UA37415U - Process for prediction of response of parameter indicator - Google Patents
Process for prediction of response of parameter indicatorInfo
- Publication number
- UA37415U UA37415U UAU200808284U UAU200808284U UA37415U UA 37415 U UA37415 U UA 37415U UA U200808284 U UAU200808284 U UA U200808284U UA U200808284 U UAU200808284 U UA U200808284U UA 37415 U UA37415 U UA 37415U
- Authority
- UA
- Ukraine
- Prior art keywords
- prediction
- response
- indicator
- parameter
- parameters
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/42—Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
Abstract
Process for prediction of response of parameter indicator can be used in different areas of science and engineering, especially in power engineering, for instance at measurement of temperatures of nuclear reactors, steam generators, stopper-control valves, cylinders of turbines that have large metal masses. Process for prediction of response of indicator of parameter prescribes formation of several correction chains, flexible control of input signal of aperiodic links and determination of time constants of aperiodic links of first and second order that are included to transfer function of parameter indicator. As result of that increase of operation speed is achieved, and increase of accuracy of measurement of parameters, this makes it possible to perform check and control of parameters in different technological objects at operation of those at proper time.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAU200808284U UA37415U (en) | 2008-06-19 | 2008-06-19 | Process for prediction of response of parameter indicator |
PCT/UA2009/000012 WO2009154586A1 (en) | 2008-06-19 | 2009-03-30 | Process for prediction of parameter sensor response |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAU200808284U UA37415U (en) | 2008-06-19 | 2008-06-19 | Process for prediction of response of parameter indicator |
Publications (1)
Publication Number | Publication Date |
---|---|
UA37415U true UA37415U (en) | 2008-11-25 |
Family
ID=41434317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
UAU200808284U UA37415U (en) | 2008-06-19 | 2008-06-19 | Process for prediction of response of parameter indicator |
Country Status (2)
Country | Link |
---|---|
UA (1) | UA37415U (en) |
WO (1) | WO2009154586A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2507489C2 (en) * | 2008-12-09 | 2014-02-20 | Снекма | Method and system to assess flow temperature in turbojet engine |
RU2509991C2 (en) * | 2008-12-09 | 2014-03-20 | Снекма | Method and system to correct signal of temperature measurement |
RU2723067C1 (en) * | 2017-02-21 | 2020-06-08 | Роузмаунт Инк. | Converter insulating compensation process |
US11226242B2 (en) | 2016-01-25 | 2022-01-18 | Rosemount Inc. | Process transmitter isolation compensation |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11226255B2 (en) | 2016-09-29 | 2022-01-18 | Rosemount Inc. | Process transmitter isolation unit compensation |
CN111324852B (en) * | 2020-03-06 | 2020-11-24 | 常熟理工学院 | Method of CSTR reactor time delay system based on state filtering and parameter estimation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1658175A1 (en) * | 1989-01-26 | 1991-06-23 | Сибирский металлургический институт им.Серго Орджоникидзе | Adaptive production index predictor |
SU1679195A1 (en) * | 1989-10-31 | 1991-09-23 | С.П.Ботуз с (53) 681.325,61 (088.8) | Device for forecasting the condition of control systems |
US5486997A (en) * | 1994-08-04 | 1996-01-23 | General Electric Company | Predictor algorithm for actuator control |
-
2008
- 2008-06-19 UA UAU200808284U patent/UA37415U/en unknown
-
2009
- 2009-03-30 WO PCT/UA2009/000012 patent/WO2009154586A1/en active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2507489C2 (en) * | 2008-12-09 | 2014-02-20 | Снекма | Method and system to assess flow temperature in turbojet engine |
RU2509991C2 (en) * | 2008-12-09 | 2014-03-20 | Снекма | Method and system to correct signal of temperature measurement |
US11226242B2 (en) | 2016-01-25 | 2022-01-18 | Rosemount Inc. | Process transmitter isolation compensation |
RU2723067C1 (en) * | 2017-02-21 | 2020-06-08 | Роузмаунт Инк. | Converter insulating compensation process |
Also Published As
Publication number | Publication date |
---|---|
WO2009154586A1 (en) | 2009-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
UA37415U (en) | Process for prediction of response of parameter indicator | |
Xiao et al. | Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel | |
Agius et al. | Sensitivity and optimisation of the Chaboche plasticity model parameters in strain-life fatigue predictions | |
Huh et al. | Evaluation of dynamic hardening models for BCC, FCC, and HCP metals at a wide range of strain rates | |
Wang et al. | Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens | |
Wang et al. | Critical analysis of the prediction of stress relaxation from forward creep of Type 316H austenitic stainless steel | |
An et al. | Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation | |
Li et al. | Safety assessment of hydro-generating units using experiments and grey-entropy correlation analysis | |
CN104020254B (en) | A kind of strain control method measuring compound substance residual intensity and residual life | |
Li et al. | Constitutive equation to predict elevated temperature flow stress of V150 grade oil casing steel | |
Rakhshkhorshid et al. | Experimental study of hot deformation behavior in API X65 steel | |
Zhang et al. | Creep–fatigue interaction damage model and its application in modified 9Cr–1Mo steel | |
CN104035455B (en) | A kind of stress control method measuring compound substance residual intensity and residual life | |
Jonas et al. | Effects of varying twist and twist rate sensitivities on the interpretation of torsion testing data | |
Zhu et al. | A model for temperature influence on concrete hydration exothermic rate (part one: theory and experiment) | |
Rao et al. | Application of stress relaxation testing in evaluation of creep strength of a tungsten-alloyed 10% Cr cast steel | |
WO2012000929A3 (en) | Method and device for determining model parameters for controlling a steam power plant block, control unit for a steam generator and computer program product | |
Hosseini et al. | Effect of prior deformation on the subsequent creep and anelastic recovery behaviour of an advanced martensitic steel: Unified constitutive modelling | |
Cavaliere et al. | FEM and multi-objective optimization of steel case hardening | |
WO2013114604A1 (en) | Method for estimating crack growth, and information processing device | |
Facheris | Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions | |
Wang et al. | Fatigue damage rule of LY12CZ aluminium alloy under sequential biaxial loading | |
Xu et al. | Constitutive analysis to predict the hot deformation behavior of 34CrMo4 steel with an optimum solution method for stress multiplier | |
Brookes et al. | Code of practice for force-controlled thermo-mechanical fatigue testing | |
Dua et al. | Life Prediction of Power Turbine Components for High Exhaust Back Pressure Applications: Part I—Disks |