US10033331B1 - Op-amp IC chip - Google Patents

Op-amp IC chip Download PDF

Info

Publication number
US10033331B1
US10033331B1 US15/394,399 US201615394399A US10033331B1 US 10033331 B1 US10033331 B1 US 10033331B1 US 201615394399 A US201615394399 A US 201615394399A US 10033331 B1 US10033331 B1 US 10033331B1
Authority
US
United States
Prior art keywords
operational amplifier
voltage
trim
chip
trimming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/394,399
Other versions
US20180191306A1 (en
Inventor
Vadim Valerievich Ivanov
Jerry L. Doorenbos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to US15/394,399 priority Critical patent/US10033331B1/en
Assigned to TEXAS INSTRUMENTS INCORPORATED reassignment TEXAS INSTRUMENTS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOORENBOS, JERRY L., IVANOV, VADIM VALERIEVICH
Priority to CN201711360486.XA priority patent/CN108259013B/en
Publication of US20180191306A1 publication Critical patent/US20180191306A1/en
Application granted granted Critical
Publication of US10033331B1 publication Critical patent/US10033331B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34DC amplifiers in which all stages are DC-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45968Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction
    • H03F3/45991Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction by using balancing means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3211Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • H03F3/183Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
    • H03F3/187Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45932Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by using feedback means
    • H03F3/45937Measuring at the loading circuit of the differential amplifier
    • H03F3/45941Controlling the input circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/471Indexing scheme relating to amplifiers the voltage being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/555A voltage generating circuit being realised for biasing different circuit elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45048Calibrating and standardising a dif amp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45074A comparator circuit compares the common mode signal to a reference before controlling the differential amplifier or related stages

Definitions

  • An operational amplifier integrated circuit (IC) chip is disclosed. More particularly, the op-amp IC chip includes a trimming module for trimming the operational amplifier.
  • An operational amplifier (often referred to as an op-amp) is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output.
  • an op-amp produces an output potential (relative to circuit ground) that is typically hundreds of thousands of times larger than the potential difference between input terminals of the op-amp.
  • the operational characteristics of the op-amp circuit including the op-amp's gain, input and output impedance, bandwidth are determined by external components and have little dependence on temperature coefficients or manufacturing variations in the op-amp itself.
  • Op-amps are among the most widely used electronic devices, and op-amps are employed in an array of consumer, industrial, and scientific devices. Op-amps can be packaged as components. Alternatively, op-amps can be employed as elements of more complex integrated circuits.
  • Op-amps are often trimmed during or after manufacture to improve the precision and accuracy of the devices.
  • Some of the main objectives for trimming techniques include the correction of parameters of the op-amp, such as offset, gain, temperature drift and the like.
  • test circuitry is often used to measure the device parameters to make a determination as to how many and which of the specific memory cells in an op-amp should be programmed.
  • An operational amplifier (op-amp) integrated circuit (IC) chip is disclosed. More particularly, the op-amp IC chip includes a trimming module for trimming the op-amp.
  • One example relates to an integrated circuit (IC) chip that can include an operational amplifier with adjustable operational parameters.
  • the IC chip can also include a trimming module configured to measure an output voltage of the operational amplifier in response to at least one of detecting that the operational amplifier has a positive supply voltage set to a level greater than a predetermined level and detecting a given common mode voltage at inverting and non-inverting inputs of the operational amplifier.
  • the trimming module can also be configured to adjust the operational parameters of the operational amplifier based on the output voltage to trim the operational amplifier.
  • the IC chip can include an operational amplifier having an inverting input and a non-inverting input.
  • the IC chip can also include a trimming module that trims the operational amplifier in response to detecting a command for the operational amplifier IC chip to operate in a trim mode.
  • the IC chip can further include a trim mode supply voltage that provides a predetermined supply voltage to a positive supply voltage of the operational amplifier to trigger operation of the IC chip in the trim mode and the trim mode supply voltage providing a common mode voltage to the inverting input and the non-inverting input of the operational amplifier.
  • Yet another example relates to a method that can include triggering, at a trimming module of an IC chip that includes an operational amplifier, the IC chip to operate in a trim mode based on at least one of a predetermined positive supply voltage of the operational amplifier and a predetermined common mode voltage applied at an inverting input and a non-inverting input of the operational amplifier.
  • the method can also include adjusting, at the trimming module, a trim control signal that changes an operational parameter of the amplifier to trim the operational amplifier in response to the triggering.
  • the method can further include measuring, at the trimming module, an output voltage of the operational amplifier based on the adjusting in response to the triggering.
  • the method can yet further include determining, at the trimming module, whether the trim control signal is acceptable based on the measured output voltage and writing a value to a one-time programmable, non-volatile memory, wherein the value corresponds to the trim control signal that is acceptable.
  • FIG. 1 illustrates a diagram of a system for trimming an operational amplifier (op-amp) integrated circuit (IC) chip.
  • op-amp operational amplifier
  • FIG. 2 illustrates a diagram of another example of a system for trimming an op-amp IC chip.
  • FIG. 3 illustrates a diagram of an example trim-on reset module for a trimming module.
  • FIG. 4 illustrates a diagram of an example of an oscillator.
  • FIG. 5 illustrates a diagram of an example of successive approximation (SAR) logic.
  • FIG. 6 illustrates a flowchart of an example method for trimming an op-amp IC chip.
  • An operational amplifier (op-amp) integrated circuit (IC) chip is disclosed.
  • the op-amp IC chip can employ an integrated op-amp to measure an offset during trimming procedure after fabrication of the op-amp IC chip.
  • the op-amp IC chip can include a trimming module that can detect a Trim-On Reset (TOR) command.
  • TOR Trim-On Reset
  • both inputs (an inverting and a non-inverting) of the op-amp are connected to a common voltage source at a predetermined voltage level where an offset is expected.
  • a supply voltage of the op-amp can be increased above a predetermined nominal voltage. For example, if the nominal voltage is about 5 volts (V), the supply voltage can be increased to a range of about 6.5 V to about 7.5 V. This increase does not typically damage the op-amp, and facilitates writing of one-time programmable (OTP), non-volatile memory, as described herein.
  • OTP one-time programmable
  • a given common mode voltage at the inverting and non-inverting inputs of the op-amp can be set to a given level to signal that the trimming mode has commenced (e.g., the TOR command).
  • an oscillator Upon detecting that the trimming procedure has commenced, an oscillator can generate a clock signal.
  • the oscillator can provide the clock signal to Successive Approximation (SAR) logic driven by an output of the op-amp output.
  • SAR Successive Approximation
  • the op-amp operates as a comparator of its own offset voltage.
  • the SAR logic can write one or more values to memory that control an offset voltage of the op-amp.
  • the one or more values are employed to control switches that adjust internal operational parameters of the op-amp (e.g., internal current and/or internal resistance) during normal operation of the op-amp.
  • FIG. 1 illustrates a block diagram of a system 50 for trimming an integrated circuit (IC) chip 52 that includes an operational amplifier (op-amp) 54 , such that the IC chip 52 can be referred to as an op-amp IC chip 52 .
  • IC integrated circuit
  • op-amp operational amplifier
  • the op-amp IC chip 52 can include an internal trimming module 56 that can measure an output voltage, V OUT , and generate a control voltage, V SC , for the op-am 54 that causes the op-amp 54 to compensate for an undesired offset voltage, V OS .
  • the trimming module 56 is illustrated and described as being external to the op-amp 54 . However, in some examples, the trimming module 56 can be representative of a module internal to the op-amp 54 .
  • the op-amp IC chip 52 can be electrically coupled to a trim voltage supply 58 .
  • the trim voltage supply 58 can be, for example, test circuitry (e.g., automatic test equipment (ATE)) configured to actuate a trimming procedure at the trimming module 56 of the op-amp IC chip 52 .
  • the trim voltage supply 58 can include a trimming voltage source 59 that applies a trimming voltage, V TRIM , that is coupled to a positive power supply, V S+ , via a lead (pin) 60 and a negative power supply, V S ⁇ , of the op-amp via a lead 62 .
  • an inverting input lead 65 and a non-inverting input lead 66 can be shorted together in the trim voltage supply 58 .
  • a common mode supply 63 can apply a common mode voltage, V CM , to both an inverting input lead 64 and a non-inverting input lead 66 of the op-amp 54 .
  • the op-amp 54 can be configured to operate a nominal voltage, V NOM .
  • the nominal voltage, V NOM is a voltage at which the op-amp 54 is configured/designed to operate at or near a 100% duty cycle.
  • the nominal voltage, V NOM can be a voltage of about 5 V.
  • the trimming voltage, V TRIM is greater than the nominal voltage, V NOM .
  • Equation 1 defines an example relationship between the trimming voltage, V TRIM and the nominal voltage, V NOM . As demonstrated in Equation 1, in examples where V NOM is about 5 V, the trimming voltage, V TRIM can be about 6.5 V to about 7 V. V TRIM ⁇ (1.35 ⁇ 0.05) V NOM Equation 1
  • the common mode supply 63 can set the common mode voltage V CM to a voltage level with a predetermined/known voltage offset, which voltage level can be referred to as the offset voltage level, V OS .
  • the op-amp 54 may be rated to have voltage offset voltage in situations where the common mode voltage, V CM is about 1 V over V S ⁇ , at about one-half of the nominal voltage, V NOM (e.g., about 2.5 V) and/or in situations where the common mode voltage V CM is about 0.5 V less than the positive supply voltage, V S+ (e.g., about 6.5 V). In such a situation, the common mode supply 63 can set the common mode voltage, V CM , to the voltage level with the known voltage offset.
  • the trimming voltage source 59 can apply the trimming voltage, V TRIM (e.g., about 6.5 V to about 7 V), to the positive supply voltage V S+ (e.g., a TOR command) and the negative supply voltage V S ⁇ can be coupled to an electrically neutral node 68 (e.g., ground) to trigger operating the op-amp IC chip 52 in a trim mode.
  • V TRIM e.g., about 6.5 V to about 7 V
  • V S+ e.g., a TOR command
  • V S ⁇ can be coupled to an electrically neutral node 68 (e.g., ground) to trigger operating the op-amp IC chip 52 in a trim mode.
  • a given common mode voltage, V CM (e.g., a voltage at about 0.5 V less than the nominal voltage, V NOM ), can be set at the inverting and the non-inverting inputs of the op-amp 54 to actuate the trimming procedure (e.g., the TOR command).
  • the trimming module 56 can detect the given common mode voltage, V CM , applied at both the inverting and non-inverting inputs of the op-amp 54 and initiate the trimming procedure in response the detection.
  • multiple trimming procedures can be executed. For instance, in some such examples, the positive supply voltage V S+ can be set for a given trimming procedure, and the common mode voltage, V CM , can be set for another trimming procedure.
  • the trimming module 56 can trigger a trimming procedure.
  • the trimming module 56 can measure the positive supply voltage, V S+ , of the op-amp 54 . Accordingly, upon detecting the positive supply voltage, V S+ , being set to voltage at or near the trim voltage, V TRIM , the trimming module can actuate the trimming procedure (e.g., a TOR command).
  • a code sequence can be applied to an input of the op-amp IC chip 52 to indicate that the trimming procedure has commenced.
  • the trimming module 56 can cause a trim controller 70 to provide a trim signal, V SC (e.g., a controlled voltage and/or current signal), of the trimming module 56 that adjusts (e.g., trims) operational parameters of the op-amp 54 which in turn adjusts the output voltage, V OUT , of the op-amp 54 .
  • the trim controller 70 may be, for example, a digital-to-analog converter (DAC) that provides the trim signal, V SC , that adjusts a current provided by internal transistors of the op-amp 54 , such that the trim controller 70 can be referred to as a current DAC.
  • DAC digital-to-analog converter
  • the trim controller 70 may be a DAC that provides the trim signal, V SC to adjust a resistance of internal resistors of the op-amp 54 , such that the trim controller 70 may be referred to as a resistor DAC.
  • the trim controller 70 may be configured to provide the trim signal, V SC to adjust a size of a bank of internal transistor devices of the op-amp 54 , such that the trim controller 70 may be referred to as a transistor adjustor. That is, multiple transistor devices can be coupled in parallel in a bank of internal transistor devices, and the trim signal, V SC can be employed to control the number of transistor devices that are activated in the bank of internal transistor devices.
  • the trim controller 70 can be configured as a combination of a current DAC, a resistor DAC and/or a transistor adjustor. In such a situation, multiple instances of the trimming module 56 and/or the trim controller 70 may be fabricated on the op-amp IC chip 52 to adjust different operational parameters of the op-amp 54 .
  • the trimming module 56 can measure the output voltage, V OUT , of the op-amp 54 to determine the trim signal, V SC , that results in an output voltage, V OUT , at or near 0 V (e.g., electrically neutral).
  • the trimming module 56 can record data characterizing the trim control signal, V SC , with the output voltage at or near 0 V in a non-volatile memory.
  • the trimming module 56 can also disable further trimming procedures, such that the trimming procedure is executed once for the op-amp IC chip 52 .
  • the op-amp IC chip 52 can be configured such that upon completion of the trimming procedure, the op-amp IC chip 52 can be decoupled (e.g., removed) from the trim voltage supply 58 and subsequently employed in another circuit. In such a situation, the trim controller 70 can provide the trim signal, V SC , that achieved an output voltage, V OUT , of about 0 V with a common mode voltage signal, V CM , at the offset voltage level, V OS . In this manner, the op-amp 54 is considered to be “trimmed” and can operate as a precision op-amp.
  • the op-amp IC chip 52 By employment of the op-amp IC chip 52 , no external measurements of operational parameters, such as input and/or output currents and/or voltages of the op-amp 54 are needed to trim the op-amp 54 . Thus, the time and expense of measuring such operational parameters with external circuitry can be avoided. Furthermore, as explained herein, the components of the trimming module 56 are relatively small. Thus, the inclusion of the trimming module 56 does not significantly increase a die size (or cost) of the op-amp IC chip 52 .
  • the trim voltage supply 58 sets the trim voltage at the trimming voltage source 59 , V TRIM , and the common mode voltage, V CM , at the common mode supply 63 and waits a time sufficient (e.g., 5-20 milliseconds) to determine the trim control signal, V SC .
  • a time sufficient e.g., 5-20 milliseconds
  • the trim voltage supply 58 can be implemented with relatively simple hardware and/or software.
  • FIG. 2 illustrates another block diagram of a system 100 for trimming an op-amp IC chip 102 .
  • Fabrication tolerances of the op-amp IC chip 102 allow for situations where the internal components (e.g., transistors and resistors) cause operational parameters of an op-amp 104 in the op-amp IC chip 102 to operate with an offset voltage, V OS , outside acceptable limits.
  • the op-amp IC chip 102 can include an internal trimming module 106 that can measure an output voltage, V OUT , and generate a control voltage, V SC , for the op-amp 104 that causes the op-amp 104 to compensate for an offset voltage, V OS .
  • the op-amp IC chip 102 (and the op-amp IC chip 52 of FIG. 1 ) is shown as having a single op-amp. In other examples, multiple op-amps and/or other circuit components can be embedded on the op-amp IC chip 102 .
  • the op-amp 104 can include an output stage 105 .
  • the output stage 105 of the op-amp 104 can include compensation capacitors and/or transistors for signal conditioning and/or to lower an output impedance of the op-amp 104 .
  • the op-amp IC chip 102 can be electrically coupled to a trim voltage supply 108 .
  • the trim voltage supply 108 can be, for example, test circuitry (e.g., a component of a test system) configured to actuate a trimming procedure at the trimming module 106 of the op-amp IC chip 102 .
  • the trim voltage supply 108 can include a trimming voltage source 110 , V TRIM , that is coupled to a positive supply voltage, V S+ , via a lead (pin) 112 and a negative supply voltage, V S ⁇ , of the op-amp via a lead 114 .
  • an inverting input lead 116 and a non-inverting input lead 117 can be shorted together in the trim voltage supply 108 .
  • a common mode supply 118 can apply common mode voltage, V CM , to both the inverting input lead 116 and the non-inverting input lead 117 of the op-amp 104 .
  • the op-amp 104 can be configured to operate at a nominal voltage, V NOM , for a duty cycle of about 100%.
  • the nominal voltage, V NOM can be a voltage of about 5 V.
  • the trimming voltage, V TRIM is greater than the nominal voltage, V NOM . Equation 1 defines an example relationship between the trimming voltage, V TRIM , and the nominal voltage, V NOM . In examples where V NOM is about 5 V, the trimming voltage, V TRIM , can be about 6.5 V to about 7 V.
  • the common mode supply 118 can set the common mode voltage V CM to a voltage level with a predetermined/known voltage offset, which voltage level can be referred to as the offset voltage level, V OS .
  • the op-amp 54 may be rated to have voltage offset voltage in situations where the common mode voltage, V CM , is about 1 V over V S ⁇ , at about one-half of the nominal voltage, V NOM (e.g., about 2.5 V). Additionally or alternatively, the op-amp 54 may be rated to have voltage offset voltage for a common mode voltage (or a range of common mode voltages).
  • the op-amp 54 may be rated to have a voltage offset in situations where the common mode voltage V CM is about 0.5 V less than the positive supply voltage, V S+ (e.g., about 6.5 V).
  • the common mode supply 118 can set the common mode voltage, V CM , to the level with the known voltage offset.
  • the trim voltage supply 110 can apply the trimming voltage, V TRIM (e.g., about 6.5 V to about 7 V), to the positive supply voltage V S+ and the negative supply voltage V S ⁇ can be coupled to an electrically neutral node 120 (e.g., ground).
  • the trimming module 106 can include a trim-on reset (TOR) module 124 that can be coupled to the positive voltage supply, V S+ , of the op-amp 104 to trigger a trimming procedure for the op-amp 104 has commenced. Additionally or alternatively, the trimming module 106 can detect that a given common mode voltage (e.g., V CM is set to about 1 V over V S and/or V CM is set to about 0.5 V less than V NOM ) is applied at both the inverting and non-inverting inputs of the op-amp 104 to detect that the trimming procedure has commenced. In some examples, multiple trimming procedures can be executed.
  • a given common mode voltage e.g., V CM is set to about 1 V over V S and/or V CM is set to about 0.5 V less than V NOM
  • the positive supply voltage V S+ can be set to V TRIM for a given trimming procedure, and the common mode voltage V CM , can be set to the given mode voltage for another trimming procedure.
  • a trim mode signal, TRIM MODE can be output by the TOR module 124 , which can indicate a status of the trimming procedure.
  • FIG. 3 illustrates an example of a diagram of a TOR module 200 that may be employed, for example, to implement the TOR module 124 of FIG. 2 .
  • the TOR module 200 can include a comparator 202 .
  • the comparator 202 can compare a voltage level of a positive supply voltage, V S+ (e.g., V S+ of FIG. 2 ) with an output voltage of a bandgap voltage reference 206 .
  • the bandgap voltage reference 206 can be implemented as a voltage reference circuit that can produce a substantially fixed (constant) voltage that is substantially independent of power supply variations, temperature changes and circuit loading from a device.
  • the bandgap voltage reference 206 can be set to output a voltage equal to (or nearly equal to) a trimming voltage V TRIM , (e.g., the trimming voltage V TRIM , illustrated in FIG. 2 ).
  • the comparator 202 can receive a disable signal (labeled in FIG. 3 as “DISABLE”) that (if asserted) disables an output of the comparator 202 .
  • An inverted output of the comparator 202 can be a trim mode signal (labeled in FIG. 3 as “TRIM MODE”) that indicates whether a trimming procedure is detected. For instance, in situations where the disable signal, is not asserted (logical ‘0’/‘off’), the inverted output 208 of the comparator 202 (the trim mode signal) can output a logical ‘1’ (e.g., ‘on’) if the positive supply voltage, V S+ , is greater than the output of the bandgap voltage reference 206 , which can indicate that the trimming procedure has commenced.
  • the inverted output 208 can output a logical ‘0’ (e.g., ‘off’) as the trim mode signal if the positive supply voltage V S+ , is less than the output of the bandgap voltage reference 206 , which can indicate that the trimming procedure has not commenced.
  • the disable signal is asserted (logical ‘1’/‘on’)
  • the comparator 202 can be permanently disabled, thereby permanently forcing the trim mode signal to a logical ‘0’ (‘off’) state.
  • the trim mode signal can be output by the TOR module 200 . Additionally, the trim mode signal can be provided to an output stage 210 of an op-amp (e.g., the output stage 105 in FIG. 1 ).
  • the output stage 210 can include circuitry (e.g., transitory switches) that disconnects/bypasses compensation capacitors of the op-amp (e.g., the op-amp 104 of FIG. 1 ). Upon disconnecting the compensation capacitors of the op-amp 104 , a slew rate of the op-amp is increased, thereby increasing a rate of comparison of input voltages at the op-amp.
  • the TOR module 124 can provide the trim mode signal to an oscillator 126 . If the trim mode signal indicates that the trimming procedure is in process (e.g., with a logical ‘1’), the oscillator 126 can generate a trim clock signal, CLK T , with a predetermined frequency.
  • the predetermined frequency can be selected, for example, based on a comparator propagation delay of the op-amp 104 .
  • the predetermined frequency can be about 1 kilohertz or less.
  • the trim clock signal, CLK T can be provided to a successive approximation (SAR) logic module 128 .
  • FIG. 4 illustrates a diagram of an oscillator 250 that can be employed to implement the oscillator 126 of FIG. 2 .
  • the oscillator 250 can include a clock generator 252 that can receive the trim mode signal at an input of a NAND gate 254 .
  • a complement of a disable signal, DISABLE′, which can indicate that whether (or not) the trim mode has been disabled can also be provided to the input of the NAND gate 254 .
  • the output of the NAND gate 254 can be provided to an inverter 256 and first input node 258 and a second input node 260 of a transistor network 262 .
  • the output of the inverter 256 can be coupled to a resistor 264 .
  • the resistor 264 can also be coupled to the first input node 258 and a third input node 266 of the transistor network 262 .
  • the transistor network 262 is arranged, as illustrated in FIG. 4 to control a network of metal oxide semiconductor field effect transistors (MOSFETs), to generate an oscillating signal, OSC, that is provided to an input of the NAND gate 254 that swings between a high voltage (e.g., 5 V) signal, VDD, and a low voltage (e.g., about 0 V) signal, PBKG.
  • the transistor network 262 can include p-channel MOSFETs (PMOSs) and n-channel MOSFETs (NMOSs).
  • the output of the NAND gate 254 can also provide a clock signal, F 0 , with an initial clock frequency, to a frequency divider 270 of the oscillator 250 .
  • the initial frequency of the clock signal, F 0 can be about 32 kilohertz (kHz), but in other examples, the initial frequency of the clock signal, F 0 , can be greater or less than 32 kHz.
  • the oscillator 250 can include a frequency divider 270 formed of G number of cascaded D flip-flops 272 , where G is an integer greater than or equal to two. Each D flip-flop 272 can reduce a frequency of an incoming clock signal by about one-half.
  • a first D flip-flop 272 (D flip-flop 1 in FIG. 4 ) can receive the clock signal, F 0 , at the initial frequency at a clock input.
  • An inverted S input of the first D flip-flop 272 can receive the trim mode signal.
  • an inverted output, Q′ of the first D flip-flop 272 can be fed back into a D input of the first D flip-flop 272 .
  • the (non-inverted) output, Q of the first D flip-flop 272 can be coupled to a clock input of the second D flip-flop 272 (D flip-flop 2 in FIG. 4 ).
  • the remaining inputs and outputs can be coupled in the same manner as the first D flip-flop 272 .
  • each of the third through Gth D flip-flop 272 can also be configured in the same way, except that the (non-inverted) output, Q of the Gth D flip-flop 272 provides the trim clock signal, CLK T .
  • the clock signal, F 0 has an initial frequency of about 32 kHz
  • the trim clock signal, CLK T has a frequency of about 1 kHz if G is equal to six (6).
  • the clock generator 252 of the oscillator 250 can be implemented with IC chip compatible components (e.g., gates, transistors, resistors and capacitors). Moreover, by implementing the frequency divider 270 , the use of a relatively (physically) large resistor and/or capacitor (to generate a large RC constant) to implement the relatively slow trim clock signal, CLK T (with a frequency of 1 kHz) can be avoided.
  • the trim clock signal, CLK T , and the trim mode signal can be provided to the SAR logic 128 .
  • the SAR logic 128 can also receive an output signal, V OUT , from the op-amp 104 .
  • the SAR logic 128 can write values into a non-volatile (and possibly, one-time programmable) memory 130 that cause a trim controller 132 to provide a trim control signal, V SC , that adjusts the offset voltage of the op-amp 104 .
  • the trim control signal, V SC can control switches of the op-amp 104 that adjusts the output voltage, V OUT .
  • FIG. 5 illustrates a diagram of an example of SAR logic 300 that may be employed, for example, to implement the SAR logic 128 of FIG. 2 .
  • the SAR logic 300 can include a Schmidt trigger 302 that can receive the output signal of the op-amp, V OUT (the op-amp 104 of FIG. 2 ), and the trim mode signal.
  • the Schmidt trigger 302 can apply signal conditioning on the output signal of the op-amp, V OUT to “sharpen” rising and falling edges of the output signal, V OUT .
  • the Schmidt trigger 302 can generate an output signal, OUT (and the complement, OUT′), of the Schmidt trigger 302 that is nearly a square wave with rising and falling edges corresponding to rising and falling edges of the output signal, V OUT .
  • the SAR logic 300 can also include an AND gate 304 that can receive the trim clock signal, CLK T , the trim mode signal and a complement of a trim disable signal, DISABLE′ at inputs.
  • the output of the AND gate 304 can be provided to a shift register 306 .
  • the shift register 306 can be formed of N number of bit controllers 308 , where N is an integer greater than or equal to two.
  • the number N of bit controllers 308 can correspond to a number of bits in memory (e.g., the non-volatile memory 130 of FIG. 2 ) that are employed to control a trim controller (e.g., the trim controller 132 of FIG. 2 ). With a greater number of bits employed to store a trim code in the memory, the resolution/precision of the output of the trim controller is increased. In some examples, N can be 6-10.
  • Each bit controller 308 can be formed with a first D flip-flop 310 and a second D flip-flop 312 .
  • An inverted output, Q′ of the first D flip-flop 310 can be coupled to a clock input of the second D flip-flop 312 in each bit controller 308 . Additionally, in the first bit controller 308 , an inverted S input of the first D flip-flop 310 can be coupled to a power-on reset signal, POR, and in the second through Nth bit controllers 308 , an inverted R input of the first D flip-flop 310 can be coupled to the power-on reset signal, POR. At each of the first through Nth bit controllers 308 , the R input of the second D flip-flop 312 can be inverted and coupled to the power-on reset signal, POR. The power-on reset signal, POR, is asserted (e.g., logical ‘1’) as long as power is provided to the op-amp IC chip (the op-amp IC chip 102 of FIG. 2 ).
  • POR power-on reset signal
  • supply voltage is initially low, and the power-on reset signal POR is low (e.g., logical ‘0’), such that the power-on reset signal, POR, sets the first D flip-flop 310 of the first bit controller 308 . Additionally, the power-on reset signal, POR, resets the first D flip-flop 310 of each of the second through Nth bit controllers 308 as well as the second flip-flop 312 of each of the N number of bit controllers 308 .
  • POR power-on reset signal
  • the power-on reset signal, POR Upon the supply voltage reaching a level sufficient for operation of the op-amp, the power-on reset signal, POR, is high (e.g., logical ‘1’), such that the power-on reset signal, POR, ceases affecting further operation of the first or second D flip-flops 310 and 312 in each of the N bit controllers 308 .
  • the non-inverted output, Q of the first D flip-flop 310 and the second D flip-flop 312 can be provided to an input of a NOR gate 314 . Furthermore, a D input of the second D flip-flop 312 receives the complement of the output signal, OUT′ of the Schmidt trigger 302 .
  • an output of the NOR gate can be provided to an input of a NOT gate 316 . Additionally, the output of the NOT gate 316 and the output of the NOR gate 314 can each be coupled to a memory bit, as denoted by the symbols MB 1 . . . MBN and MB′ . . . MBN′.
  • the N number of bit controllers 308 can be arranged such that the first bit controller 308 (bit controller 1 ) receives the output of the AND gate 304 at a clock input, and a D input of the first D flip-flop 310 is coupled to a logical ‘0’ (e.g., “OFF”). Furthermore, the second through Nth bit controllers 308 (bit controllers 2 -N) can each receive the non-inverted output, Q of the previous first D flip-flop 310 and the trimming clock signal, CLK T at the clock of the first D flip-flop 310 .
  • a non-inverted output, Q of the first D flip-flop 310 of the Nth bit controller 308 can be provided to a NOT gate 318 .
  • An output of the NOT gate 318 can be coupled to a clock input of an output D flip-flop 320 .
  • An inverted R input of the output D flip-flop 320 can be coupled to the power-on reset, POR, signal and a D input of the output D flip-flop 320 can be coupled to a logical ‘1’ (e.g., ‘on’).
  • the shift register 306 is arranged such that as the trim clock, CLK T , pulses, a logical ‘1’ is shifted at the output of MB 1 toward MBN. As the logical ‘1’ shifts in the shift register 306 towards MBN, the value represented by MB 1 . . . MBN changes (increases), and the trim controller (the trim controller 70 of FIG. 2 ) changes the control signal, V SC .
  • the output D flip-flop 320 asserts (switches to logical ‘1’) the disable signal, DISABLE at the non-inverted output and the complement of the disable signal, DISABLE′, is de-asserted (switched to logical ‘0’) at the inverted output.
  • the shift register 306 stops (since the output of the AND gate 304 is de-asserted (turned to a logical 0)).
  • the disable signal, DISABLE, and the complement of the disable signal, DISABLE′ can be provided to the TOR module 124 and the oscillator 126 .
  • the trim controller is indirectly controlled by the SAR logic 300 . More particularly, the trim controller changes the trim control signal, V SC , as the value of the memory (controlled by the shift register 306 ) changes at a resolution dictated by the number N.
  • the trim control signal, V SC can have a voltage that is controlled at a resolution of about 1 microvolt ( ⁇ V).
  • the complement of the Schmidt trigger 302 output, OUT′ is asserted (e.g., a logical ‘1’ or high state).
  • the current value output at MB 1 . . . MBN can be written into non-volatile memory (which can be one time programmable memory).
  • the memory bits e.g., a memory bank
  • Memory writing can be executed on each trimming action but memory writing is often executed for the whole memory bank after the trimming procedure ends.
  • Data (information) that is to be written into memory bits is contained in the D flip-flops of shift register 306 as long as a supply voltage is on. Writing the bits in the memory bank together also allows an additional error-correction bits to be added to improve reliability of the op-amp, which can reduce the chances that a trim code (the value in the stored in the memory bits) changes even in situations where some of the memory bits are lost (e.g., due to static discharge).
  • the TOR module 124 disables the trim mode signal, which causes the output stage 105 of the op-amp 104 to re-activate (e.g., recouple) the compensation capacitors of the op-amp 104 .
  • the op-amp IC chip 102 can be removed/decoupled from the trim voltage supply 108 .
  • the control voltage signal V SC is provided to trim the op-amp 104 .
  • the trim controller 132 can be, for example, a current DAC, a resistive DAC and/or a transistor adjustor that adjusts operational parameters of the op-amp 104 , which operational parameters affect the offset voltage of the op-amp 104 .
  • the op-amp IC chip 102 By employment of the op-amp IC chip 102 , no external measurements of operational parameters, such as input and/or output currents and/or voltages of the op-amp 102 are needed to trim the op-amp 104 . Thus, the time and expense of measuring such operational parameters at external circuitry can be avoided. Furthermore, as illustrated in FIGS. 2-5 , the components of the trimming module 106 are relatively small (e.g., IC chip compatible components). Thus, the inclusion of trimming module 106 does not significantly increase a die size or cost of the op-amp IC chip 102 .
  • example methods will be better appreciated with reference to FIG. 6 . While, for purposes of simplicity of explanation, the example method of FIG. 6 is shown and described as executing serially, it is to be understood and appreciated that the present examples are not limited by the illustrated order, as some actions can in other examples occur in different orders, multiple times and/or concurrently from that shown and described herein. Moreover, it is not necessary that all described actions be performed to implement a method.
  • FIG. 6 illustrates a flowchart of an example method 400 for trimming an op-amp IC chip.
  • the method 400 may be implemented, by the op-amp IC chip being trimmed, such as the op-amp IC chip 52 of FIG. 1 and/or the op-amp IC chip 102 of FIG. 2 .
  • a trimming module e.g., the trimming module 56 of FIG. 1
  • the op-amp IC chip can trigger operation of the op-amp IC chip in a trim mode.
  • the triggering can be based, for example on detection of a high voltage (e.g., 7 V) signal at a supply voltage of an op-amp (e.g., the op-amp 54 of FIG. 1 ). Additionally or alternatively, the triggering can based on a detection of a predetermined common mode voltage being applied to an inverting input and a non-inverting input of the op-amp. In trim mode, an inverted and a non-inverting input of the op-amp can be coupled to a common mode voltage.
  • a high voltage e.g., 7 V
  • an op-amp e.g., the op-amp 54 of FIG. 1
  • trim mode an inverted and a non-inverting input of the op-amp can be coupled to a common mode voltage.
  • the trimming module can adjust a trim control signal, V SC , that adjusts an output voltage, V OUT , of the op-amp IC chip.
  • the output voltage, V OUT can be measured by the trimming module.
  • a determination can be made as to whether to accept the trim control signal, V SC . The determination may be based, for example on the measured value of the output voltage, V OUT , of the op-amp. For instance, if V OUT is about 0 V, the determination at 440 can be positive (e.g., YES) and the method 400 can proceed to 450 . Conversely, if V OUT is not about 0 V (e.g., at a high voltage), the method 400 can return to 420 .
  • the SAR logic may cycle the memory and/or trim adjustment voltage through a series of value, levels or voltages until the offset voltage (detected at the output of the operational amplifier) falls below a threshold voltage (e.g., determined by a threshold voltage in the Schmidt trigger).
  • a threshold voltage e.g., determined by a threshold voltage in the Schmidt trigger.
  • the trim adjustment value, level, or voltage is stored in the memory of the op-amp IC for further use during normal operation (e.g., when not operating in trim mode) of the op-amp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)

Abstract

An integrated circuit (IC) chip can include an operational amplifier with adjustable operational parameters. The IC chip can also include a trimming module configured to measure an output voltage of the operational amplifier in response to at least one of detecting that the operational amplifier has a positive supply voltage set to a level greater than a predetermined level and detecting a given common mode voltage at inverting and non-inverting inputs of the operational amplifier. The trimming module can also be configured to adjust the operational parameters of the operational amplifier based on the output voltage to trim the operational amplifier.

Description

TECHNICAL FIELD
An operational amplifier integrated circuit (IC) chip is disclosed. More particularly, the op-amp IC chip includes a trimming module for trimming the operational amplifier.
BACKGROUND
An operational amplifier (often referred to as an op-amp) is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op-amp produces an output potential (relative to circuit ground) that is typically hundreds of thousands of times larger than the potential difference between input terminals of the op-amp. By applying negative feedback on an op-amp, the operational characteristics of the op-amp circuit, including the op-amp's gain, input and output impedance, bandwidth are determined by external components and have little dependence on temperature coefficients or manufacturing variations in the op-amp itself. Op-amps are among the most widely used electronic devices, and op-amps are employed in an array of consumer, industrial, and scientific devices. Op-amps can be packaged as components. Alternatively, op-amps can be employed as elements of more complex integrated circuits.
Op-amps are often trimmed during or after manufacture to improve the precision and accuracy of the devices. Some of the main objectives for trimming techniques include the correction of parameters of the op-amp, such as offset, gain, temperature drift and the like. To perform trimming, test circuitry is often used to measure the device parameters to make a determination as to how many and which of the specific memory cells in an op-amp should be programmed.
SUMMARY
An operational amplifier (op-amp) integrated circuit (IC) chip is disclosed. More particularly, the op-amp IC chip includes a trimming module for trimming the op-amp.
One example relates to an integrated circuit (IC) chip that can include an operational amplifier with adjustable operational parameters. The IC chip can also include a trimming module configured to measure an output voltage of the operational amplifier in response to at least one of detecting that the operational amplifier has a positive supply voltage set to a level greater than a predetermined level and detecting a given common mode voltage at inverting and non-inverting inputs of the operational amplifier. The trimming module can also be configured to adjust the operational parameters of the operational amplifier based on the output voltage to trim the operational amplifier.
Another example relates to a system that can include an operational amplifier IC chip. The IC chip can include an operational amplifier having an inverting input and a non-inverting input. The IC chip can also include a trimming module that trims the operational amplifier in response to detecting a command for the operational amplifier IC chip to operate in a trim mode. The IC chip can further include a trim mode supply voltage that provides a predetermined supply voltage to a positive supply voltage of the operational amplifier to trigger operation of the IC chip in the trim mode and the trim mode supply voltage providing a common mode voltage to the inverting input and the non-inverting input of the operational amplifier.
Yet another example relates to a method that can include triggering, at a trimming module of an IC chip that includes an operational amplifier, the IC chip to operate in a trim mode based on at least one of a predetermined positive supply voltage of the operational amplifier and a predetermined common mode voltage applied at an inverting input and a non-inverting input of the operational amplifier. The method can also include adjusting, at the trimming module, a trim control signal that changes an operational parameter of the amplifier to trim the operational amplifier in response to the triggering. The method can further include measuring, at the trimming module, an output voltage of the operational amplifier based on the adjusting in response to the triggering. The method can yet further include determining, at the trimming module, whether the trim control signal is acceptable based on the measured output voltage and writing a value to a one-time programmable, non-volatile memory, wherein the value corresponds to the trim control signal that is acceptable.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a diagram of a system for trimming an operational amplifier (op-amp) integrated circuit (IC) chip.
FIG. 2 illustrates a diagram of another example of a system for trimming an op-amp IC chip.
FIG. 3 illustrates a diagram of an example trim-on reset module for a trimming module.
FIG. 4 illustrates a diagram of an example of an oscillator.
FIG. 5 illustrates a diagram of an example of successive approximation (SAR) logic.
FIG. 6 illustrates a flowchart of an example method for trimming an op-amp IC chip.
DETAILED DESCRIPTION
An operational amplifier (op-amp) integrated circuit (IC) chip is disclosed. The op-amp IC chip can employ an integrated op-amp to measure an offset during trimming procedure after fabrication of the op-amp IC chip. The op-amp IC chip can include a trimming module that can detect a Trim-On Reset (TOR) command.
During a trimming procedure (process), both inputs (an inverting and a non-inverting) of the op-amp are connected to a common voltage source at a predetermined voltage level where an offset is expected. To signal that the trimming procedure has commenced (e.g., the TOR command), a supply voltage of the op-amp can be increased above a predetermined nominal voltage. For example, if the nominal voltage is about 5 volts (V), the supply voltage can be increased to a range of about 6.5 V to about 7.5 V. This increase does not typically damage the op-amp, and facilitates writing of one-time programmable (OTP), non-volatile memory, as described herein. Additionally or alternatively, in some examples, a given common mode voltage at the inverting and non-inverting inputs of the op-amp can be set to a given level to signal that the trimming mode has commenced (e.g., the TOR command).
Upon detecting that the trimming procedure has commenced, an oscillator can generate a clock signal. The oscillator can provide the clock signal to Successive Approximation (SAR) logic driven by an output of the op-amp output. During the trimming procedure, the op-amp operates as a comparator of its own offset voltage. Moreover, based on the op-amp output, the SAR logic can write one or more values to memory that control an offset voltage of the op-amp. In particular, the one or more values are employed to control switches that adjust internal operational parameters of the op-amp (e.g., internal current and/or internal resistance) during normal operation of the op-amp.
FIG. 1 illustrates a block diagram of a system 50 for trimming an integrated circuit (IC) chip 52 that includes an operational amplifier (op-amp) 54, such that the IC chip 52 can be referred to as an op-amp IC chip 52. Fabrication tolerances of the op-amp IC chip 52 allow for situations where the internal components (e.g., transistors and resistors) cause operational parameters of the op-amp 54 to operate at levels outside acceptable limits. Accordingly, the op-amp IC chip 52 can include an internal trimming module 56 that can measure an output voltage, VOUT, and generate a control voltage, VSC, for the op-am 54 that causes the op-amp 54 to compensate for an undesired offset voltage, VOS.
For purposes of simplification of explanation, the trimming module 56 is illustrated and described as being external to the op-amp 54. However, in some examples, the trimming module 56 can be representative of a module internal to the op-amp 54.
Upon fabrication of the op-amp IC chip 52, the op-amp IC chip 52 can be electrically coupled to a trim voltage supply 58. The trim voltage supply 58 can be, for example, test circuitry (e.g., automatic test equipment (ATE)) configured to actuate a trimming procedure at the trimming module 56 of the op-amp IC chip 52. The trim voltage supply 58 can include a trimming voltage source 59 that applies a trimming voltage, VTRIM, that is coupled to a positive power supply, VS+, via a lead (pin) 60 and a negative power supply, VS−, of the op-amp via a lead 62. Additionally, an inverting input lead 65 and a non-inverting input lead 66 can be shorted together in the trim voltage supply 58. Moreover, a common mode supply 63 can apply a common mode voltage, VCM, to both an inverting input lead 64 and a non-inverting input lead 66 of the op-amp 54.
The op-amp 54 can be configured to operate a nominal voltage, VNOM. The nominal voltage, VNOM, is a voltage at which the op-amp 54 is configured/designed to operate at or near a 100% duty cycle. In some examples, the nominal voltage, VNOM can be a voltage of about 5 V. The trimming voltage, VTRIM is greater than the nominal voltage, VNOM. Equation 1 defines an example relationship between the trimming voltage, VTRIM and the nominal voltage, VNOM. As demonstrated in Equation 1, in examples where VNOM is about 5 V, the trimming voltage, VTRIM can be about 6.5 V to about 7 V.
V TRIM≈(1.35±0.05)V NOM  Equation 1
Initially, the common mode supply 63 can set the common mode voltage VCM to a voltage level with a predetermined/known voltage offset, which voltage level can be referred to as the offset voltage level, VOS. For example, the op-amp 54 may be rated to have voltage offset voltage in situations where the common mode voltage, VCM is about 1 V over VS−, at about one-half of the nominal voltage, VNOM (e.g., about 2.5 V) and/or in situations where the common mode voltage VCM is about 0.5 V less than the positive supply voltage, VS+ (e.g., about 6.5 V). In such a situation, the common mode supply 63 can set the common mode voltage, VCM, to the voltage level with the known voltage offset. Moreover, the trimming voltage source 59 can apply the trimming voltage, VTRIM (e.g., about 6.5 V to about 7 V), to the positive supply voltage VS+ (e.g., a TOR command) and the negative supply voltage VS− can be coupled to an electrically neutral node 68 (e.g., ground) to trigger operating the op-amp IC chip 52 in a trim mode.
Additionally or alternatively, a given common mode voltage, VCM (e.g., a voltage at about 0.5 V less than the nominal voltage, VNOM), can be set at the inverting and the non-inverting inputs of the op-amp 54 to actuate the trimming procedure (e.g., the TOR command). In such a situation, the trimming module 56 can detect the given common mode voltage, VCM, applied at both the inverting and non-inverting inputs of the op-amp 54 and initiate the trimming procedure in response the detection. In some examples, multiple trimming procedures can be executed. For instance, in some such examples, the positive supply voltage VS+ can be set for a given trimming procedure, and the common mode voltage, VCM, can be set for another trimming procedure.
Upon application of the trim voltage, VTRIM by the trimming voltage source 59, the trimming module 56 can trigger a trimming procedure. In some examples, the trimming module 56 can measure the positive supply voltage, VS+, of the op-amp 54. Accordingly, upon detecting the positive supply voltage, VS+, being set to voltage at or near the trim voltage, VTRIM, the trimming module can actuate the trimming procedure (e.g., a TOR command). In other examples, a code sequence can be applied to an input of the op-amp IC chip 52 to indicate that the trimming procedure has commenced.
In the trimming procedure, the trimming module 56 can cause a trim controller 70 to provide a trim signal, VSC (e.g., a controlled voltage and/or current signal), of the trimming module 56 that adjusts (e.g., trims) operational parameters of the op-amp 54 which in turn adjusts the output voltage, VOUT, of the op-amp 54. The trim controller 70 may be, for example, a digital-to-analog converter (DAC) that provides the trim signal, VSC, that adjusts a current provided by internal transistors of the op-amp 54, such that the trim controller 70 can be referred to as a current DAC. In additional examples, the trim controller 70 may be a DAC that provides the trim signal, VSC to adjust a resistance of internal resistors of the op-amp 54, such that the trim controller 70 may be referred to as a resistor DAC. In further examples, the trim controller 70 may be configured to provide the trim signal, VSC to adjust a size of a bank of internal transistor devices of the op-amp 54, such that the trim controller 70 may be referred to as a transistor adjustor. That is, multiple transistor devices can be coupled in parallel in a bank of internal transistor devices, and the trim signal, VSC can be employed to control the number of transistor devices that are activated in the bank of internal transistor devices. Moreover, in some examples, the trim controller 70 can be configured as a combination of a current DAC, a resistor DAC and/or a transistor adjustor. In such a situation, multiple instances of the trimming module 56 and/or the trim controller 70 may be fabricated on the op-amp IC chip 52 to adjust different operational parameters of the op-amp 54.
The trimming module 56 can measure the output voltage, VOUT, of the op-amp 54 to determine the trim signal, VSC, that results in an output voltage, VOUT, at or near 0 V (e.g., electrically neutral). The trimming module 56 can record data characterizing the trim control signal, VSC, with the output voltage at or near 0 V in a non-volatile memory. Moreover, the trimming module 56 can also disable further trimming procedures, such that the trimming procedure is executed once for the op-amp IC chip 52.
The op-amp IC chip 52 can be configured such that upon completion of the trimming procedure, the op-amp IC chip 52 can be decoupled (e.g., removed) from the trim voltage supply 58 and subsequently employed in another circuit. In such a situation, the trim controller 70 can provide the trim signal, VSC, that achieved an output voltage, VOUT, of about 0 V with a common mode voltage signal, VCM, at the offset voltage level, VOS. In this manner, the op-amp 54 is considered to be “trimmed” and can operate as a precision op-amp.
By employment of the op-amp IC chip 52, no external measurements of operational parameters, such as input and/or output currents and/or voltages of the op-amp 54 are needed to trim the op-amp 54. Thus, the time and expense of measuring such operational parameters with external circuitry can be avoided. Furthermore, as explained herein, the components of the trimming module 56 are relatively small. Thus, the inclusion of the trimming module 56 does not significantly increase a die size (or cost) of the op-amp IC chip 52. The trim voltage supply 58 sets the trim voltage at the trimming voltage source 59, VTRIM, and the common mode voltage, VCM, at the common mode supply 63 and waits a time sufficient (e.g., 5-20 milliseconds) to determine the trim control signal, VSC. Thus, the trim voltage supply 58 can be implemented with relatively simple hardware and/or software.
FIG. 2 illustrates another block diagram of a system 100 for trimming an op-amp IC chip 102. Fabrication tolerances of the op-amp IC chip 102, allow for situations where the internal components (e.g., transistors and resistors) cause operational parameters of an op-amp 104 in the op-amp IC chip 102 to operate with an offset voltage, VOS, outside acceptable limits. Accordingly, the op-amp IC chip 102 can include an internal trimming module 106 that can measure an output voltage, VOUT, and generate a control voltage, VSC, for the op-amp 104 that causes the op-amp 104 to compensate for an offset voltage, VOS.
It is noted that in the examples illustrated and described herein, the op-amp IC chip 102 (and the op-amp IC chip 52 of FIG. 1) is shown as having a single op-amp. In other examples, multiple op-amps and/or other circuit components can be embedded on the op-amp IC chip 102.
The op-amp 104 can include an output stage 105. The output stage 105 of the op-amp 104 can include compensation capacitors and/or transistors for signal conditioning and/or to lower an output impedance of the op-amp 104.
More particularly, upon fabrication of the op-amp IC chip 102, the op-amp IC chip 102 can be electrically coupled to a trim voltage supply 108. The trim voltage supply 108 can be, for example, test circuitry (e.g., a component of a test system) configured to actuate a trimming procedure at the trimming module 106 of the op-amp IC chip 102. The trim voltage supply 108 can include a trimming voltage source 110, VTRIM, that is coupled to a positive supply voltage, VS+, via a lead (pin) 112 and a negative supply voltage, VS−, of the op-amp via a lead 114. Additionally, an inverting input lead 116 and a non-inverting input lead 117 can be shorted together in the trim voltage supply 108. Moreover, a common mode supply 118 can apply common mode voltage, VCM, to both the inverting input lead 116 and the non-inverting input lead 117 of the op-amp 104.
The op-amp 104 can be configured to operate at a nominal voltage, VNOM, for a duty cycle of about 100%. In some examples, the nominal voltage, VNOM, can be a voltage of about 5 V. The trimming voltage, VTRIM, is greater than the nominal voltage, VNOM. Equation 1 defines an example relationship between the trimming voltage, VTRIM, and the nominal voltage, VNOM. In examples where VNOM is about 5 V, the trimming voltage, VTRIM, can be about 6.5 V to about 7 V.
Initially, the common mode supply 118 can set the common mode voltage VCM to a voltage level with a predetermined/known voltage offset, which voltage level can be referred to as the offset voltage level, VOS. For example, the op-amp 54 may be rated to have voltage offset voltage in situations where the common mode voltage, VCM, is about 1 V over VS−, at about one-half of the nominal voltage, VNOM (e.g., about 2.5 V). Additionally or alternatively, the op-amp 54 may be rated to have voltage offset voltage for a common mode voltage (or a range of common mode voltages). For example, the op-amp 54 may be rated to have a voltage offset in situations where the common mode voltage VCM is about 0.5 V less than the positive supply voltage, VS+ (e.g., about 6.5 V). In such a situation, the common mode supply 118 can set the common mode voltage, VCM, to the level with the known voltage offset. Moreover, the trim voltage supply 110 can apply the trimming voltage, VTRIM (e.g., about 6.5 V to about 7 V), to the positive supply voltage VS+ and the negative supply voltage VS− can be coupled to an electrically neutral node 120 (e.g., ground).
The trimming module 106 can include a trim-on reset (TOR) module 124 that can be coupled to the positive voltage supply, VS+, of the op-amp 104 to trigger a trimming procedure for the op-amp 104 has commenced. Additionally or alternatively, the trimming module 106 can detect that a given common mode voltage (e.g., VCM is set to about 1 V over VS and/or VCM is set to about 0.5 V less than VNOM) is applied at both the inverting and non-inverting inputs of the op-amp 104 to detect that the trimming procedure has commenced. In some examples, multiple trimming procedures can be executed. For instance, in some such examples, the positive supply voltage VS+, can be set to VTRIM for a given trimming procedure, and the common mode voltage VCM, can be set to the given mode voltage for another trimming procedure. A trim mode signal, TRIM MODE can be output by the TOR module 124, which can indicate a status of the trimming procedure.
FIG. 3 illustrates an example of a diagram of a TOR module 200 that may be employed, for example, to implement the TOR module 124 of FIG. 2. The TOR module 200 can include a comparator 202. The comparator 202 can compare a voltage level of a positive supply voltage, VS+ (e.g., VS+ of FIG. 2) with an output voltage of a bandgap voltage reference 206. The bandgap voltage reference 206 can be implemented as a voltage reference circuit that can produce a substantially fixed (constant) voltage that is substantially independent of power supply variations, temperature changes and circuit loading from a device. The bandgap voltage reference 206 can be set to output a voltage equal to (or nearly equal to) a trimming voltage VTRIM, (e.g., the trimming voltage VTRIM, illustrated in FIG. 2).
The comparator 202 can receive a disable signal (labeled in FIG. 3 as “DISABLE”) that (if asserted) disables an output of the comparator 202. An inverted output of the comparator 202 can be a trim mode signal (labeled in FIG. 3 as “TRIM MODE”) that indicates whether a trimming procedure is detected. For instance, in situations where the disable signal, is not asserted (logical ‘0’/‘off’), the inverted output 208 of the comparator 202 (the trim mode signal) can output a logical ‘1’ (e.g., ‘on’) if the positive supply voltage, VS+, is greater than the output of the bandgap voltage reference 206, which can indicate that the trimming procedure has commenced. Conversely, if the disable signal is not asserted, the inverted output 208 can output a logical ‘0’ (e.g., ‘off’) as the trim mode signal if the positive supply voltage VS+, is less than the output of the bandgap voltage reference 206, which can indicate that the trimming procedure has not commenced. Furthermore, if the disable signal is asserted (logical ‘1’/‘on’), the comparator 202 can be permanently disabled, thereby permanently forcing the trim mode signal to a logical ‘0’ (‘off’) state.
The trim mode signal can be output by the TOR module 200. Additionally, the trim mode signal can be provided to an output stage 210 of an op-amp (e.g., the output stage 105 in FIG. 1). The output stage 210 can include circuitry (e.g., transitory switches) that disconnects/bypasses compensation capacitors of the op-amp (e.g., the op-amp 104 of FIG. 1). Upon disconnecting the compensation capacitors of the op-amp 104, a slew rate of the op-amp is increased, thereby increasing a rate of comparison of input voltages at the op-amp.
Referring back to FIG. 2, the TOR module 124 can provide the trim mode signal to an oscillator 126. If the trim mode signal indicates that the trimming procedure is in process (e.g., with a logical ‘1’), the oscillator 126 can generate a trim clock signal, CLKT, with a predetermined frequency. The predetermined frequency can be selected, for example, based on a comparator propagation delay of the op-amp 104. The predetermined frequency can be about 1 kilohertz or less. The trim clock signal, CLKT, can be provided to a successive approximation (SAR) logic module 128.
FIG. 4 illustrates a diagram of an oscillator 250 that can be employed to implement the oscillator 126 of FIG. 2. The oscillator 250 can include a clock generator 252 that can receive the trim mode signal at an input of a NAND gate 254. A complement of a disable signal, DISABLE′, which can indicate that whether (or not) the trim mode has been disabled can also be provided to the input of the NAND gate 254. The output of the NAND gate 254 can be provided to an inverter 256 and first input node 258 and a second input node 260 of a transistor network 262.
The output of the inverter 256 can be coupled to a resistor 264. The resistor 264 can also be coupled to the first input node 258 and a third input node 266 of the transistor network 262. The transistor network 262 is arranged, as illustrated in FIG. 4 to control a network of metal oxide semiconductor field effect transistors (MOSFETs), to generate an oscillating signal, OSC, that is provided to an input of the NAND gate 254 that swings between a high voltage (e.g., 5 V) signal, VDD, and a low voltage (e.g., about 0 V) signal, PBKG. The transistor network 262 can include p-channel MOSFETs (PMOSs) and n-channel MOSFETs (NMOSs).
The output of the NAND gate 254 can also provide a clock signal, F0, with an initial clock frequency, to a frequency divider 270 of the oscillator 250. In one example, the initial frequency of the clock signal, F0, can be about 32 kilohertz (kHz), but in other examples, the initial frequency of the clock signal, F0, can be greater or less than 32 kHz. The oscillator 250 can include a frequency divider 270 formed of G number of cascaded D flip-flops 272, where G is an integer greater than or equal to two. Each D flip-flop 272 can reduce a frequency of an incoming clock signal by about one-half.
In particular, a first D flip-flop 272 (D flip-flop 1 in FIG. 4) can receive the clock signal, F0, at the initial frequency at a clock input. An inverted S input of the first D flip-flop 272 can receive the trim mode signal. Moreover, an inverted output, Q′ of the first D flip-flop 272 can be fed back into a D input of the first D flip-flop 272. Additionally, the (non-inverted) output, Q of the first D flip-flop 272 can be coupled to a clock input of the second D flip-flop 272 (D flip-flop 2 in FIG. 4). Moreover, the remaining inputs and outputs can be coupled in the same manner as the first D flip-flop 272. Similarly, each of the third through Gth D flip-flop 272 (D flip-flop G) can also be configured in the same way, except that the (non-inverted) output, Q of the Gth D flip-flop 272 provides the trim clock signal, CLKT. Thus, in examples where the clock signal, F0, has an initial frequency of about 32 kHz, the trim clock signal, CLKT, has a frequency of about 1 kHz if G is equal to six (6).
As illustrated in FIG. 4, the clock generator 252 of the oscillator 250 can be implemented with IC chip compatible components (e.g., gates, transistors, resistors and capacitors). Moreover, by implementing the frequency divider 270, the use of a relatively (physically) large resistor and/or capacitor (to generate a large RC constant) to implement the relatively slow trim clock signal, CLKT (with a frequency of 1 kHz) can be avoided.
Referring back to FIG. 2, the trim clock signal, CLKT, and the trim mode signal can be provided to the SAR logic 128. The SAR logic 128 can also receive an output signal, VOUT, from the op-amp 104. The SAR logic 128 can write values into a non-volatile (and possibly, one-time programmable) memory 130 that cause a trim controller 132 to provide a trim control signal, VSC, that adjusts the offset voltage of the op-amp 104. In particular, the trim control signal, VSC, can control switches of the op-amp 104 that adjusts the output voltage, VOUT.
FIG. 5 illustrates a diagram of an example of SAR logic 300 that may be employed, for example, to implement the SAR logic 128 of FIG. 2. The SAR logic 300 can include a Schmidt trigger 302 that can receive the output signal of the op-amp, VOUT (the op-amp 104 of FIG. 2), and the trim mode signal. The Schmidt trigger 302 can apply signal conditioning on the output signal of the op-amp, VOUT to “sharpen” rising and falling edges of the output signal, VOUT. Accordingly, as long as the trim mode signal is asserted (e.g., a logical ‘1’/‘on’), the Schmidt trigger 302 can generate an output signal, OUT (and the complement, OUT′), of the Schmidt trigger 302 that is nearly a square wave with rising and falling edges corresponding to rising and falling edges of the output signal, VOUT.
The SAR logic 300 can also include an AND gate 304 that can receive the trim clock signal, CLKT, the trim mode signal and a complement of a trim disable signal, DISABLE′ at inputs. The output of the AND gate 304 can be provided to a shift register 306.
The shift register 306 can be formed of N number of bit controllers 308, where N is an integer greater than or equal to two. The number N of bit controllers 308 can correspond to a number of bits in memory (e.g., the non-volatile memory 130 of FIG. 2) that are employed to control a trim controller (e.g., the trim controller 132 of FIG. 2). With a greater number of bits employed to store a trim code in the memory, the resolution/precision of the output of the trim controller is increased. In some examples, N can be 6-10. Each bit controller 308 can be formed with a first D flip-flop 310 and a second D flip-flop 312. An inverted output, Q′ of the first D flip-flop 310 can be coupled to a clock input of the second D flip-flop 312 in each bit controller 308. Additionally, in the first bit controller 308, an inverted S input of the first D flip-flop 310 can be coupled to a power-on reset signal, POR, and in the second through Nth bit controllers 308, an inverted R input of the first D flip-flop 310 can be coupled to the power-on reset signal, POR. At each of the first through Nth bit controllers 308, the R input of the second D flip-flop 312 can be inverted and coupled to the power-on reset signal, POR. The power-on reset signal, POR, is asserted (e.g., logical ‘1’) as long as power is provided to the op-amp IC chip (the op-amp IC chip 102 of FIG. 2).
During operation, supply voltage is initially low, and the power-on reset signal POR is low (e.g., logical ‘0’), such that the power-on reset signal, POR, sets the first D flip-flop 310 of the first bit controller 308. Additionally, the power-on reset signal, POR, resets the first D flip-flop 310 of each of the second through Nth bit controllers 308 as well as the second flip-flop 312 of each of the N number of bit controllers 308. Upon the supply voltage reaching a level sufficient for operation of the op-amp, the power-on reset signal, POR, is high (e.g., logical ‘1’), such that the power-on reset signal, POR, ceases affecting further operation of the first or second D flip- flops 310 and 312 in each of the N bit controllers 308.
The non-inverted output, Q of the first D flip-flop 310 and the second D flip-flop 312 can be provided to an input of a NOR gate 314. Furthermore, a D input of the second D flip-flop 312 receives the complement of the output signal, OUT′ of the Schmidt trigger 302. In each bit controller 308, an output of the NOR gate can be provided to an input of a NOT gate 316. Additionally, the output of the NOT gate 316 and the output of the NOR gate 314 can each be coupled to a memory bit, as denoted by the symbols MB1 . . . MBN and MB′ . . . MBN′.
The N number of bit controllers 308 can be arranged such that the first bit controller 308 (bit controller 1) receives the output of the AND gate 304 at a clock input, and a D input of the first D flip-flop 310 is coupled to a logical ‘0’ (e.g., “OFF”). Furthermore, the second through Nth bit controllers 308 (bit controllers 2-N) can each receive the non-inverted output, Q of the previous first D flip-flop 310 and the trimming clock signal, CLKT at the clock of the first D flip-flop 310.
Furthermore, a non-inverted output, Q of the first D flip-flop 310 of the Nth bit controller 308 (bit controller N) can be provided to a NOT gate 318. An output of the NOT gate 318 can be coupled to a clock input of an output D flip-flop 320. An inverted R input of the output D flip-flop 320 can be coupled to the power-on reset, POR, signal and a D input of the output D flip-flop 320 can be coupled to a logical ‘1’ (e.g., ‘on’).
The shift register 306 is arranged such that as the trim clock, CLKT, pulses, a logical ‘1’ is shifted at the output of MB1 toward MBN. As the logical ‘1’ shifts in the shift register 306 towards MBN, the value represented by MB1 . . . MBN changes (increases), and the trim controller (the trim controller 70 of FIG. 2) changes the control signal, VSC. Moreover, upon the output of the Nth first D flip-flop 310 providing an output of a logical ‘0’ to the NOT gate 318, the output D flip-flop 320 asserts (switches to logical ‘1’) the disable signal, DISABLE at the non-inverted output and the complement of the disable signal, DISABLE′, is de-asserted (switched to logical ‘0’) at the inverted output. Upon de-assertion of the DISABLE′ signal, the shift register 306 stops (since the output of the AND gate 304 is de-asserted (turned to a logical 0)). As illustrated in FIGS. 2-4, the disable signal, DISABLE, and the complement of the disable signal, DISABLE′, can be provided to the TOR module 124 and the oscillator 126.
By changing the values of MB1 . . . MBN (a shift register) in this manner, the trim controller is indirectly controlled by the SAR logic 300. More particularly, the trim controller changes the trim control signal, VSC, as the value of the memory (controlled by the shift register 306) changes at a resolution dictated by the number N. In some examples, the trim control signal, VSC, can have a voltage that is controlled at a resolution of about 1 microvolt (μV).
Upon the trim control signal, VSC, being set to a level that causes the output voltage, VOUT, to drop to about 0 V, the complement of the Schmidt trigger 302 output, OUT′, is asserted (e.g., a logical ‘1’ or high state). In this situation, the current value output at MB1 . . . MBN can be written into non-volatile memory (which can be one time programmable memory). In this manner, the memory bits (e.g., a memory bank) at the non-volatile memory can be written to (nearly) concurrently. Memory writing can be executed on each trimming action but memory writing is often executed for the whole memory bank after the trimming procedure ends. Data (information) that is to be written into memory bits is contained in the D flip-flops of shift register 306 as long as a supply voltage is on. Writing the bits in the memory bank together also allows an additional error-correction bits to be added to improve reliability of the op-amp, which can reduce the chances that a trim code (the value in the stored in the memory bits) changes even in situations where some of the memory bits are lost (e.g., due to static discharge).
Referring back to FIG. 2, as illustrated in FIG. 3 upon assertion of the disable signal, DISABLE, the TOR module 124 disables the trim mode signal, which causes the output stage 105 of the op-amp 104 to re-activate (e.g., recouple) the compensation capacitors of the op-amp 104. Thus, the op-amp IC chip 102 can be removed/decoupled from the trim voltage supply 108. Moreover, since the value in the non-volatile (and possibly one-time programmable) memory 130 remains constant, upon subsequent powering of the op-amp IC chip 102, the control voltage signal VSC is provided to trim the op-amp 104.
The trim controller 132 can be, for example, a current DAC, a resistive DAC and/or a transistor adjustor that adjusts operational parameters of the op-amp 104, which operational parameters affect the offset voltage of the op-amp 104.
By employment of the op-amp IC chip 102, no external measurements of operational parameters, such as input and/or output currents and/or voltages of the op-amp 102 are needed to trim the op-amp 104. Thus, the time and expense of measuring such operational parameters at external circuitry can be avoided. Furthermore, as illustrated in FIGS. 2-5, the components of the trimming module 106 are relatively small (e.g., IC chip compatible components). Thus, the inclusion of trimming module 106 does not significantly increase a die size or cost of the op-amp IC chip 102.
In view of the foregoing structural and functional features described above, example methods will be better appreciated with reference to FIG. 6. While, for purposes of simplicity of explanation, the example method of FIG. 6 is shown and described as executing serially, it is to be understood and appreciated that the present examples are not limited by the illustrated order, as some actions can in other examples occur in different orders, multiple times and/or concurrently from that shown and described herein. Moreover, it is not necessary that all described actions be performed to implement a method.
FIG. 6 illustrates a flowchart of an example method 400 for trimming an op-amp IC chip. The method 400 may be implemented, by the op-amp IC chip being trimmed, such as the op-amp IC chip 52 of FIG. 1 and/or the op-amp IC chip 102 of FIG. 2. At 410, a trimming module (e.g., the trimming module 56 of FIG. 1) integrated or coupled with the op-amp IC chip can trigger operation of the op-amp IC chip in a trim mode. The triggering can be based, for example on detection of a high voltage (e.g., 7 V) signal at a supply voltage of an op-amp (e.g., the op-amp 54 of FIG. 1). Additionally or alternatively, the triggering can based on a detection of a predetermined common mode voltage being applied to an inverting input and a non-inverting input of the op-amp. In trim mode, an inverted and a non-inverting input of the op-amp can be coupled to a common mode voltage.
At 420, the trimming module can adjust a trim control signal, VSC, that adjusts an output voltage, VOUT, of the op-amp IC chip. At 430, the output voltage, VOUT, can be measured by the trimming module. At 440, a determination can be made as to whether to accept the trim control signal, VSC. The determination may be based, for example on the measured value of the output voltage, VOUT, of the op-amp. For instance, if VOUT is about 0 V, the determination at 440 can be positive (e.g., YES) and the method 400 can proceed to 450. Conversely, if VOUT is not about 0 V (e.g., at a high voltage), the method 400 can return to 420.
In some examples, the SAR logic may cycle the memory and/or trim adjustment voltage through a series of value, levels or voltages until the offset voltage (detected at the output of the operational amplifier) falls below a threshold voltage (e.g., determined by a threshold voltage in the Schmidt trigger). When the offset value falls below the threshold voltage, the trim adjustment value, level, or voltage is stored in the memory of the op-amp IC for further use during normal operation (e.g., when not operating in trim mode) of the op-amp.
What have been described above are examples. It is, of course, not possible to describe every conceivable combination of components or methodologies, but one of ordinary skill in the art will recognize that many further combinations and permutations are possible. Accordingly, the disclosure is intended to embrace all such alterations, modifications and variations that fall within the scope of this application, including the appended claims. As used herein, the term “includes” means includes but not limited to, the term “including” means including but not limited to. The term “based on” means based at least in part on. Additionally, where the disclosure or claims recite “a,” “an,” “a first,” or “another” element, or the equivalent thereof, it should be interpreted to include one or more than one such element, neither requiring nor excluding two or more such elements.

Claims (13)

What is claimed is:
1. An integrated circuit (IC) chip comprising:
an operational amplifier with adjustable operational parameters; and
a trimming module configured to:
measure an output voltage of the operational amplifier in response to at least one of detecting that the operational amplifier has a positive supply voltage set to a level greater than a predetermined level and detecting a given common mode voltage at inverting and non-inverting inputs of the operational amplifier; and
adjust the operational parameters of the operational amplifier based on the output voltage to trim the operational amplifier;
wherein the trimming module comprises:
successive approximation (SAR) logic that controls a memory value corresponding to a control signal to adjust the operational parameters of the operational amplifier;
wherein the trimming module further comprises a trim controller that provides the control signal to the op-amp based on the memory value.
2. The IC chip of claim 1, wherein the trim controller comprises a current digital-to-analog converter (DAC) that adjusts an internal current of the operational amplifier to compensate for an offset voltage of the operational amplifier based on the memory value.
3. The IC chip of claim 1, wherein the trim controller comprises a resistive digital-to-analog converter (DAC) that adjusts an internal resistance of the operational amplifier based on the memory value to compensate for an offset voltage of the operational amplifier.
4. The IC chip of claim 1, wherein the trim controller adjusts a number of active internal transistor devices in a bank of internal transistor devices of the operational amplifier based on the memory value to compensate for an offset voltage of the operational amplifier.
5. An integrated circuit (IC) chip comprising:
an operational amplifier with adjustable operational parameters; and
a trimming module configured to:
measure an output voltage of the operational amplifier in response to at least one of detecting that the operational amplifier has a positive supply voltage set to a level greater than a predetermined level and detecting a given common mode voltage at inverting and non-inverting inputs of the operational amplifier; and
adjust the operational parameters of the operational amplifier based on the output voltage to trim the operational amplifier;
wherein the trimming module comprises:
successive approximation (SAR) logic that controls a memory value corresponding to a control signal to adjust the operational parameters of the operational amplifier;
wherein the SAR logic is further configured to detect a given memory value corresponding to a given control signal that causes the output voltage to drop to about 0 V with the predetermined common mode voltage applied to the inverting and the non-inverting input of the operational amplifier.
6. The IC chip of claim 5, wherein, in response to detecting the given memory value, the SAR logic writes the given memory value into one-time programmable, non-volatile memory and disables further trimming of the operational amplifier.
7. An integrated circuit (IC) chip comprising:
an operational amplifier with adjustable operational parameters; and
a trimming module configured to:
measure an output voltage of the operational amplifier in response to at least one of detecting that the operational amplifier has a positive supply voltage set to a level greater than a predetermined level and detecting a given common mode voltage at inverting and non-inverting inputs of the operational amplifier; and
adjust the operational parameters of the operational amplifier based on the output voltage to trim the operational amplifier;
wherein the trimming module comprises:
successive approximation (SAR) logic that controls a memory value corresponding to a control signal to adjust the operational parameters of the operational amplifier;
wherein the trimming module further comprises:
an oscillator that provides a clock signal at a given frequency that controls a rate of a change of the memory value.
8. The IC chip of claim 7, wherein the given frequency is about 1 kilohertz or less.
9. An integrated circuit (IC) chip comprising:
an operational amplifier with adjustable operational parameters; and
a trimming module configured to:
measure an output voltage of the operational amplifier in response to at least one of detecting that the operational amplifier has a positive supply voltage set to a level greater than a predetermined level and detecting a given common mode voltage at inverting and non-inverting inputs of the operational amplifier; and
adjust the operational parameters of the operational amplifier based on the output voltage to trim the operational amplifier;
wherein the trimming module further comprises a trim-on reset (TOR) module comprising:
a bandgap reference voltage circuit that provides a reference voltage signal at the predetermined voltage level; and
a comparator that compares the voltage level of the positive supply voltage with the bandgap reference voltage to determine whether the IC chip is operating in the trim mode.
10. The IC chip of claim 9, wherein the comparator outputs a signal indicating that the IC chip is operating in a trim mode in response to detecting that the positive supply voltage exceeds the bandgap reference voltage.
11. The IC chip of claim 10, wherein the comparator disables a compensation capacitor of the operational amplifier in further response to detecting that the positive supply voltage exceeds the predetermined voltage level.
12. A method comprising:
triggering, at a trimming module of an integrated circuit (IC) chip comprising an operational amplifier, the IC chip to operate in a trim mode based on at least one of a predetermined positive supply voltage of the operational amplifier and a predetermined common mode voltage applied at an inverting input and a non-inverting input of the operational amplifier;
adjusting, at the trimming module, a trim control signal that changes an operational parameter of the amplifier to trim the operational amplifier in response to the triggering;
measuring, at the trimming module, an output voltage of the operational amplifier based on the adjusting in response to the triggering;
determining, at the trimming module, whether the trim control signal is acceptable based on the measured output voltage; and
writing a value to a one-time programmable, non-volatile memory, wherein the value corresponds to the trim control signal that is acceptable.
13. The method of claim 12, wherein the determining is based on detecting that the measured output voltage is about 0 V for the given common mode voltage applied to the inverting and non-inverting inputs of the operational amplifier.
US15/394,399 2016-12-29 2016-12-29 Op-amp IC chip Active US10033331B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/394,399 US10033331B1 (en) 2016-12-29 2016-12-29 Op-amp IC chip
CN201711360486.XA CN108259013B (en) 2016-12-29 2017-12-15 Operational amplifier IC chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/394,399 US10033331B1 (en) 2016-12-29 2016-12-29 Op-amp IC chip

Publications (2)

Publication Number Publication Date
US20180191306A1 US20180191306A1 (en) 2018-07-05
US10033331B1 true US10033331B1 (en) 2018-07-24

Family

ID=62712141

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/394,399 Active US10033331B1 (en) 2016-12-29 2016-12-29 Op-amp IC chip

Country Status (2)

Country Link
US (1) US10033331B1 (en)
CN (1) CN108259013B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10855383B2 (en) * 2019-03-14 2020-12-01 Anokiwave, Inc. Calibration of active electronically steered antennas using trim bits and non-volatile memory
US11356167B1 (en) 2020-04-14 2022-06-07 Anokiwave, Inc. Selective calibration of signal processing integrated circuits in a phased array system
US11881825B2 (en) 2020-12-29 2024-01-23 Texas Instruments Incorporated Trimming operational amplifiers
US12068730B2 (en) 2021-05-04 2024-08-20 Texas Instruments Incorporated Trimming operational amplifiers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543402B2 (en) * 2017-10-19 2023-01-03 Analog Devices, Inc. Impedance measurement in diagnostic testing
JP2020088020A (en) * 2018-11-16 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 Detection circuit, drive circuit, and light-emitting device
US11996673B2 (en) * 2018-11-27 2024-05-28 Sony Semiconductor Solutions Corporation Drive device and light emitting device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061900A (en) * 1989-06-19 1991-10-29 Raytheon Company Self-zeroing amplifier
US5903504A (en) 1996-05-01 1999-05-11 Micron Technology, Inc. Op amp circuit with variable resistance and memory system including same
US6194962B1 (en) 1999-04-13 2001-02-27 Analog Devices, Inc. Adaptive operational amplifier offset voltage trimming system
WO2002001708A2 (en) 2000-06-26 2002-01-03 Microchip Technology Incorporated Digital trimming of op amp offset voltage and quiescent current using non-volatile memory
US6459335B1 (en) * 2000-09-29 2002-10-01 Microchip Technology Incorporated Auto-calibration circuit to minimize input offset voltage in an integrated circuit analog input device
US6573783B2 (en) * 2001-02-23 2003-06-03 National Semiconductor Corporation Method and apparatus for open-loop input offset adjustment in a differential amplifier
US6621284B2 (en) 2001-08-09 2003-09-16 Advanced Analogic Technologies, Inc. Post-package trimming of analog integrated circuits
US6853164B1 (en) 2002-04-30 2005-02-08 Fairchild Semiconductor Corporation Bandgap reference circuit
US6927624B2 (en) 2003-06-12 2005-08-09 Texas Instruments Incorporated Method and circuit for improving control of trimming procedure
US7265611B2 (en) * 2003-02-11 2007-09-04 Nxp B.V. Self zeroing for critical, continuous-time applications
US7459966B2 (en) * 2005-04-28 2008-12-02 Sharp Kabushiki Kaisha Offset adjusting circuit and operational amplifier circuit
US7671683B2 (en) * 2007-03-14 2010-03-02 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and method for adjusting a capacitance value of a phase compensating capacitor
US20130033320A1 (en) 2011-08-04 2013-02-07 Texas Advanced Optoelectronic Solutions, Inc. Circuit and method for dynamically controlling op-amp offset for photodetector applications
US8400337B1 (en) * 2010-01-27 2013-03-19 Link—A—Media Devices Corporation Offset cancellation by biasing the body of a transistor
US9716398B2 (en) * 2014-07-10 2017-07-25 Amtek Semiconductor Co., Ltd. Auto correction driving device and wireless charger driving system using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388521B1 (en) * 2000-09-22 2002-05-14 National Semiconductor Corporation MOS differential amplifier with offset compensation

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061900A (en) * 1989-06-19 1991-10-29 Raytheon Company Self-zeroing amplifier
US5903504A (en) 1996-05-01 1999-05-11 Micron Technology, Inc. Op amp circuit with variable resistance and memory system including same
US6194962B1 (en) 1999-04-13 2001-02-27 Analog Devices, Inc. Adaptive operational amplifier offset voltage trimming system
WO2002001708A2 (en) 2000-06-26 2002-01-03 Microchip Technology Incorporated Digital trimming of op amp offset voltage and quiescent current using non-volatile memory
US6424211B1 (en) 2000-06-26 2002-07-23 Microchip Technology Incorporated Digital trimming of OP AMP offset voltage and quiescent current using non-volatile memory
US6459335B1 (en) * 2000-09-29 2002-10-01 Microchip Technology Incorporated Auto-calibration circuit to minimize input offset voltage in an integrated circuit analog input device
US6573783B2 (en) * 2001-02-23 2003-06-03 National Semiconductor Corporation Method and apparatus for open-loop input offset adjustment in a differential amplifier
US6621284B2 (en) 2001-08-09 2003-09-16 Advanced Analogic Technologies, Inc. Post-package trimming of analog integrated circuits
US6853164B1 (en) 2002-04-30 2005-02-08 Fairchild Semiconductor Corporation Bandgap reference circuit
US7265611B2 (en) * 2003-02-11 2007-09-04 Nxp B.V. Self zeroing for critical, continuous-time applications
US6927624B2 (en) 2003-06-12 2005-08-09 Texas Instruments Incorporated Method and circuit for improving control of trimming procedure
US7459966B2 (en) * 2005-04-28 2008-12-02 Sharp Kabushiki Kaisha Offset adjusting circuit and operational amplifier circuit
US7671683B2 (en) * 2007-03-14 2010-03-02 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and method for adjusting a capacitance value of a phase compensating capacitor
US8400337B1 (en) * 2010-01-27 2013-03-19 Link—A—Media Devices Corporation Offset cancellation by biasing the body of a transistor
US20130033320A1 (en) 2011-08-04 2013-02-07 Texas Advanced Optoelectronic Solutions, Inc. Circuit and method for dynamically controlling op-amp offset for photodetector applications
US9716398B2 (en) * 2014-07-10 2017-07-25 Amtek Semiconductor Co., Ltd. Auto correction driving device and wireless charger driving system using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10855383B2 (en) * 2019-03-14 2020-12-01 Anokiwave, Inc. Calibration of active electronically steered antennas using trim bits and non-volatile memory
US11356167B1 (en) 2020-04-14 2022-06-07 Anokiwave, Inc. Selective calibration of signal processing integrated circuits in a phased array system
US11881825B2 (en) 2020-12-29 2024-01-23 Texas Instruments Incorporated Trimming operational amplifiers
US12068730B2 (en) 2021-05-04 2024-08-20 Texas Instruments Incorporated Trimming operational amplifiers

Also Published As

Publication number Publication date
US20180191306A1 (en) 2018-07-05
CN108259013A (en) 2018-07-06
CN108259013B (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US10033331B1 (en) Op-amp IC chip
US10365318B2 (en) Testing and setting performance parameters in a semiconductor device and method therefor
US8964444B2 (en) One-time programmable memory, integrated circuit including same, and method therefor
US8248095B2 (en) Compensating for aging in integrated circuits
US9535473B2 (en) Compensating for aging in integrated circuits
US20070040595A1 (en) Semiconductor integrated circuit
US8299825B2 (en) Electronic age detection circuit
US7158412B2 (en) On-chip EE-PROM programming waveform generation
US9383794B2 (en) Integrated circuit with multi-voltage input/output (I/O) cells
KR100845773B1 (en) Circuit for Measuring Power-up Signal Trip Point of Semiconductor Memory Apparatus And Method of measuring Power-up Signal Trip Point Level Using The Same
US9312850B2 (en) Testable power-on-reset circuit
US20190086355A1 (en) Semiconductor apparatus including a capacitance measuring circuit
KR20210072526A (en) Circuit for testing monitoring circuit and operating method thereof
US10075066B2 (en) Internal voltage generation circuit and system including the same
US6654300B2 (en) Semiconductor memory device having internal circuit screening function
JP2002015599A (en) Semiconductor memory
US7898270B2 (en) Circuit for testing internal voltage of semiconductor memory apparatus
US20240305275A1 (en) Impedance calibration circuit and method
US10326404B2 (en) Low power time amplifier and operating method thereof
US9435851B2 (en) Semiconductor apparatus
US6628156B2 (en) Integrated circuit having a timing circuit, and method for adjustment of an output signal from the timing circuit
JP2009264833A (en) Test circuit and method for schmitt trigger buffer
KR20060077105A (en) Charge pump device in flash memory
KR20090108374A (en) Control circuit for semiconductor memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IVANOV, VADIM VALERIEVICH;DOORENBOS, JERRY L.;REEL/FRAME:040966/0131

Effective date: 20170112

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4