US10014411B2 - Modulating germanium percentage in MOS devices - Google Patents

Modulating germanium percentage in MOS devices Download PDF

Info

Publication number
US10014411B2
US10014411B2 US15/152,260 US201615152260A US10014411B2 US 10014411 B2 US10014411 B2 US 10014411B2 US 201615152260 A US201615152260 A US 201615152260A US 10014411 B2 US10014411 B2 US 10014411B2
Authority
US
United States
Prior art keywords
region
silicon germanium
germanium
percentage
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/152,260
Other versions
US20160254381A1 (en
Inventor
Tsz-Mei Kwok
Kun-Mu Li
Hsueh-Chang Sung
Chii-Horng Li
Tze-Liang Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US15/152,260 priority Critical patent/US10014411B2/en
Publication of US20160254381A1 publication Critical patent/US20160254381A1/en
Application granted granted Critical
Publication of US10014411B2 publication Critical patent/US10014411B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/721Insulated-gate field-effect transistors [IGFET] having a gate-to-body connection, i.e. bulk dynamic threshold voltage IGFET 
    • H01L29/7848
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • H01L21/32053Deposition of metallic or metal-silicide layers of metal-silicide layers
    • H01L21/823425
    • H01L27/088
    • H01L29/0847
    • H01L29/165
    • H01L29/167
    • H01L29/401
    • H01L29/41783
    • H01L29/45
    • H01L29/456
    • H01L29/66507
    • H01L29/66545
    • H01L29/6659
    • H01L29/66628
    • H01L29/66636
    • H01L29/7833
    • H01L29/7834
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0212Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation
    • H10D30/0213Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation providing different silicide thicknesses on gate electrodes and on source regions or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0223Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
    • H10D30/0227Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/027Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
    • H10D30/0275Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs forming single crystalline semiconductor source or drain regions resulting in recessed gates, e.g. forming raised source or drain regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • H10D30/608Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs  having non-planar bodies, e.g. having recessed gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/611Insulated-gate field-effect transistors [IGFET] having multiple independently-addressable gate electrodes influencing the same channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/791Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
    • H10D30/797Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/01Manufacture or treatment
    • H10D62/021Forming source or drain recesses by etching e.g. recessing by etching and then refilling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/822Heterojunctions comprising only Group IV materials heterojunctions, e.g. Si/Ge heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/834Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge further characterised by the dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/258Source or drain electrodes for field-effect devices characterised by the relative positions of the source or drain electrodes with respect to the gate electrode
    • H10D64/259Source or drain electrodes being self-aligned with the gate electrode and having bottom surfaces higher than the interface between the channel and the gate dielectric
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/62Electrodes ohmically coupled to a semiconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/013Manufacturing their source or drain regions, e.g. silicided source or drain regions
    • H10D84/0133Manufacturing common source or drain regions between multiple IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L29/665
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0212Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned silicidation

Definitions

  • MOS devices are key components of integrated circuits.
  • the performance of MOS devices affects the performance of the entire integrated circuits in which the MOS devices are located. Therefore, methods for improving the performance of the MOS devices have been studied.
  • FIGS. 1 through 10 are cross-sectional views of intermediate stages in the manufacturing of a Metal-Oxide Semiconductor (MOS) device in accordance with some exemplary embodiments;
  • MOS Metal-Oxide Semiconductor
  • FIG. 11 schematically illustrates exemplary profiles of germanium percentages in the epitaxy regions of the MOS device in accordance with some embodiments.
  • FIG. 12 schematically illustrates exemplary profiles of germanium percentages and the amount of silicide metal in several regions of the MOS device in accordance with alternative embodiments.
  • MOS Metal-Oxide Semiconductor
  • shortening the length of the channel region reduces a source-to-drain resistance of the MOS device, which, assuming other parameters are maintained relatively constant, may allow an increase in current flow between the source and drain when a sufficient voltage is applied to the gate of the MOS device.
  • stress may be introduced in the channel region of a MOS device to improve carrier mobility.
  • NMOS n-type MOS
  • PMOS p-type MOS
  • An available method for applying compressive stress to the channel regions of PMOS devices is growing SiGe stressors in the source and drain regions.
  • Such a method typically includes the steps of forming a gate stack on a semiconductor substrate, forming spacers on sidewalls of the gate stack, forming recesses in the silicon substrate along gate spacers, epitaxially growing SiGe stressors in the recesses, and annealing. Since SiGe has a lattice constant greater than that of silicon, it applies a compressive stress to the channel region, which is located between a source SiGe stressor and a drain SiGe stressor.
  • MOS Metal-Oxide-Semiconductor
  • FIG. 1 illustrates substrate 20 , which is a portion of wafer 10 .
  • Substrate 20 may be a bulk semiconductor substrate such as a silicon substrate, or may have a composite structure such as a Silicon-On-Insulator (SOI) structure.
  • SOI Silicon-On-Insulator
  • other semiconductor materials that include group III, group IV, and/or group V elements may also be comprised in substrate 20 , which semiconductor materials may include silicon germanium, silicon carbon, and/or III-V compound semiconductor materials.
  • Gate stacks 22 are formed over substrate 20 , and include gate dielectrics 24 and gate electrodes 26 .
  • Gate dielectrics 24 may comprise silicon oxide and/or a high-k material having a high k value, for example, higher than about 7.
  • Gate electrodes 26 may include commonly used conductive materials such as doped polysilicon, metals, metal silicides, metal nitrides, and combinations thereof.
  • Gate stacks 22 may also include hard masks 28 , which may comprise silicon nitride, for example, although other materials such as silicon carbide, silicon oxynitride, and the like may also be used.
  • LDD regions 30 are formed, for example, by implanting a p-type impurity such as boron and/or indium into substrate 20 .
  • Gate stacks 22 and hard masks 28 act as implantation masks so that the inner edges of LDD regions 30 are substantially aligned with the edges of gate stacks 22 , respectively.
  • the LDD implantation may be performed using energies in a range between about 1 keV and about 10 keV, and a dosage in a range between about 1 ⁇ 10 13 /cm 2 and about 1 ⁇ 10 16 /cm 2 . It is appreciated, however, that the values recited throughout the description are merely examples, and may be changed to different values.
  • the LDD implantation may be tilted or vertical, with the tilt angle in a range between about 0 degree and about 30 degrees.
  • pocket regions 32 may also be formed, for example, by implanting an n-type impurity such as arsenic, phosphorous, or the like into substrate 20 .
  • the pocket implantation may be tilted, with the tilt angle greater than the tilt angle of the LDD implantation.
  • the tilt angle of the pocket implantation is in a range between about 15 degree and about 45 degrees.
  • pocket regions 32 are not illustrated in subsequent drawings.
  • gate spacers 34 are formed on the sidewalls of gate dielectrics 24 and gate electrodes 26 .
  • each of gate spacers 34 includes a silicon oxide layer (not shown) and a silicon nitride layer over the silicon oxide layer, wherein the silicon oxide layer may have a thickness in a range between about 15 ⁇ and about 50 ⁇ , and the thickness of the silicon nitride layer may be in a range between about 50 ⁇ and about 200 ⁇ .
  • gate spacers 34 include one or more layers, each comprising silicon oxide, silicon nitride, silicon oxynitride, and/or other dielectric materials.
  • the available formation methods include Plasma Enhanced Chemical Vapor Deposition (PECVD), Low-Pressure Chemical Vapor Deposition (LPCVD), Sub-Atmospheric Chemical Vapor Deposition (SACVD), and other deposition methods.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • LPCVD Low-Pressure Chemical Vapor Deposition
  • SACVD Sub
  • an isotropic etch may be performed to form openings 36 in substrate 20 .
  • the isotropic etch may be a dry etch, wherein the etching gas may be selected from CF 4 , Cl 2 , NF 3 , SF 6 , and combinations thereof.
  • Depth D 1 of opening 36 may be in a range between about 150 ⁇ and about 500 ⁇ , for example.
  • the isotropic etch step in FIG. 3 is skipped, and the step in FIG. 4 is formed to form openings 36 as shown in FIG. 4 .
  • a wet etch is performed to expand openings 36 .
  • the wet etching may be performed, for example, using Tetra-Methyl Ammonium Hydroxide (TMAH), a potassium hydroxide (KOH) solution, or the like.
  • TMAH Tetra-Methyl Ammonium Hydroxide
  • KOH potassium hydroxide
  • the TMAH solution has a concentration in a range between about 1 percent and about 30 percent.
  • facets may be formed in openings 36 , which facets include (111) planes of substrate 20 .
  • depth D 2 of openings 36 may be in a range between about 300 ⁇ and about 800 ⁇ , for example.
  • a pre-clean may be performed, for example, using an HF-based gas or a SiCoNi-based gas.
  • the pre-clean may remove any undesirable silicon oxide that is formed as a result of the nature oxidation of the exposed surfaces in openings 36 .
  • FIG. 5 illustrates the formation of epitaxy regions 38 .
  • a semiconductor material such as silicon germanium (SiGe) is epitaxially grown in openings 36 ( FIG. 4 ) through Selective Epitaxial Growth (SEG), forming epitaxy region(s) 38 .
  • SEG Selective Epitaxial Growth
  • epitaxy regions 38 are also referred to as SiGe regions 38 .
  • the process gases may include H 2 , N 2 , dichloro-silane (DCS), SiH 4 , GeH 4 , and/or the like.
  • the temperature of wafer 10 during the epitaxy may be in a range between about 500° C. and about 900° C.
  • an etching gas is added to promote the selective growth on the exposed surfaces of substrate 20 , but not on dielectrics such as gate spacers 34 and hard masks 28 .
  • the pressure of the process gases may be in a range between about 10 torr and about 200 torr.
  • desired p-type impurities may be doped while the growth proceeds.
  • B 2 H 6 may be included in the process gases.
  • the impurity concentration of the p-type impurities in epitaxy regions 38 is between about 5E18/cm 3 and about 5E21/cm 3 .
  • no p-type impurity is in-situ doped, or substantially no p-type impurity (for example, with a p-type impurity concentration lower than about 10 14 /cm 3 ) is doped.
  • the source and drain regions of the respective MOS device are formed in a subsequent step through implantation.
  • Epitaxy regions 38 may have a first germanium atomic percentage in a range between about 30 percent and about 60 percent, for example, although different germanium percentages may also be used.
  • the top surfaces of epitaxy regions 38 are level with or higher than the interface between substrate 20 and gate dielectrics 24 .
  • epitaxy layers 42 are grown over epitaxy regions 38 through an epitaxy process.
  • epitaxy layers 42 are SiGe layers, which have a germanium atomic percentage higher than the germanium atomic percentage in epitaxy regions 38 .
  • epitaxy layers 42 have a second germanium atomic percentage in a range between about 35 percent and about 80 percent.
  • epitaxy layers 42 are also referred to as piled-up SiGe regions due to their high germanium percentage. The difference between the germanium atomic percentage of piled-up SiGe regions 42 and SiGe regions 38 may also be greater than about 5 percent. The difference may also be in the range between about 5 percent and about 20 percent.
  • the process conditions for forming piled-up SiGe regions 42 may be similar to the process conditions for forming epitaxy regions 38 , except that the ratios of silicon-containing gases to germanium-containing gases are adjusted differently.
  • Epitaxy regions 38 and 42 in combination form parts of the source and drain regions (and also the source or drain stressors) of a MOS device, which also includes one gate stack 22 as its gate.
  • Piled-up SiGe regions 42 have a small thickness T 1 , which may be smaller than about 10 nm. Thickness T 1 may also be between about 1 nm and about 10 nm in some embodiments.
  • a p-type impurity may be in-situ doped with the proceeding of the epitaxy.
  • no p-type impurity is in-situ doped, or substantially no p-type impurity (for example, with a p-type impurity concentration lower than about 10 14 /cm 3 ) is doped.
  • the germanium percentage in each of epitaxy regions 38 and 42 , is substantially uniform. In alternative embodiments, either one or both of epitaxy regions 38 and 42 has a gradually and continuously changed germanium percentage. During the respective epitaxy, the flow rate of the germanium-containing precursor (such as GeH 4 ) may be gradually and continuously changed. In these embodiments, in the layer in which the germanium percentage gradually changes, the lower portions of the layer have germanium percentages lower than the germanium percentages of the upper layers.
  • capping layers 44 are formed over piled-up SiGe regions 42 through epitaxy, as shown in FIG. 7 .
  • Capping layers 44 may have a composition (including the elements contained therein and the percentages of the elements) different from the composition of piled-up SiGe regions 42 .
  • Capping layers 44 may be pure silicon layers with no germanium comprised therein, or substantially pure silicon layers with, for example, less than 2 percent, or 1 percent, germanium. Accordingly, capping layers 44 are alternatively referred to as silicon caps throughout the description.
  • Capping layer 44 may be in-situ doped with p-type impurities with the proceeding of the epitaxy, or not in-situ doped.
  • a p-type impurity implantation may be performed to form source and drain regions for the respective MOS device.
  • FIG. 11 schematically illustrates the germanium profile (line 64 ) in the illustrated regions in FIG. 7 , wherein the profile represents the germanium percentage along the path of arrow 62 in FIG. 7 .
  • the respective regions 38 , 42 , and 44 are also illustrated to show the correspondence between the germanium percentages and the respective regions.
  • the X-axis represents the depth measured starting from the top surface of capping layers 44 ( FIG. 7 ).
  • the Y-axis indicates the germanium percentage. Since FIG. 11 is schematic, the values of the X-axis and the Y-axis are not marked. As shown in FIG. 11 , the germanium percentage in capping layers 44 is very low, and may be equal to zero percent.
  • the germanium percentage in piled-up SiGe regions 42 is significantly higher than that in capping layers 44 and the underlying epitaxy regions 38 .
  • the germanium percentage in piled-up SiGe regions 42 is higher than the germanium percentage in epitaxy layer 38 by a difference ⁇ P, which may be in the range from about 5 percent to about 20 percent.
  • epitaxy regions 42 have thickness T 1
  • capping layers 44 have thickness T 2 greater than thickness T 1
  • Thickness T 2 may also be significantly greater than thickness T 1 , for example, with ratio T 2 /T 1 being greater than about 2.
  • Ratio T 2 /T 1 may also be in the range between about 2 and about 10 in some exemplary embodiments. Maintaining thickness T 2 greater than thickness T 1 is beneficial for reducing the morphology degradation in the resulting source and drain silicide regions.
  • thickness T 2 is equal to or smaller than thickness T 1 , due to the high germanium percentage, the morphology degradation in the resulting silicide region caused by the silicidation of piled-up regions 42 is severe, and may cause segregation in the silicide region, and in turn cause reliability problems.
  • FIG. 8 illustrates an exemplary structure including the replacement gates.
  • the formation process may include forming Inter-Layer Dielectric (ILD) 46 , performing a CMP to level the top surfaces of ILD 46 with the top surface of gate electrodes 26 or hard mask 28 (if any), and removing the dummy gates.
  • ILD Inter-Layer Dielectric
  • a gate dielectric layer and a gate electrode layer may then be formed to fill the openings left by the removed dummy gates, followed by a CMP to remove excess portions of the gate dielectric layer and the gate electrode layer.
  • the remaining replacement gates include gate dielectrics 24 ′ and gate electrodes 26 ′.
  • Gate dielectrics 24 ′ may comprise a high-k dielectric material with a k value greater than about 7.0, for example, and gate electrodes 26 ′ may comprise a metal or a metal alloy.
  • ILD 46 may be formed of a dielectric material such as Phospho-Silicate Glass (PSG), Boro-Silicate Glass (BSG), Boron-Doped Phospho-Silicate Glass (BPSG), or the like.
  • contact openings 48 are formed, exposing underlying capping layers 44 .
  • FIG. 9 illustrates the formation of source/drain silicide regions 52 .
  • Silicide regions 52 may be formed by depositing a thin layer (not shown) of a silicide metal, such as titanium, cobalt, nickel, tungsten, or the like, over the devices, including the exposed surfaces of capping layers 44 . Wafer 10 is then heated, which causes the silicide reaction to occur wherever the metal is in contact with silicon. As a result of the reaction, a layer of metal silicide is formed between silicon/SiGe and the metal. The un-reacted metal is selectively removed through the use of an etchant that attacks metal but does not attack silicide.
  • a silicide metal such as titanium, cobalt, nickel, tungsten, or the like
  • source/drain silicide regions 52 extend into and penetrate through capping layers 44 .
  • Source/drain silicide regions 52 may be in contact with piled-up SiGe regions 42 .
  • a top layer of each of piled-up SiGe regions 42 is silicided, while a bottom layer of each of piled-up SiGe regions 42 remains un-silicided.
  • the bottom layers of piled-up SiGe regions 42 have top surfaces contacting the bottom surfaces of source/drain silicide regions 52 , and bottom surfaces contacting the top surfaces of epitaxy regions 38 .
  • the top layers of epitaxy regions 42 may be level with, and on a side of, the respective adjacent silicide regions 52 .
  • FIG. 10 illustrates the formation of source/drain contact plugs 54 , which are formed by filling a conductive material such as tungsten, copper, aluminum, titanium, cobalt, silicon, germanium, and/or the like, into openings 48 ( FIG. 9 ), and performing a CMP to level the top surface of contact plugs 54 with the top surface of ILD 46 .
  • the formation of MOS transistor 60 is thus finished.
  • MOS transistor 60 includes epitaxy regions 38 , 42 , and possibly the remaining portions of capping layers 44 as the source and drain regions.
  • FIG. 12 schematically illustrates the germanium profile (line 64 ) in the source and drain regions and source/drain silicide regions of MOS device 60 .
  • Line 64 represents the germanium percentage along the path of arrow 62 in FIG. 10 .
  • the respective regions 38 , 42 , and 44 / 52 in FIG. 10 are also illustrated in FIG. 12 to show the correspondence between the germanium percentages and the respective regions.
  • the X-axis illustrates the depth measured starting from the top surface of silicide regions 52 ( FIG. 10 ).
  • the Y-axis indicates the schematic germanium percentage. Since FIG. 12 is schematic, the values of the X-axis and the Y-axis are not marked. As shown in FIG. 12 , the germanium percentage (line 64 ) in the top portion of silicide regions 52 is very low.
  • FIG. 12 also schematically illustrates the metal profile (line 66 ) in the source and drain regions of MOS device 60 , wherein line 66 reflects the relative amount of the silicide metal (for example, nickel or cobalt).
  • silicide regions 52 is formed by siliciding capping layers 44 , and substantially no piled-up SiGe regions 42 are silicided. Accordingly, in FIG. 12 , the amount of silicide metal significantly reduces going into piled-up SiGe regions 42 . In alternative embodiments, the amount of silicide metal may reduce at an intermediate level of piled-up SiGe regions 42 .
  • source/drain silicide regions are formed to have bottom surfaces contacting the underlying piled-up SiGe layers, which have a high germanium percent.
  • the Schottky barrier height between the source/drain silicide regions and the respective underlying piled-up SiGe layers is reduced compared to the barrier height between the source/drain silicide regions and a SiGe layer with a lower germanium percentage.
  • the contact resistance of the source/drain contact is thus reduced.
  • the increased germanium percentage causes the morphology in the resulting silicide to degrade, which may cause metal segregation in the silicide region.
  • the thickness of the pile-up SiGe layer that has the high germanium percentage is very small, and the respective silicide formed due to the silicidation of the pile-up SiGe layer is very thin, and hence the degradation in morphology has minimized effect on the quality of the source/drain silicide.
  • an integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack.
  • a first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage.
  • a second silicon germanium region is overlying the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage.
  • a metal silicide region is over and in contact with the second silicon germanium region.
  • an integrated circuit structure includes a semiconductor substrate, and a gate stack over the semiconductor substrate, wherein the gate stack is comprised in a MOS device.
  • a source/drain region of the MOS device extends into the semiconductor substrate.
  • the source/drain region includes a first silicon germanium region, which has a first germanium percentage.
  • the source/drain region further includes a second silicon germanium region over the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage greater than the first germanium percentage.
  • a silicon cap is over and contacting the second silicon germanium region.
  • a metal silicide region penetrates through the silicon cap to contact the second silicon germanium region.
  • a method includes forming a gate stack over a semiconductor substrate, and forming an opening extending into the semiconductor substrate, wherein the opening is on a side of the gate stack.
  • a first epitaxy is performed to grow a first silicon germanium region in the opening, wherein the first silicon germanium region has a first germanium percentage.
  • a second epitaxy is performed to grow a second silicon germanium region over the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage.
  • the method further includes forming silicon cap substantially free from germanium over and contacting the second silicon germanium region.
  • embodiments described herein provide for an integrated circuit structure comprising: a semiconductor substrate; a recess in the semiconductor substrate; a first silicon germanium region substantially filling the opening and having a topmost surface extending above a topmost surface of the substrate, wherein the first silicon germanium region has a first germanium percentage; a second silicon germanium region on the topmost surface of the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage; and a metal silicide above and extending partly into the second silicon germanium region.
  • inventions described herein provide for an integrated circuit a semiconductor substrate; a gate stack over the semiconductor substrate; and a source region adjacent a first side of the gate stack.
  • the source region includes: a first silicon germanium region having a first germanium percentage, the first silicon germanium region extending into the semiconductor substrate and having a topmost surface extending to at least a topmost surface of the semiconductor substrate; a second silicon germanium region on the first silicon germanium region, the second silicon germanium region having a second germanium percentage higher than the first germanium percentage; and a metal silicide above and extending partly into the second silicon germanium region.
  • embodiments described herein provide for a method of forming an integrated circuit comprising: forming a dummy gate stack; etching a source recess and a drain recess adjacent respective sides of the dummy gate stack; epitaxially growing a first silicon germanium layer in the source recess and in the drain recess, the first silicon germanium layer having a first germanium percentage; epitaxially growing a second silicon germanium layer on the first silicon germanium layer in the source recess and the drain recess, the second silicon germanium layer having a second germanium percentage higher than the first germanium percentage; forming a cap layer over the second silicon germanium layer; forming a metal over a portion of the cap layer; and siliciding the cap layer and a portion of the second silicon germanium layer to form a silicide region over the source recess and over the drain recess, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

An integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is overlying the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage. A metal silicide region is over and in contact with the second silicon germanium region.

Description

This application is a continuation of U.S. patent application Ser. No. 14/691,435, filed on Apr. 20, 2015, and entitled “Modulating Germanium Percentage in MOS Devices,” which claims the benefit to and is a continuation of U.S. patent application Ser. No. 13/963,855, filed on Aug. 9, 2013, now U.S. Pat. No. 9,012,964 issued Apr. 21, 2015, entitled “Modulating Germanium Percentage in MOS Devices” which applications are hereby incorporated herein by reference.
BACKGROUND
Metal-Oxide Semiconductor (MOS) devices are key components of integrated circuits. The performance of MOS devices affects the performance of the entire integrated circuits in which the MOS devices are located. Therefore, methods for improving the performance of the MOS devices have been studied.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
FIGS. 1 through 10 are cross-sectional views of intermediate stages in the manufacturing of a Metal-Oxide Semiconductor (MOS) device in accordance with some exemplary embodiments;
FIG. 11 schematically illustrates exemplary profiles of germanium percentages in the epitaxy regions of the MOS device in accordance with some embodiments; and
FIG. 12 schematically illustrates exemplary profiles of germanium percentages and the amount of silicide metal in several regions of the MOS device in accordance with alternative embodiments.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are illustrative, and do not limit the scope of the disclosure.
Reduction of the size and the inherent features of semiconductor devices (e.g., Metal-Oxide Semiconductor (MOS) devices) has enabled continued improvement in speed, performance, density, and cost per unit function of integrated circuits over the past few decades. In accordance with a design of the MOS devices and one of the inherent characteristics thereof, modulating the length of a channel region underlying a gate between a source and drain of a MOS device alters a resistance associated with the channel region, thereby affecting a performance of the MOS device. More specifically, shortening the length of the channel region reduces a source-to-drain resistance of the MOS device, which, assuming other parameters are maintained relatively constant, may allow an increase in current flow between the source and drain when a sufficient voltage is applied to the gate of the MOS device.
To further enhance the performance of MOS devices, stress may be introduced in the channel region of a MOS device to improve carrier mobility. Generally, it is desirable to induce a tensile stress in the channel region of an n-type MOS (“NMOS”) device in a source-to-drain direction, and to induce a compressive stress in the channel region of a p-type MOS (“PMOS”) device in a source-to-drain direction.
An available method for applying compressive stress to the channel regions of PMOS devices is growing SiGe stressors in the source and drain regions. Such a method typically includes the steps of forming a gate stack on a semiconductor substrate, forming spacers on sidewalls of the gate stack, forming recesses in the silicon substrate along gate spacers, epitaxially growing SiGe stressors in the recesses, and annealing. Since SiGe has a lattice constant greater than that of silicon, it applies a compressive stress to the channel region, which is located between a source SiGe stressor and a drain SiGe stressor.
A process for forming a Metal-Oxide-Semiconductor (MOS) device with stressors is provided in accordance with various exemplary embodiments. The intermediate stages of forming the MOS device are illustrated. The variations of the embodiments are discussed. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
FIG. 1 illustrates substrate 20, which is a portion of wafer 10. Substrate 20 may be a bulk semiconductor substrate such as a silicon substrate, or may have a composite structure such as a Silicon-On-Insulator (SOI) structure. Alternatively, other semiconductor materials that include group III, group IV, and/or group V elements may also be comprised in substrate 20, which semiconductor materials may include silicon germanium, silicon carbon, and/or III-V compound semiconductor materials.
Gate stacks 22 are formed over substrate 20, and include gate dielectrics 24 and gate electrodes 26. Gate dielectrics 24 may comprise silicon oxide and/or a high-k material having a high k value, for example, higher than about 7. Gate electrodes 26 may include commonly used conductive materials such as doped polysilicon, metals, metal silicides, metal nitrides, and combinations thereof. Gate stacks 22 may also include hard masks 28, which may comprise silicon nitride, for example, although other materials such as silicon carbide, silicon oxynitride, and the like may also be used.
As shown in FIG. 2, Lightly Doped Drain/source (LDD) regions 30 are formed, for example, by implanting a p-type impurity such as boron and/or indium into substrate 20. Gate stacks 22 and hard masks 28 act as implantation masks so that the inner edges of LDD regions 30 are substantially aligned with the edges of gate stacks 22, respectively. The LDD implantation may be performed using energies in a range between about 1 keV and about 10 keV, and a dosage in a range between about 1×1013/cm2 and about 1×1016/cm2. It is appreciated, however, that the values recited throughout the description are merely examples, and may be changed to different values. The LDD implantation may be tilted or vertical, with the tilt angle in a range between about 0 degree and about 30 degrees. In addition, pocket regions 32 may also be formed, for example, by implanting an n-type impurity such as arsenic, phosphorous, or the like into substrate 20. The pocket implantation may be tilted, with the tilt angle greater than the tilt angle of the LDD implantation. In some embodiments, the tilt angle of the pocket implantation is in a range between about 15 degree and about 45 degrees. For clarity, pocket regions 32 are not illustrated in subsequent drawings.
Referring to FIG. 3, gate spacers 34 are formed on the sidewalls of gate dielectrics 24 and gate electrodes 26. In some embodiments, each of gate spacers 34 includes a silicon oxide layer (not shown) and a silicon nitride layer over the silicon oxide layer, wherein the silicon oxide layer may have a thickness in a range between about 15 Å and about 50 Å, and the thickness of the silicon nitride layer may be in a range between about 50 Å and about 200 Å. In alternative embodiments, gate spacers 34 include one or more layers, each comprising silicon oxide, silicon nitride, silicon oxynitride, and/or other dielectric materials. The available formation methods include Plasma Enhanced Chemical Vapor Deposition (PECVD), Low-Pressure Chemical Vapor Deposition (LPCVD), Sub-Atmospheric Chemical Vapor Deposition (SACVD), and other deposition methods.
As also shown in FIG. 3, in accordance with some embodiments, an isotropic etch may be performed to form openings 36 in substrate 20. The isotropic etch may be a dry etch, wherein the etching gas may be selected from CF4, Cl2, NF3, SF6, and combinations thereof. Depth D1 of opening 36 may be in a range between about 150 Å and about 500 Å, for example. In alternative embodiments, the isotropic etch step in FIG. 3 is skipped, and the step in FIG. 4 is formed to form openings 36 as shown in FIG. 4.
Next, as shown in FIG. 4, a wet etch is performed to expand openings 36, The wet etching may be performed, for example, using Tetra-Methyl Ammonium Hydroxide (TMAH), a potassium hydroxide (KOH) solution, or the like. In some exemplary embodiments, the TMAH solution has a concentration in a range between about 1 percent and about 30 percent. After the wet etching, facets may be formed in openings 36, which facets include (111) planes of substrate 20. In some exemplary embodiments, after the wet etching, depth D2 of openings 36 may be in a range between about 300 Å and about 800 Å, for example.
A pre-clean may be performed, for example, using an HF-based gas or a SiCoNi-based gas. The pre-clean may remove any undesirable silicon oxide that is formed as a result of the nature oxidation of the exposed surfaces in openings 36.
FIG. 5 illustrates the formation of epitaxy regions 38. During the epitaxy, a semiconductor material such as silicon germanium (SiGe) is epitaxially grown in openings 36 (FIG. 4) through Selective Epitaxial Growth (SEG), forming epitaxy region(s) 38. Hence, throughout the description, epitaxy regions 38 are also referred to as SiGe regions 38. The process gases may include H2, N2, dichloro-silane (DCS), SiH4, GeH4, and/or the like. The temperature of wafer 10 during the epitaxy may be in a range between about 500° C. and about 900° C. In some embodiments, an etching gas is added to promote the selective growth on the exposed surfaces of substrate 20, but not on dielectrics such as gate spacers 34 and hard masks 28. The pressure of the process gases may be in a range between about 10 torr and about 200 torr.
During the epitaxy, desired p-type impurities may be doped while the growth proceeds. For example, when boron is to be doped, B2H6 may be included in the process gases. In some embodiments, the impurity concentration of the p-type impurities in epitaxy regions 38 is between about 5E18/cm3 and about 5E21/cm3. In alternative embodiments, during the epitaxy of SiGe regions 38, no p-type impurity is in-situ doped, or substantially no p-type impurity (for example, with a p-type impurity concentration lower than about 1014/cm3) is doped. In these embodiments, the source and drain regions of the respective MOS device are formed in a subsequent step through implantation. Epitaxy regions 38 may have a first germanium atomic percentage in a range between about 30 percent and about 60 percent, for example, although different germanium percentages may also be used. In some embodiments, the top surfaces of epitaxy regions 38 are level with or higher than the interface between substrate 20 and gate dielectrics 24.
Referring to FIG. 6, epitaxy layers 42 are grown over epitaxy regions 38 through an epitaxy process. In some embodiments, epitaxy layers 42 are SiGe layers, which have a germanium atomic percentage higher than the germanium atomic percentage in epitaxy regions 38. In some embodiments, epitaxy layers 42 have a second germanium atomic percentage in a range between about 35 percent and about 80 percent. Throughout the description, epitaxy layers 42 are also referred to as piled-up SiGe regions due to their high germanium percentage. The difference between the germanium atomic percentage of piled-up SiGe regions 42 and SiGe regions 38 may also be greater than about 5 percent. The difference may also be in the range between about 5 percent and about 20 percent. The process conditions for forming piled-up SiGe regions 42 may be similar to the process conditions for forming epitaxy regions 38, except that the ratios of silicon-containing gases to germanium-containing gases are adjusted differently. Epitaxy regions 38 and 42 in combination form parts of the source and drain regions (and also the source or drain stressors) of a MOS device, which also includes one gate stack 22 as its gate. Piled-up SiGe regions 42 have a small thickness T1, which may be smaller than about 10 nm. Thickness T1 may also be between about 1 nm and about 10 nm in some embodiments.
Furthermore, during the epitaxy for forming piled-up SiGe regions 42, a p-type impurity may be in-situ doped with the proceeding of the epitaxy. In alternative embodiments, during the epitaxy of SiGe layers 42, no p-type impurity is in-situ doped, or substantially no p-type impurity (for example, with a p-type impurity concentration lower than about 1014/cm3) is doped.
In some embodiments, in each of epitaxy regions 38 and 42, the germanium percentage is substantially uniform. In alternative embodiments, either one or both of epitaxy regions 38 and 42 has a gradually and continuously changed germanium percentage. During the respective epitaxy, the flow rate of the germanium-containing precursor (such as GeH4) may be gradually and continuously changed. In these embodiments, in the layer in which the germanium percentage gradually changes, the lower portions of the layer have germanium percentages lower than the germanium percentages of the upper layers.
After the formation of piled-up SiGe regions 42, capping layers 44 are formed over piled-up SiGe regions 42 through epitaxy, as shown in FIG. 7. Capping layers 44 may have a composition (including the elements contained therein and the percentages of the elements) different from the composition of piled-up SiGe regions 42. Capping layers 44 may be pure silicon layers with no germanium comprised therein, or substantially pure silicon layers with, for example, less than 2 percent, or 1 percent, germanium. Accordingly, capping layers 44 are alternatively referred to as silicon caps throughout the description. Capping layer 44 may be in-situ doped with p-type impurities with the proceeding of the epitaxy, or not in-situ doped. In the embodiments that no p-type impurity or substantially no p-type impurity is doped during the epitaxy of SiGe regions 38, 42, and/or capping layers 44, a p-type impurity implantation may be performed to form source and drain regions for the respective MOS device.
FIG. 11 schematically illustrates the germanium profile (line 64) in the illustrated regions in FIG. 7, wherein the profile represents the germanium percentage along the path of arrow 62 in FIG. 7. The respective regions 38, 42, and 44 are also illustrated to show the correspondence between the germanium percentages and the respective regions. The X-axis represents the depth measured starting from the top surface of capping layers 44 (FIG. 7). The Y-axis indicates the germanium percentage. Since FIG. 11 is schematic, the values of the X-axis and the Y-axis are not marked. As shown in FIG. 11, the germanium percentage in capping layers 44 is very low, and may be equal to zero percent. In piled-up SiGe regions 42, the germanium percentage is significantly higher than that in capping layers 44 and the underlying epitaxy regions 38. The germanium percentage in piled-up SiGe regions 42 is higher than the germanium percentage in epitaxy layer 38 by a difference ΔP, which may be in the range from about 5 percent to about 20 percent.
Referring back to FIG. 7, epitaxy regions 42 have thickness T1, and capping layers 44 have thickness T2 greater than thickness T1. Thickness T2 may also be significantly greater than thickness T1, for example, with ratio T2/T1 being greater than about 2. Ratio T2/T1 may also be in the range between about 2 and about 10 in some exemplary embodiments. Maintaining thickness T2 greater than thickness T1 is beneficial for reducing the morphology degradation in the resulting source and drain silicide regions. If thickness T2 is equal to or smaller than thickness T1, due to the high germanium percentage, the morphology degradation in the resulting silicide region caused by the silicidation of piled-up regions 42 is severe, and may cause segregation in the silicide region, and in turn cause reliability problems.
Next, hard masks 28, if any, are removed, and replacement gates are formed to replace gate dielectrics 24 and gate electrodes 26 in accordance with some embodiments, as shown in FIG. 8. In alternative embodiments, gate dielectrics 24 and gate electrodes 26 (FIG. 7) are not replaced with replacement gates. In the embodiments replacement gates are formed, gate dielectrics 24 and gate electrodes 26 act as dummy gates. FIG. 8 illustrates an exemplary structure including the replacement gates. The formation process may include forming Inter-Layer Dielectric (ILD) 46, performing a CMP to level the top surfaces of ILD 46 with the top surface of gate electrodes 26 or hard mask 28 (if any), and removing the dummy gates. A gate dielectric layer and a gate electrode layer may then be formed to fill the openings left by the removed dummy gates, followed by a CMP to remove excess portions of the gate dielectric layer and the gate electrode layer. The remaining replacement gates include gate dielectrics 24′ and gate electrodes 26′. Gate dielectrics 24′ may comprise a high-k dielectric material with a k value greater than about 7.0, for example, and gate electrodes 26′ may comprise a metal or a metal alloy. ILD 46 may be formed of a dielectric material such as Phospho-Silicate Glass (PSG), Boro-Silicate Glass (BSG), Boron-Doped Phospho-Silicate Glass (BPSG), or the like. Next, contact openings 48 are formed, exposing underlying capping layers 44.
FIG. 9 illustrates the formation of source/drain silicide regions 52. Silicide regions 52 may be formed by depositing a thin layer (not shown) of a silicide metal, such as titanium, cobalt, nickel, tungsten, or the like, over the devices, including the exposed surfaces of capping layers 44. Wafer 10 is then heated, which causes the silicide reaction to occur wherever the metal is in contact with silicon. As a result of the reaction, a layer of metal silicide is formed between silicon/SiGe and the metal. The un-reacted metal is selectively removed through the use of an etchant that attacks metal but does not attack silicide. As a result of the silicidation, source/drain silicide regions 52 extend into and penetrate through capping layers 44. Source/drain silicide regions 52 may be in contact with piled-up SiGe regions 42. In some exemplary embodiments, a top layer of each of piled-up SiGe regions 42 is silicided, while a bottom layer of each of piled-up SiGe regions 42 remains un-silicided. Accordingly, the bottom layers of piled-up SiGe regions 42 have top surfaces contacting the bottom surfaces of source/drain silicide regions 52, and bottom surfaces contacting the top surfaces of epitaxy regions 38. Furthermore, the top layers of epitaxy regions 42 may be level with, and on a side of, the respective adjacent silicide regions 52.
FIG. 10 illustrates the formation of source/drain contact plugs 54, which are formed by filling a conductive material such as tungsten, copper, aluminum, titanium, cobalt, silicon, germanium, and/or the like, into openings 48 (FIG. 9), and performing a CMP to level the top surface of contact plugs 54 with the top surface of ILD 46. The formation of MOS transistor 60 is thus finished. MOS transistor 60 includes epitaxy regions 38, 42, and possibly the remaining portions of capping layers 44 as the source and drain regions.
FIG. 12 schematically illustrates the germanium profile (line 64) in the source and drain regions and source/drain silicide regions of MOS device 60. Line 64 represents the germanium percentage along the path of arrow 62 in FIG. 10. The respective regions 38, 42, and 44/52 in FIG. 10 are also illustrated in FIG. 12 to show the correspondence between the germanium percentages and the respective regions. The X-axis illustrates the depth measured starting from the top surface of silicide regions 52 (FIG. 10). The Y-axis indicates the schematic germanium percentage. Since FIG. 12 is schematic, the values of the X-axis and the Y-axis are not marked. As shown in FIG. 12, the germanium percentage (line 64) in the top portion of silicide regions 52 is very low.
FIG. 12 also schematically illustrates the metal profile (line 66) in the source and drain regions of MOS device 60, wherein line 66 reflects the relative amount of the silicide metal (for example, nickel or cobalt). In the example shown FIG. 12, silicide regions 52 is formed by siliciding capping layers 44, and substantially no piled-up SiGe regions 42 are silicided. Accordingly, in FIG. 12, the amount of silicide metal significantly reduces going into piled-up SiGe regions 42. In alternative embodiments, the amount of silicide metal may reduce at an intermediate level of piled-up SiGe regions 42.
In the embodiments of the present disclosure, source/drain silicide regions are formed to have bottom surfaces contacting the underlying piled-up SiGe layers, which have a high germanium percent. As a result, the Schottky barrier height between the source/drain silicide regions and the respective underlying piled-up SiGe layers is reduced compared to the barrier height between the source/drain silicide regions and a SiGe layer with a lower germanium percentage. The contact resistance of the source/drain contact is thus reduced. The increased germanium percentage, however, causes the morphology in the resulting silicide to degrade, which may cause metal segregation in the silicide region. In the embodiments of the present disclosure, however, the thickness of the pile-up SiGe layer that has the high germanium percentage is very small, and the respective silicide formed due to the silicidation of the pile-up SiGe layer is very thin, and hence the degradation in morphology has minimized effect on the quality of the source/drain silicide.
In accordance with some embodiments, an integrated circuit structure includes a gate stack over a semiconductor substrate, and an opening extending into the semiconductor substrate, wherein the opening is adjacent to the gate stack. A first silicon germanium region is disposed in the opening, wherein the first silicon germanium region has a first germanium percentage. A second silicon germanium region is overlying the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage. A metal silicide region is over and in contact with the second silicon germanium region.
In accordance with other embodiments, an integrated circuit structure includes a semiconductor substrate, and a gate stack over the semiconductor substrate, wherein the gate stack is comprised in a MOS device. A source/drain region of the MOS device extends into the semiconductor substrate. The source/drain region includes a first silicon germanium region, which has a first germanium percentage. The source/drain region further includes a second silicon germanium region over the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage greater than the first germanium percentage. A silicon cap is over and contacting the second silicon germanium region. A metal silicide region penetrates through the silicon cap to contact the second silicon germanium region.
In accordance with yet other embodiments, a method includes forming a gate stack over a semiconductor substrate, and forming an opening extending into the semiconductor substrate, wherein the opening is on a side of the gate stack. A first epitaxy is performed to grow a first silicon germanium region in the opening, wherein the first silicon germanium region has a first germanium percentage. A second epitaxy is performed to grow a second silicon germanium region over the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage. The method further includes forming silicon cap substantially free from germanium over and contacting the second silicon germanium region.
In one aspect, embodiments described herein provide for an integrated circuit structure comprising: a semiconductor substrate; a recess in the semiconductor substrate; a first silicon germanium region substantially filling the opening and having a topmost surface extending above a topmost surface of the substrate, wherein the first silicon germanium region has a first germanium percentage; a second silicon germanium region on the topmost surface of the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage; and a metal silicide above and extending partly into the second silicon germanium region.
In another aspect, embodiments described herein provide for an integrated circuit a semiconductor substrate; a gate stack over the semiconductor substrate; and a source region adjacent a first side of the gate stack. The source region includes: a first silicon germanium region having a first germanium percentage, the first silicon germanium region extending into the semiconductor substrate and having a topmost surface extending to at least a topmost surface of the semiconductor substrate; a second silicon germanium region on the first silicon germanium region, the second silicon germanium region having a second germanium percentage higher than the first germanium percentage; and a metal silicide above and extending partly into the second silicon germanium region.
In yet another aspect, embodiments described herein provide for a method of forming an integrated circuit comprising: forming a dummy gate stack; etching a source recess and a drain recess adjacent respective sides of the dummy gate stack; epitaxially growing a first silicon germanium layer in the source recess and in the drain recess, the first silicon germanium layer having a first germanium percentage; epitaxially growing a second silicon germanium layer on the first silicon germanium layer in the source recess and the drain recess, the second silicon germanium layer having a second germanium percentage higher than the first germanium percentage; forming a cap layer over the second silicon germanium layer; forming a metal over a portion of the cap layer; and siliciding the cap layer and a portion of the second silicon germanium layer to form a silicide region over the source recess and over the drain recess, respectively.
Although the embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the embodiments as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the disclosure.

Claims (20)

What is claimed is:
1. An integrated circuit comprising:
a semiconductor substrate;
a recess in the semiconductor substrate;
a first silicon germanium region substantially filling the recess and having a topmost surface extending above a topmost surface of the semiconductor substrate, wherein the first silicon germanium region has a first germanium percentage;
a second silicon germanium region on the topmost surface of the first silicon germanium region, wherein the second silicon germanium region has a second germanium percentage higher than the first germanium percentage; and
a metal silicide above and extending partly into the second silicon germanium region.
2. The integrated circuit of claim 1, wherein the first germanium percentage is from about 30 percent to about 60 percent and wherein the second germanium percentage is from about 35 percent to about 80 percent.
3. The integrated circuit of claim 1, wherein the first silicon germanium region further includes impurities at an impurity concentration of from about 5E18/cm3 to about 5E21/cm3.
4. The integrated circuit of claim 3, wherein the impurities are boron.
5. The integrated circuit of claim 1, wherein the metal silicide has a substantially cup shaped form.
6. The integrated circuit of claim 1, wherein the germanium percentage in the first silicon germanium region is substantially uniform through the first silicon germanium region.
7. The integrated circuit of claim 1, wherein the germanium percentage in the first silicon germanium region gradually and continuously changes through the first silicon germanium region.
8. An integrated circuit comprising:
a semiconductor substrate;
a gate stack over the semiconductor substrate; and
a source region adjacent a first side of the gate stack, the source region including:
a first silicon germanium region having a first germanium percentage, the first silicon germanium region extending into the semiconductor substrate and having a topmost surface extending to at least a topmost surface of the semiconductor substrate;
a second silicon germanium region on the first silicon germanium region, the second silicon germanium region having a second germanium percentage higher than the first germanium percentage;
a metal silicide above and extending partly into the second silicon germanium region; and
a cap layer on the second silicon germanium region, the cap layer being substantially free of germanium.
9. The integrated circuit of claim 8, further comprising:
a drain region adjacent a second side of the gate stack, the drain region including:
a third silicon germanium region having a third germanium percentage equal to the first germanium percentage; and
a fourth silicon germanium region having a fourth germanium percentage equal to the second germanium percentage; and
a second metal silicide above and extending partly into the fourth silicon germanium region.
10. The integrated circuit of claim 8, further comprising:
a cap layer formed atop the second silicon germanium region, wherein the metal silicide extends through an opening in the cap layer.
11. The integrated circuit of claim 8, wherein the cap layer has an annular shape surrounding the metal silicide when viewed from a top down perspective.
12. The integrated circuit of claim 8, wherein the first germanium percentage is from about 30 percent to about 60 percent and wherein the second germanium percentage is from about 35 percent to about 80 percent.
13. The integrated circuit of claim 8, wherein the first silicon germanium region further includes impurities at an impurity concentration of from about 5E18/cm3 to about 5E21/cm3.
14. The integrated circuit of claim 13, wherein the impurities are boron.
15. The integrated circuit of claim 8, wherein the first silicon germanium region fills a hole in the semiconductor substrate and wherein sidewalls of the hole comprises facets along planes of the semiconductor crystal structure.
16. The integrated circuit of claim 8, wherein the second silicon germanium region abuts a gate spacer of the gate stack.
17. A method of forming an integrated circuit comprising:
forming a dummy gate stack;
etching a source recess and a drain recess adjacent respective sides of the dummy gate stack;
epitaxially growing a first silicon germanium layer in the source recess and in the drain recess, the first silicon germanium layer having a first germanium percentage;
epitaxially growing a second silicon germanium layer on the first silicon germanium layer in the source recess and the drain recess, the second silicon germanium layer having a second germanium percentage higher than the first germanium percentage;
forming a cap layer over the second silicon germanium layer;
forming a metal over a portion of the cap layer; and
siliciding the cap layer and a portion of the second silicon germanium layer to form a silicide region over the source recess and over the drain recess, respectively.
18. The method of claim 17, further comprising removing the dummy gate stack and forming in its place an operative gate stack.
19. The method of claim 17, further comprising forming a source contact plug contacting the silicide region over the source recess and forming a drain contact plug contacting the silicide region over the drain recess.
20. The integrated circuit of claim 1, further including a cap layer over the second silicon germanium region, wherein the metal silicide extends through an opening of the cap layer.
US15/152,260 2013-08-09 2016-05-11 Modulating germanium percentage in MOS devices Active 2033-12-26 US10014411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/152,260 US10014411B2 (en) 2013-08-09 2016-05-11 Modulating germanium percentage in MOS devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/963,855 US9012964B2 (en) 2013-08-09 2013-08-09 Modulating germanium percentage in MOS devices
US14/691,435 US9362360B2 (en) 2013-08-09 2015-04-20 Modulating germanium percentage in MOS devices
US15/152,260 US10014411B2 (en) 2013-08-09 2016-05-11 Modulating germanium percentage in MOS devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/691,435 Continuation US9362360B2 (en) 2013-08-09 2015-04-20 Modulating germanium percentage in MOS devices

Publications (2)

Publication Number Publication Date
US20160254381A1 US20160254381A1 (en) 2016-09-01
US10014411B2 true US10014411B2 (en) 2018-07-03

Family

ID=52447888

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/963,855 Active US9012964B2 (en) 2013-08-09 2013-08-09 Modulating germanium percentage in MOS devices
US14/691,435 Active US9362360B2 (en) 2013-08-09 2015-04-20 Modulating germanium percentage in MOS devices
US15/152,260 Active 2033-12-26 US10014411B2 (en) 2013-08-09 2016-05-11 Modulating germanium percentage in MOS devices

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/963,855 Active US9012964B2 (en) 2013-08-09 2013-08-09 Modulating germanium percentage in MOS devices
US14/691,435 Active US9362360B2 (en) 2013-08-09 2015-04-20 Modulating germanium percentage in MOS devices

Country Status (3)

Country Link
US (3) US9012964B2 (en)
KR (1) KR101701561B1 (en)
CN (1) CN104347688B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
US8931553B2 (en) 2013-01-04 2015-01-13 Carbo Ceramics Inc. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant
US9209175B2 (en) 2013-07-17 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices having epitaxy regions with reduced facets
US9337337B2 (en) * 2013-08-16 2016-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. MOS device having source and drain regions with embedded germanium-containing diffusion barrier
US20170141228A1 (en) * 2015-11-16 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Field effect transistor and manufacturing method thereof
WO2017111810A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Low schottky barrier contact structure for ge nmos
CN106920776B (en) 2015-12-25 2019-12-03 中芯国际集成电路制造(上海)有限公司 Method of forming a fin transistor
KR102259187B1 (en) * 2016-09-15 2021-06-01 어플라이드 머티어리얼스, 인코포레이티드 Methods for contact integration and selective silicide formation
US20190348415A1 (en) * 2017-03-30 2019-11-14 Intel Corporation Transistors employing cap layer for ge-rich source/drain regions
US10868181B2 (en) * 2017-09-27 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with blocking layer and method for forming the same
CN109817713B (en) * 2017-11-22 2022-04-15 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same
US10840355B2 (en) * 2018-05-01 2020-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Increasing source/drain dopant concentration to reduced resistance
US20230207560A1 (en) * 2021-12-23 2023-06-29 Intel Corporation Transistors with doped intrinsic germanium caps on source drain regions for improved contact resistance
US12402367B2 (en) * 2022-05-12 2025-08-26 United Microelectronics Corp. Semiconductor structure and manufacturing method thereof
CN119480628A (en) * 2023-12-12 2025-02-18 深圳市昇维旭技术有限公司 PMOS transistor and manufacturing method thereof, CMOS circuit and manufacturing method thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197412A1 (en) * 2007-02-16 2008-08-21 Da Zhang Multi-layer source/drain stressor
US20080246057A1 (en) * 2007-04-05 2008-10-09 Hsien-Hsin Lin Silicon layer for stopping dislocation propagation
US20080303060A1 (en) 2007-06-06 2008-12-11 Jin-Ping Han Semiconductor devices and methods of manufacturing thereof
US20080313576A1 (en) 2007-06-13 2008-12-18 Lex Kosowsky System and method for including protective voltage switchable dielectric material in the design or simulation of substrate devices
US20090108308A1 (en) 2007-10-31 2009-04-30 Jusung Engineering Co., Ltd Transistor and method of fabricating the same
US7534689B2 (en) 2006-11-21 2009-05-19 Advanced Micro Devices, Inc. Stress enhanced MOS transistor and methods for its fabrication
CN101577265A (en) 2008-05-05 2009-11-11 中芯国际集成电路制造(北京)有限公司 Test structure of breakdown voltage, analytic procedure applying same and wafer
US20100171181A1 (en) 2009-01-07 2010-07-08 Samsung Electronics Co., Ltd. Method of forming a semiconductor device having an epitaxial source/drain
JP2010219249A (en) 2009-03-16 2010-09-30 Fujitsu Ltd Manufacturing method of semiconductor device and semiconductor device
US7865852B2 (en) 2007-07-17 2011-01-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method for automatically routing multi-voltage multi-pitch metal lines
US20110014765A1 (en) 2007-02-07 2011-01-20 Fujitsu Semiconductor Limited Semiconductor device manufacturing method
CN101963755A (en) 2009-06-26 2011-02-02 罗门哈斯电子材料有限公司 Self-aligned spacer multiple patterning methods
US20110024804A1 (en) 2009-07-28 2011-02-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming high germanium concentration sige stressor
US8120120B2 (en) 2009-09-17 2012-02-21 Globalfoundries Inc. Embedded silicon germanium source drain structure with reduced silicide encroachment and contact resistance and enhanced channel mobility
US20120056245A1 (en) 2010-09-07 2012-03-08 Samsung Electronics Co., Ltd. Semiconductor devices including silicide regions and methods of fabricating the same
CN102682143A (en) 2011-03-11 2012-09-19 台湾积体电路制造股份有限公司 RC extraction for single-pattern spacings technology
US8431239B2 (en) 2010-07-23 2013-04-30 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Article and method for manufacturing same
CN104299970A (en) 2013-07-17 2015-01-21 台湾积体电路制造股份有限公司 MOS devices having epitaxy regions with reduced facets

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093328A1 (en) * 2008-01-25 2009-07-30 Fujitsu Microelectronics Limited Semiconductor device and method for production thereof
KR20130074353A (en) * 2011-12-26 2013-07-04 삼성전자주식회사 Semiconductor device including transistors

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534689B2 (en) 2006-11-21 2009-05-19 Advanced Micro Devices, Inc. Stress enhanced MOS transistor and methods for its fabrication
KR20090091788A (en) 2006-11-21 2009-08-28 어드밴스드 마이크로 디바이시즈, 인코포레이티드 Stress-enhanced MOS transistor and its manufacturing method
US20110014765A1 (en) 2007-02-07 2011-01-20 Fujitsu Semiconductor Limited Semiconductor device manufacturing method
US20080197412A1 (en) * 2007-02-16 2008-08-21 Da Zhang Multi-layer source/drain stressor
US20080246057A1 (en) * 2007-04-05 2008-10-09 Hsien-Hsin Lin Silicon layer for stopping dislocation propagation
US20080303060A1 (en) 2007-06-06 2008-12-11 Jin-Ping Han Semiconductor devices and methods of manufacturing thereof
US20080313576A1 (en) 2007-06-13 2008-12-18 Lex Kosowsky System and method for including protective voltage switchable dielectric material in the design or simulation of substrate devices
US7865852B2 (en) 2007-07-17 2011-01-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method for automatically routing multi-voltage multi-pitch metal lines
US20090108308A1 (en) 2007-10-31 2009-04-30 Jusung Engineering Co., Ltd Transistor and method of fabricating the same
CN101577265A (en) 2008-05-05 2009-11-11 中芯国际集成电路制造(北京)有限公司 Test structure of breakdown voltage, analytic procedure applying same and wafer
US20100171181A1 (en) 2009-01-07 2010-07-08 Samsung Electronics Co., Ltd. Method of forming a semiconductor device having an epitaxial source/drain
KR20100081667A (en) 2009-01-07 2010-07-15 삼성전자주식회사 Semiconductor devices having strained channels and methods of manufacturing the same
JP2010219249A (en) 2009-03-16 2010-09-30 Fujitsu Ltd Manufacturing method of semiconductor device and semiconductor device
CN101963755A (en) 2009-06-26 2011-02-02 罗门哈斯电子材料有限公司 Self-aligned spacer multiple patterning methods
US20110024804A1 (en) 2009-07-28 2011-02-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming high germanium concentration sige stressor
US8120120B2 (en) 2009-09-17 2012-02-21 Globalfoundries Inc. Embedded silicon germanium source drain structure with reduced silicide encroachment and contact resistance and enhanced channel mobility
US8431239B2 (en) 2010-07-23 2013-04-30 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Article and method for manufacturing same
US20120056245A1 (en) 2010-09-07 2012-03-08 Samsung Electronics Co., Ltd. Semiconductor devices including silicide regions and methods of fabricating the same
KR20120025314A (en) 2010-09-07 2012-03-15 삼성전자주식회사 Semiconductor device and method for manufacturing the same
CN102682143A (en) 2011-03-11 2012-09-19 台湾积体电路制造股份有限公司 RC extraction for single-pattern spacings technology
US8448120B2 (en) 2011-05-09 2013-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. RC extraction for single patterning spacer technique
CN104299970A (en) 2013-07-17 2015-01-21 台湾积体电路制造股份有限公司 MOS devices having epitaxy regions with reduced facets
US20150021696A1 (en) 2013-07-17 2015-01-22 Taiwan Semiconductor Manufacturing Company, Ltd. MOS Devices Having Epitaxy Regions with Reduced Facets

Also Published As

Publication number Publication date
KR101701561B1 (en) 2017-02-01
US9362360B2 (en) 2016-06-07
KR20150018381A (en) 2015-02-23
US20150228724A1 (en) 2015-08-13
CN104347688B (en) 2017-09-08
CN104347688A (en) 2015-02-11
US20160254381A1 (en) 2016-09-01
US20150041852A1 (en) 2015-02-12
US9012964B2 (en) 2015-04-21

Similar Documents

Publication Publication Date Title
US11411109B2 (en) MOS devices having epitaxy regions with reduced facets
US10797173B2 (en) MOS devices with non-uniform p-type impurity profile
US10014411B2 (en) Modulating germanium percentage in MOS devices
US9806171B2 (en) Method for making source and drain regions of a MOSFET with embedded germanium-containing layers having different germanium concentration
US10084089B2 (en) Source and drain stressors with recessed top surfaces

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4