UA104982C2 - Method for making josephson junction - Google Patents
Method for making josephson junctionInfo
- Publication number
- UA104982C2 UA104982C2 UAA201309520A UAA201309520A UA104982C2 UA 104982 C2 UA104982 C2 UA 104982C2 UA A201309520 A UAA201309520 A UA A201309520A UA A201309520 A UAA201309520 A UA A201309520A UA 104982 C2 UA104982 C2 UA 104982C2
- Authority
- UA
- Ukraine
- Prior art keywords
- josephson junction
- layer
- creation
- voltage
- making
- Prior art date
Links
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
The invention relates to field of creation of superconducting electronics specifically to making Josephson junction for the purpose to use RSFQ-logic elements, standards of voltage and quantum qubits. A method for creation Josephson junction is layer-by-layer deposition of a low electrode superconducting film, a barrier layer as an amorphous semiconductor silicon film made as 5-50 nm film simultaneously alloying the layer by atoms of transient metals until transport-percolation charge transport occurs. Molybdenum-rhenic alloy is used as a material for the upper electrode. The technical result is increase of characteristic voltage (IR) of Josephson junction from 2 to 50 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAA201309520A UA104982C2 (en) | 2013-07-30 | 2013-07-30 | Method for making josephson junction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAA201309520A UA104982C2 (en) | 2013-07-30 | 2013-07-30 | Method for making josephson junction |
Publications (1)
Publication Number | Publication Date |
---|---|
UA104982C2 true UA104982C2 (en) | 2014-03-25 |
Family
ID=56267588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
UAA201309520A UA104982C2 (en) | 2013-07-30 | 2013-07-30 | Method for making josephson junction |
Country Status (1)
Country | Link |
---|---|
UA (1) | UA104982C2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2813743C1 (en) * | 2023-09-29 | 2024-02-16 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) | Method for manufacturing superconducting qubits with focused ion beam annealing |
-
2013
- 2013-07-30 UA UAA201309520A patent/UA104982C2/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2813743C1 (en) * | 2023-09-29 | 2024-02-16 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) | Method for manufacturing superconducting qubits with focused ion beam annealing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ni et al. | Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors | |
Xu et al. | Tunable electronic and optical behaviors of two-dimensional germanium carbide | |
EP4391090A3 (en) | Photovoltaic devices | |
MY181414A (en) | Nanowire transistor fabrication with hardmask layers | |
WO2015102746A3 (en) | Electronics including graphene-based hybrid structures | |
IN2015DN01663A (en) | ||
Hendi | Electrical and photoresponse properties of graphene oxide: ZnO/Si photodiodes | |
Kang et al. | Role of Si as carrier suppressor in amorphous Zn–Sn–O | |
Li et al. | Asymmetric quantum confinement-induced energetically and spatially splitting Dirac rings in graphene/phosphorene/graphene heterostructure | |
TW201500570A (en) | Oxide semiconductor target, oxide semiconductor film and method for producing the same, and thin-film transistor | |
PH12017502239A1 (en) | Device for sensing radiation | |
Lee et al. | Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy | |
Srivastava et al. | Band structure and transport studies on impurity substituted InSe nanosheet–A first-principles investigation | |
JP2013219341A5 (en) | Method for manufacturing semiconductor device | |
WO2016014345A3 (en) | Two-terminal electronic devices and their methods of fabrication | |
UA104982C2 (en) | Method for making josephson junction | |
Salazar et al. | Theoretical study of electronic and mechanical properties of GeC nanowires | |
Nayebi et al. | Structural and electronic properties of CuInS2 nanowire: A study of density functional theory | |
WO2015033768A3 (en) | Superconducting cable | |
Deng et al. | Recovering near-band-edge ultraviolet responses in a wide-bandgap oxide with dipole-forbidden bandgap transition | |
Ravindiran et al. | Spintronic based superlattice structure modelling for photovoltaic application | |
Jena et al. | Electron transport in 2D crystal semiconductors and their device applications | |
Houssa et al. | Contact Resistivities at Graphene/MoS2 Lateral Heterojunctions | |
Wang et al. | Fabrication and carrier transport properties of Si quantum dots/SiO2 multilayer films on Si substrate | |
Valsaraj et al. | Effect of rotational misalignment on interlayer coupling in a graphene/hBN/graphene van der Waal's heterostructure |