UA104982C2 - Method for making josephson junction - Google Patents

Method for making josephson junction

Info

Publication number
UA104982C2
UA104982C2 UAA201309520A UAA201309520A UA104982C2 UA 104982 C2 UA104982 C2 UA 104982C2 UA A201309520 A UAA201309520 A UA A201309520A UA A201309520 A UAA201309520 A UA A201309520A UA 104982 C2 UA104982 C2 UA 104982C2
Authority
UA
Ukraine
Prior art keywords
josephson junction
layer
creation
voltage
making
Prior art date
Application number
UAA201309520A
Other languages
Russian (ru)
Ukrainian (uk)
Inventor
Володимир Євгенович Шатернік
Микола Васильович Новіков
Тетяна Олексіївна Пріхна
Андрій Петрович Шаповалов
Антон Володимирович Шатернік
Original Assignee
Інститут Металофізики Ім. Г.В. Курдюмова Національної Академії Наук України
Інститут Надтвердих Матеріалів Ім. М.В. Бакуля Національної Академії Наук України
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Інститут Металофізики Ім. Г.В. Курдюмова Національної Академії Наук України, Інститут Надтвердих Матеріалів Ім. М.В. Бакуля Національної Академії Наук України filed Critical Інститут Металофізики Ім. Г.В. Курдюмова Національної Академії Наук України
Priority to UAA201309520A priority Critical patent/UA104982C2/en
Publication of UA104982C2 publication Critical patent/UA104982C2/en

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

The invention relates to field of creation of superconducting electronics specifically to making Josephson junction for the purpose to use RSFQ-logic elements, standards of voltage and quantum qubits. A method for creation Josephson junction is layer-by-layer deposition of a low electrode superconducting film, a barrier layer as an amorphous semiconductor silicon film made as 5-50 nm film simultaneously alloying the layer by atoms of transient metals until transport-percolation charge transport occurs. Molybdenum-rhenic alloy is used as a material for the upper electrode. The technical result is increase of characteristic voltage (IR) of Josephson junction from 2 to 50 times.
UAA201309520A 2013-07-30 2013-07-30 Method for making josephson junction UA104982C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
UAA201309520A UA104982C2 (en) 2013-07-30 2013-07-30 Method for making josephson junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
UAA201309520A UA104982C2 (en) 2013-07-30 2013-07-30 Method for making josephson junction

Publications (1)

Publication Number Publication Date
UA104982C2 true UA104982C2 (en) 2014-03-25

Family

ID=56267588

Family Applications (1)

Application Number Title Priority Date Filing Date
UAA201309520A UA104982C2 (en) 2013-07-30 2013-07-30 Method for making josephson junction

Country Status (1)

Country Link
UA (1) UA104982C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813743C1 (en) * 2023-09-29 2024-02-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Method for manufacturing superconducting qubits with focused ion beam annealing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813743C1 (en) * 2023-09-29 2024-02-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Method for manufacturing superconducting qubits with focused ion beam annealing

Similar Documents

Publication Publication Date Title
Ni et al. Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors
Xu et al. Tunable electronic and optical behaviors of two-dimensional germanium carbide
EP4391090A3 (en) Photovoltaic devices
MY181414A (en) Nanowire transistor fabrication with hardmask layers
WO2015102746A3 (en) Electronics including graphene-based hybrid structures
IN2015DN01663A (en)
Hendi Electrical and photoresponse properties of graphene oxide: ZnO/Si photodiodes
Kang et al. Role of Si as carrier suppressor in amorphous Zn–Sn–O
Li et al. Asymmetric quantum confinement-induced energetically and spatially splitting Dirac rings in graphene/phosphorene/graphene heterostructure
TW201500570A (en) Oxide semiconductor target, oxide semiconductor film and method for producing the same, and thin-film transistor
PH12017502239A1 (en) Device for sensing radiation
Lee et al. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy
Srivastava et al. Band structure and transport studies on impurity substituted InSe nanosheet–A first-principles investigation
JP2013219341A5 (en) Method for manufacturing semiconductor device
WO2016014345A3 (en) Two-terminal electronic devices and their methods of fabrication
UA104982C2 (en) Method for making josephson junction
Salazar et al. Theoretical study of electronic and mechanical properties of GeC nanowires
Nayebi et al. Structural and electronic properties of CuInS2 nanowire: A study of density functional theory
WO2015033768A3 (en) Superconducting cable
Deng et al. Recovering near-band-edge ultraviolet responses in a wide-bandgap oxide with dipole-forbidden bandgap transition
Ravindiran et al. Spintronic based superlattice structure modelling for photovoltaic application
Jena et al. Electron transport in 2D crystal semiconductors and their device applications
Houssa et al. Contact Resistivities at Graphene/MoS2 Lateral Heterojunctions
Wang et al. Fabrication and carrier transport properties of Si quantum dots/SiO2 multilayer films on Si substrate
Valsaraj et al. Effect of rotational misalignment on interlayer coupling in a graphene/hBN/graphene van der Waal's heterostructure