factor ⁇ .
- the summer 109 adds the analogue signal received at the cycle k and a signal internal to the analogue filter derived from the operator 111 multiplied by the coefficient ⁇ .
- the output of the summer 109 supplies the input of the operator 111 and forms the output A 3 of the integration circuit 101 .
- the signal internal to the analogue filter derived from the operator 111 forms the output of the analogue filter at the cycle k ⁇ 1.
- the functional blocks represented in FIG. 13 can be produced in many ways, one of which is explained in FIG. 14 . It is of course possible to produce the summer, 109 , the operator 111 and the multiplier 113 in other forms based on components available on the market and their ease of implementation.
- the summer, 109 , the operator 111 and the multiplier 113 are produced from an operational amplifier 115 receiving, on its inverting input, the internal signal derived from the subtractor 108 via a capacitance Cin.
- Switches ⁇ 1 and ⁇ 2 make it possible to connect the capacitance Cin either to the output of the summer 108 , or to a reference voltage Vref or to the inverting input.
- the inverting input is connected to the output of the operational amplifier 115 via a capacitance Cfb which can be short-circuited by a switch ⁇ r.
- the inverting input is also connected to the output of the operational amplifier 115 via a capacitance Cout which can be switched by switches also called ⁇ 1 and ⁇ 2 .
- a timing diagram is represented in FIG. 14 to show the sequencing per cycle of three switching phases of the switches ⁇ 1 , ⁇ 2 and ⁇ r. To simplify understanding, the three phases ⁇ 1 ⁇ 2 and ⁇ r are referred to by the designation of the switches closed during each of the phases.
- the integrator made up of the amplifier 115 with the capacitance Cfb is reset by short-circuiting Cfb. Its charge Qcfb becomes zero.
- Vout ( k ) Vin ( k )+ ⁇ *Vout ( k ⁇ 1).
- the weighting of the output of the digital filter can follow the law f(k) (or f(k+1)) given the theoretical offset of application between the modulator and the digital filter. Another decreasing law can also be chosen for the digital filter.
- FIGS. 13 and 14 presents the advantage of not necessarily introducing scale factor at the output of the integration circuit 101 . There is nevertheless a risk of saturation of the integrator due to a gain greater than 1.
- Another way of expressing the equivalence of the two weightings is to define, in the variant illustrated by FIG. 10 , the weighting at the input of the integrator by ⁇ k (k variant from 1 to OSR) and the gain of the integrator of rank k in the variant illustrated by FIG. 13 by ⁇ k .
- the eye will tend to smooth or average the temporal noise and will thus be more sensitive to the linearity errors (if a population of digital output values is considered here that relates to several conversions of one and the same static analogue input value, the noise is relative to the standard deviation of the population and the linearity error is relative to the difference between the theoretical digital value expected and the average of the population).
- the proposed invention and in particular its variant explained from FIG. 10 despite everything reduces the linearity error.
- the variant explained using FIG. 10 and the variant explained using FIG. 13 can be combined in order to avoid the risk of saturation at the integrator.
- the weighting law then follows the law q to the power (k ⁇ n*integer part of (k/n)) and every N cycles a gain (1/q) N is applied to the integrator.
- FIG. 15 a represents, in timing diagram form in which the time axis is expressed in number of cycles of trending of the weighting at the input of the integrator according to the variant of FIG. 10 .
- the total number of cycles OSR to produce a digital output value is 100 and the number N of cycles after which the weighting at the input of the integrator is reset is 10.
- FIG. 15 b represents, in timing diagram form with the same time axis, the weighting applied to the gain of the integrator according to the variant of FIG. 13 .
- the gain ⁇ of the integrator (initially equal to 1) is multiplied by (1/q) N , that is to say (1/0.8) 10 ⁇ 9.31, then is reset to its initial value at the next cycle.
- FIGS. 10 and 13 Another combination of the two variants of FIGS. 10 and 13 consists in performing simultaneously, at least for a same rank k, a weighting at the integrator input and a gain in the integrator.
- FIG. 10 can be generalized to converters of order greater than 1 comprising several cascaded analogue filters.
- FIG. 13 which can be generalized to converters of order greater than 1.
- This generalization is presented in FIG. 16 in which each integrator Ia 1 to Ia 4 of FIG. 1 a is replaced by a summer 109 , an operator 111 and a multiplier 113 . It is of course possible to replace only at least one of the integrators Ia 1 to Ia 4 of FIG. 1 a by a summer 109 , an operator 111 and a multiplier 113 .
- the factor ⁇ of each can be different in order to adjust the output variation ranges of the analogue integrating filters.
- the digital filter is then advantageously adapted according to the different factors ⁇ .
- miscellaneous variant architectures of digital filters can be considered.
- the topology of the digital filter can be modified to approximate that of the sigma-delta modulator.
- different elementary filters can be implemented in an equivalent manner. It is for example possible to provide two variants of elementary filter. In the first variant, a unitary gain integrator is preceded by a multiplier, like the modulator of FIG. 10 . In the second variant, the elementary filter comprises a non-unitary gain integrator like the modulator of FIG. 13 .
- the cascades of integrators according to the two variants are nevertheless completely equivalent and can both be implemented at the output of a modulator according to FIG. 10 or at the output of a modulator according to FIG. 13 .
- the table below presents a cascade of two unitary gain integrators preceded by a multiplier of coefficient q k .
- the input of the filter is unitary:
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
for k<100, f(k)=1; and
for k>=100, f(k)=−(−100)/20.
for k<60, f(k)=1;
for 60<=k<75, f(k)=e −(k−40)/20; and
for k>=75, f(k)=e −(75−40)/20.
Qcin=Cin*(Vref−Vin(k))
Qcout=Cout*(0−Vout(k−1)).
Qcin+Qcout=Cfb*(Vref−Vout(k)).
Vout(k)=Vin(k)+α*Vout(k−1).
Input of the | Output of the | Output of the | |||
| integrator | 1 | |
|
|
1 | |
0 | 0 | ||
2 | q2 | q | 0 | ||
3 | q3 | q2 + q | q | ||
4 | q4 | q3 + q2 + q | q2 + 2q | ||
5 | q5 | q4 + q3 + q2 + q | q3 + 2q2 + 3q | ||
Σi=1 k−2((k−2)−i+1)q i
Input of the | Output of the | Output of the | ||
| integrator | 1 | |
|
1 | 1 | 0 | 0 | |
2 | 1 | 1 | 0 | |
3 | 1 | 1 + |
1 | |
4 | 1 | 1 + q−1 + |
1 + 2q−1 | |
5 | 1 | 1 + q−1 + q−2 + |
1 + 2q−1 + 3q−2 | |
Claims (28)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1551478A FR3033104B1 (en) | 2015-02-20 | 2015-02-20 | SIGMA-DELTA CONVERTER WITH HIGH LINEARITY |
FR1551478 | 2015-02-20 | ||
FR1558987 | 2015-09-24 | ||
FR1558987 | 2015-09-24 | ||
PCT/EP2016/053687 WO2016131990A1 (en) | 2015-02-20 | 2016-02-22 | High-linearity sigma-delta converter |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180069567A1 US20180069567A1 (en) | 2018-03-08 |
US10116324B2 true US10116324B2 (en) | 2018-10-30 |
Family
ID=55404741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/551,878 Active US10116324B2 (en) | 2015-02-20 | 2016-02-22 | High-linearity sigma-delta converter |
Country Status (6)
Country | Link |
---|---|
US (1) | US10116324B2 (en) |
EP (1) | EP3259847A1 (en) |
JP (1) | JP6910301B2 (en) |
KR (1) | KR102499229B1 (en) |
CN (1) | CN107534443B (en) |
WO (1) | WO2016131990A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101890333B1 (en) * | 2017-11-14 | 2018-08-21 | 울산과학기술원 | Thermister based temperature sensor with sigma-delta loop |
US10566993B2 (en) * | 2017-12-26 | 2020-02-18 | Asahi Kasei Microdevices Corporation | Delta-sigma modulator and delta-sigma converter |
US10511323B1 (en) | 2018-09-26 | 2019-12-17 | Apple Inc. | Loop filter initialization technique |
JP7395294B2 (en) * | 2019-09-12 | 2023-12-11 | 株式会社東芝 | Semiconductor integrated circuit, AD converter, delta sigma type AD converter, incremental delta sigma type AD converter, and switched capacitor |
US12113552B2 (en) | 2021-12-24 | 2024-10-08 | Asahi Kasei Microdevices Corporation | Delta-sigma modulator |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19725171A1 (en) | 1997-06-13 | 1998-12-17 | Bosch Gmbh Robert | Circuit arrangement for converting analogue into digital signal |
US6452524B1 (en) * | 2001-02-08 | 2002-09-17 | Ericsson Inc. | Delta sigma converter incorporating a multiplier |
US7053807B1 (en) | 2005-03-03 | 2006-05-30 | Analog Devices, Inc. | Apparatus and method for controlling the state variable of an integrator stage in a modulator |
US7173485B2 (en) * | 2004-11-15 | 2007-02-06 | Fujitsu Limited | Phase-compensated filter circuit with reduced power consumption |
US20080074303A1 (en) * | 2006-09-22 | 2008-03-27 | Timothy Rueger | Incremental delta-sigma data converters with improved stability over wide input voltage ranges |
US20080100486A1 (en) * | 2006-10-27 | 2008-05-01 | Realtek Semiconductor Corp. | Method and apparatus to reduce internal circuit errors in a multi-bit delta-sigma modualtor |
US20120194370A1 (en) * | 2006-12-01 | 2012-08-02 | Intersil Americas Inc. | Sigma-delta converter system and method |
US8405535B1 (en) | 2011-08-08 | 2013-03-26 | Altera Corporation | Integrated circuit with configurable analog to digital converter |
US20140035769A1 (en) * | 2012-08-02 | 2014-02-06 | Qualcomm Incorporated | Low distortion feed-forward delta-sigma modulator |
US20140113575A1 (en) * | 2011-07-01 | 2014-04-24 | Panasonic Corporation | Delta sigma modulator, as well as receiver device and wireless communication device provided with same |
US20150171888A1 (en) * | 2013-12-06 | 2015-06-18 | Nxp B.V. | Sigma-delta modulator |
US20180034421A1 (en) * | 2015-09-23 | 2018-02-01 | Nxp Usa, Inc. | Encapsulated semiconductor device package with heatsink opening |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4004989B2 (en) * | 2003-04-25 | 2007-11-07 | シャープ株式会社 | Delta-sigma modulation circuit |
EP1815598A1 (en) * | 2004-11-16 | 2007-08-08 | Koninklijke Philips Electronics N.V. | Continuous-time sigma-delta analog-to-digital converter with non-invasive filter(s) for immunity preservation against interferers. |
EP1980021B1 (en) * | 2006-01-25 | 2009-12-02 | Nxp B.V. | Continuous-time sigma-delta analog-to-digital converter with capacitor and/or resistance digital self-calibration means for rc spread compensation |
US7786912B2 (en) * | 2006-12-01 | 2010-08-31 | Intersil Americas Inc. | Sigma delta converter system and method |
KR100925397B1 (en) * | 2007-09-12 | 2009-11-09 | 지씨티 세미컨덕터 인코포레이티드 | Effective loop filter for a continuous time sigma delta analog to digital converter |
US8907829B1 (en) * | 2013-05-17 | 2014-12-09 | Cirrus Logic, Inc. | Systems and methods for sampling in an input network of a delta-sigma modulator |
-
2016
- 2016-02-22 KR KR1020177026328A patent/KR102499229B1/en active IP Right Grant
- 2016-02-22 EP EP16705556.5A patent/EP3259847A1/en active Pending
- 2016-02-22 JP JP2017543989A patent/JP6910301B2/en active Active
- 2016-02-22 CN CN201680022831.6A patent/CN107534443B/en active Active
- 2016-02-22 US US15/551,878 patent/US10116324B2/en active Active
- 2016-02-22 WO PCT/EP2016/053687 patent/WO2016131990A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19725171A1 (en) | 1997-06-13 | 1998-12-17 | Bosch Gmbh Robert | Circuit arrangement for converting analogue into digital signal |
US6452524B1 (en) * | 2001-02-08 | 2002-09-17 | Ericsson Inc. | Delta sigma converter incorporating a multiplier |
US7173485B2 (en) * | 2004-11-15 | 2007-02-06 | Fujitsu Limited | Phase-compensated filter circuit with reduced power consumption |
US7053807B1 (en) | 2005-03-03 | 2006-05-30 | Analog Devices, Inc. | Apparatus and method for controlling the state variable of an integrator stage in a modulator |
US20080074303A1 (en) * | 2006-09-22 | 2008-03-27 | Timothy Rueger | Incremental delta-sigma data converters with improved stability over wide input voltage ranges |
US20080100486A1 (en) * | 2006-10-27 | 2008-05-01 | Realtek Semiconductor Corp. | Method and apparatus to reduce internal circuit errors in a multi-bit delta-sigma modualtor |
US20120194370A1 (en) * | 2006-12-01 | 2012-08-02 | Intersil Americas Inc. | Sigma-delta converter system and method |
US20140113575A1 (en) * | 2011-07-01 | 2014-04-24 | Panasonic Corporation | Delta sigma modulator, as well as receiver device and wireless communication device provided with same |
US8405535B1 (en) | 2011-08-08 | 2013-03-26 | Altera Corporation | Integrated circuit with configurable analog to digital converter |
US20140035769A1 (en) * | 2012-08-02 | 2014-02-06 | Qualcomm Incorporated | Low distortion feed-forward delta-sigma modulator |
US20150171888A1 (en) * | 2013-12-06 | 2015-06-18 | Nxp B.V. | Sigma-delta modulator |
US20180034421A1 (en) * | 2015-09-23 | 2018-02-01 | Nxp Usa, Inc. | Encapsulated semiconductor device package with heatsink opening |
Non-Patent Citations (4)
Title |
---|
Libin Yao et al., "A High-Linearity Sigma-Delta Topology Suitable for Low-Voltage Applications," Jan. 1, 2000, XP055239216. |
Maghari et al., "Sturdy MASH Δ-Σ modulator," Electronics Letters, vol. 42, No. 22, Oct. 26, 2006. |
Zourntos et al., "Stable One-Bit Delta-Sigma Modulators Based on Switching Control," Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. CONF. 23, May 12, 1998, pp. 1597-1600, XP000948407. |
ZOURNTOS T, JOHNS D A: "STABLE ONE-BIT DELTA-SIGMA MODULATORS BASED ON SWITCHING CONTROL", PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING. ICASSP '98. SEATTLE, WA, MAY 12 - 15, 1998., NEW YORK, NY : IEEE., US, vol. CONF. 23, 12 May 1998 (1998-05-12), US, pages 1597 - 1600, XP000948407, ISBN: 978-0-7803-4429-7, DOI: 10.1109/ICASSP.1998.681758 |
Also Published As
Publication number | Publication date |
---|---|
CN107534443A (en) | 2018-01-02 |
CN107534443B (en) | 2021-10-08 |
JP2018509829A (en) | 2018-04-05 |
JP6910301B2 (en) | 2021-07-28 |
KR20170139000A (en) | 2017-12-18 |
KR102499229B1 (en) | 2023-02-10 |
WO2016131990A1 (en) | 2016-08-25 |
EP3259847A1 (en) | 2017-12-27 |
US20180069567A1 (en) | 2018-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10116324B2 (en) | High-linearity sigma-delta converter | |
US4704600A (en) | Oversampling converter | |
US6271782B1 (en) | Delta-sigma A/D converter | |
JP5754550B2 (en) | ΔΣ modulator and ΔΣ A / D converter | |
US7446686B2 (en) | Incremental delta-sigma data converters with improved stability over wide input voltage ranges | |
US10153778B2 (en) | High-linearity sigma-delta converter | |
US6608575B2 (en) | Hybrid multi-stage circuit | |
US5461381A (en) | Sigma-delta analog-to-digital converter (ADC) with feedback compensation and method therefor | |
US20050088327A1 (en) | Delta sigma modulating apparatus | |
US6147631A (en) | Input sampling structure for delta-sigma modulator | |
US20050068213A1 (en) | Digital compensation of excess delay in continuous time sigma delta modulators | |
AU2182100A (en) | Method and apparatus for eliminating clock jitter in continuous-time delta-sigma analog-to-digital converters | |
EP3817234A1 (en) | A sigma delta modulator, integrated circuit and method therefor | |
Caldwell et al. | Incremental data converters at low oversampling ratios | |
US6741197B1 (en) | Digital-to-analog converter (DAC) output stage | |
US9859916B1 (en) | Multistage noise shaping sigma-delta modulator | |
TWI426713B (en) | Range compression in oversampling analog-to-digital converters using differential input signals | |
EP0190694B1 (en) | Oversampling converter | |
Mohamed et al. | FIR feedback in continuous-time incremental sigma-delta ADCs | |
TWI426716B (en) | Range compression in oversampling analog-to-digital converters | |
US20230387928A1 (en) | Linear Multi-Level DAC | |
Christopher et al. | A 1-1 MASH using two Noise-Shaping Switched-Capacitor Dual-Slope converters | |
KR102617310B1 (en) | Delta-Sigma Modulators and Modulation Methods thereof | |
US20240356560A1 (en) | Analog-to-digital converter and operating method thereof | |
Guicquero et al. | Incremental Delta Sigma Modulation with Dynamic Weighted Integration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VERDANT, ARNAUD;ARQUES, MARC;GUICQUERO, WILLIAM;SIGNING DATES FROM 20171012 TO 20171013;REEL/FRAME:043907/0870 Owner name: TRIXELL, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VERDANT, ARNAUD;ARQUES, MARC;GUICQUERO, WILLIAM;SIGNING DATES FROM 20171012 TO 20171013;REEL/FRAME:043907/0870 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |