TWM651275U - Multi-phase power converter circuit and control circuit thereof - Google Patents

Multi-phase power converter circuit and control circuit thereof Download PDF

Info

Publication number
TWM651275U
TWM651275U TW112211541U TW112211541U TWM651275U TW M651275 U TWM651275 U TW M651275U TW 112211541 U TW112211541 U TW 112211541U TW 112211541 U TW112211541 U TW 112211541U TW M651275 U TWM651275 U TW M651275U
Authority
TW
Taiwan
Prior art keywords
circuit
signal
voltage
coupled
phase
Prior art date
Application number
TW112211541U
Other languages
Chinese (zh)
Inventor
蘇志傑
Original Assignee
能創半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 能創半導體股份有限公司 filed Critical 能創半導體股份有限公司
Priority to TW112211541U priority Critical patent/TWM651275U/en
Publication of TWM651275U publication Critical patent/TWM651275U/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The present disclosure provides a multi-phase power converter circuit and a control circuit thereof. The multi-phase power converter circuit receives an input voltage at a voltage input terminal, outputs an output voltage at a voltage output terminal, and includes a power stage circuit and a control circuit. The power stage circuit is coupled to the voltage input terminal, and is coupled to a phase output terminal via an inductor. The control circuit is coupled to the power stage circuit, the phase output terminal and the voltage output terminal, generates an error signal according to a phase current of the phase output terminal, the output voltage and a reference voltage, generates a compensation signal according to the reference voltage and the error signal, generates a ramp signal according to the error signal, and controls the power stage circuit to operate according to a predetermined duty ratio when the ramp signal crosses the compensation signal, so as to increase the phase current.

Description

多相電源轉換器電路及其控制電路Multiphase power converter circuit and its control circuit

本申請係有關於一種控制電路,特別是指一種應用於多相電源轉換器電路的控制電路。The present application relates to a control circuit, in particular to a control circuit applied to a multi-phase power converter circuit.

隨著半導體技術的發展,多相電源轉換器電路對於負載暫態(load transient)的響應能力愈發重要。一些相關技術會將輸出電壓與參考電壓相減來得到誤差訊號,接著將誤差訊號轉換為電流訊號對電容充電來得到鋸齒波訊號,再將鋸齒波訊號與另一參考電壓比較,因此得到脈波寬度調變(Pulse-width modulation,PWM)控制訊號。然而,在上述負載暫態的操作下,參考電壓為一定值,而鋸齒波訊號則是經過轉換誤差訊號產生的結果,使得響應速度較慢,因此會有較差的暫態表現。因此,有必要提出新的方式來解決上述問題。With the development of semiconductor technology, the response ability of multi-phase power converter circuits to load transients has become increasingly important. Some related technologies subtract the output voltage from the reference voltage to obtain an error signal, then convert the error signal into a current signal to charge the capacitor to obtain a sawtooth wave signal, and then compare the sawtooth wave signal with another reference voltage to obtain a pulse wave. Pulse-width modulation (PWM) control signal. However, under the above-mentioned load transient operation, the reference voltage is a certain value, and the sawtooth wave signal is generated by converting the error signal, resulting in a slower response speed and therefore poor transient performance. Therefore, it is necessary to propose new ways to solve the above problems.

本申請的一態樣為一種適用於一多相電源轉換器電路的一控制電路。該控制電路包含一誤差偵測電路、一補償產生電路、一斜坡產生電路以及一比較電路。該誤差偵測電路耦接於該多相電源轉換器電路的一相輸出端及一電壓輸出端,用以偵測該相輸出端的一相電流及該電壓輸出端的一輸出電壓,並用以輸出關聯於該相電流、該輸出電壓及一參考電壓的一誤差訊號。該補償產生電路耦接於該誤差偵測電路,並用以依據該誤差訊號及該參考電壓,輸出一補償訊號。該斜坡產生電路耦接於該誤差偵測電路,並用以依據該誤差訊號,輸出一斜坡訊號。該比較電路耦接於該補償產生電路及該斜坡產生電路,用以接收該補償訊號及該斜坡訊號,並用以在該斜坡訊號跨越該補償訊號時,產生至少一觸發脈衝。One aspect of the present application is a control circuit suitable for a multi-phase power converter circuit. The control circuit includes an error detection circuit, a compensation generation circuit, a slope generation circuit and a comparison circuit. The error detection circuit is coupled to a phase output terminal and a voltage output terminal of the multi-phase power converter circuit, for detecting a phase current of the phase output terminal and an output voltage of the voltage output terminal, and for outputting a correlation An error signal between the phase current, the output voltage and a reference voltage. The compensation generating circuit is coupled to the error detection circuit and used to output a compensation signal according to the error signal and the reference voltage. The slope generating circuit is coupled to the error detection circuit and used to output a slope signal according to the error signal. The comparison circuit is coupled to the compensation generation circuit and the slope generation circuit for receiving the compensation signal and the slope signal, and for generating at least one trigger pulse when the slope signal crosses the compensation signal.

本申請的另一態樣為一種多相電源轉換器電路。該多相電源轉換器電路用以在一電壓輸入端接收一輸入電壓,用以在一電壓輸出端輸出一輸出電壓,並包含一功率級電路以及一控制電路。該功率級電路耦接於該電壓輸入端,並經由一電感器耦接於一相輸出端。該控制電路耦接於該功率級電路、該相輸出端及該電壓輸出端,用以依據該相輸出端的一相電流、該輸出電壓及一參考電壓產生一誤差訊號,用以依據該參考電壓及該誤差訊號產生一補償訊號,用以依據該誤差訊號產生一斜坡訊號,並用以在該斜坡訊號跨越該補償訊號時,控制該功率級電路依據一預設占空比運作,使該相電流增加。Another aspect of the present application is a multi-phase power converter circuit. The multi-phase power converter circuit is used for receiving an input voltage at a voltage input terminal, for outputting an output voltage at a voltage output terminal, and includes a power stage circuit and a control circuit. The power stage circuit is coupled to the voltage input terminal and coupled to a phase output terminal via an inductor. The control circuit is coupled to the power stage circuit, the phase output terminal and the voltage output terminal, and is used to generate an error signal according to a phase current of the phase output terminal, the output voltage and a reference voltage, to generate an error signal according to the reference voltage. and the error signal generates a compensation signal, used to generate a slope signal based on the error signal, and used to control the power stage circuit to operate according to a preset duty cycle when the slope signal crosses the compensation signal, so that the phase current Increase.

綜上,藉由對輸出電壓的變化做出相反反應的補償訊號及斜坡訊號,本申請的控制電路及多相電源轉換器電路相較於相關技術,具有較佳的負載暫態響應能力等優勢。In summary, by using compensation signals and ramp signals that react inversely to changes in output voltage, the control circuit and multi-phase power converter circuit of the present application have advantages such as better load transient response capability compared with related technologies. .

下文係舉實施例配合所附圖式作詳細說明,但所描述的具體實施例僅用以解釋本案,並不用來限定本案,而結構操作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本申請所涵蓋的範圍。The following is a detailed description of the embodiments together with the accompanying drawings. However, the specific embodiments described are only used to explain the present case and are not used to limit the present case. The description of the structural operations is not intended to limit the order of execution. Any components Recombining the structure to produce a device with equal functions is within the scope of this application.

在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭示之內容中與特殊內容中的平常意義。Unless otherwise noted, the terms used throughout the specification and patent application generally have their ordinary meanings as used in the field, in the disclosure and in the specific content.

關於本文中所使用之「耦接」或「連接」,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。As used herein, “coupling” or “connection” may refer to two or more components that are in direct physical or electrical contact with each other, or that are in indirect physical or electrical contact with each other. It may also refer to two or more components that are in direct physical or electrical contact with each other. Components interact or act with each other.

請參閱第1圖,第1圖為依據本申請的一些實施例繪示的一多相電源轉換器電路100的電路示意圖。具體而言,多相電源轉換器電路100可例如為多相降壓轉換器等直流/直流轉換器。於一些實施例中,多相電源轉換器電路100用以在一電壓輸入端NIN接收一輸入電壓VIN,並用以在一電壓輸出端NOUT輸出一輸出電壓VOUT,以為例如,中央處理器(central processing unit,CPU)等負載(圖中未示)供應電源。第1圖中耦接於電壓輸出端NOUT的一負載電阻器RL,即為所述負載的等效電阻。Please refer to FIG. 1 , which is a schematic circuit diagram of a multi-phase power converter circuit 100 according to some embodiments of the present application. Specifically, the multi-phase power converter circuit 100 may be, for example, a DC/DC converter such as a multi-phase buck converter. In some embodiments, the multi-phase power converter circuit 100 is used to receive an input voltage VIN at a voltage input terminal NIN, and to output an output voltage VOUT at a voltage output terminal NOUT, for example, a central processing unit (central processing unit). Unit, CPU) and other loads (not shown in the figure) supply power. In Figure 1, a load resistor RL coupled to the voltage output terminal NOUT is the equivalent resistance of the load.

於一些實施例中,多相電源轉換器電路100包含一功率級電路10、一控制電路20及一導通時間產生電路30。如第1圖所示,功率級電路10電性耦接於電壓輸入端NIN。功率級電路10的一輸出端NPS經由一電感器L耦接於一相輸出端NPHA,而相輸出端NPHA耦接於電壓輸出端NOUT。控制電路20耦接於相輸出端NPHA、電壓輸出端NOUT及導通時間產生電路30,而導通時間產生電路30耦接於功率級電路10。In some embodiments, the multi-phase power converter circuit 100 includes a power stage circuit 10 , a control circuit 20 and an on-time generating circuit 30 . As shown in FIG. 1 , the power stage circuit 10 is electrically coupled to the voltage input terminal NIN. An output terminal NPS of the power stage circuit 10 is coupled to a phase output terminal NPHA through an inductor L, and the phase output terminal NPHA is coupled to the voltage output terminal NOUT. The control circuit 20 is coupled to the phase output terminal NPHA, the voltage output terminal NOUT and the on-time generating circuit 30 , and the on-time generating circuit 30 is coupled to the power stage circuit 10 .

於一些實施例中,功率級電路10包含一驅動電路11、一高側開關12及一低側開關13。高側開關12耦接於電壓輸入端NIN(或輸入電壓VIN)及輸出端NPS之間,而低側開關13耦接於輸出端NPS及一接地電壓GND之間。換句話說,高側開關12及低側開關13串聯連接於輸入電壓VIN及接地電壓GND之間。驅動電路11經例如,脈波寬度調變(pulse width modulation,PWM)訊號等控制訊號(圖中未示)控制,而藉由一驅動訊號VGH及一驅動訊號VGL驅動高側開關12及低側開關13交替地導通(turn-on),使得一相電流IL從電感器L輸出。具體而言,高側開關12及低側開關13各自可藉由電晶體來實現,但本新型不以此為限。In some embodiments, the power stage circuit 10 includes a driving circuit 11 , a high-side switch 12 and a low-side switch 13 . The high-side switch 12 is coupled between the voltage input terminal NIN (or input voltage VIN) and the output terminal NPS, and the low-side switch 13 is coupled between the output terminal NPS and a ground voltage GND. In other words, the high-side switch 12 and the low-side switch 13 are connected in series between the input voltage VIN and the ground voltage GND. The driving circuit 11 is controlled by a control signal (not shown in the figure), such as a pulse width modulation (PWM) signal, and drives the high-side switch 12 and the low-side switch 12 by a driving signal VGH and a driving signal VGL. The switch 13 is turned on alternately, so that one phase current IL is output from the inductor L. Specifically, each of the high-side switch 12 and the low-side switch 13 can be implemented by a transistor, but the present invention is not limited thereto.

於第1圖中,功率級電路10及電感器L對應於多相電源轉換器電路100的其中一相。雖然第1圖中未繪示出多相電源轉換器電路100的其餘相,但應理解,多相電源轉換器電路100的其餘相亦對應地包含一組功率級電路及電感器,且其餘相中功率級電路及電感器的設置及操作與第1圖中功率級電路10及電感器L的設置及操作類似,故在此省略其說明。多相電源轉換器電路100中所有相的輸出將在相輸出端NPHA加總在一起,以在電壓輸出端NOUT提供輸出電壓VOUT。多相電源轉換器電路100中所有相輸出的加總可例如為第1圖中的相電流IL及其餘相的相電流的加總。由於第1圖中未繪示出多相電源轉換器電路100的其餘相,於後述實施例中,將以第1圖中的相電流IL表示所有相電流的加總。In FIG. 1 , the power stage circuit 10 and the inductor L correspond to one phase of the multi-phase power converter circuit 100 . Although the remaining phases of the multi-phase power converter circuit 100 are not shown in FIG. 1 , it should be understood that the remaining phases of the multi-phase power converter circuit 100 also include a set of power stage circuits and inductors, and the remaining phases The arrangement and operation of the medium power stage circuit and the inductor are similar to those of the power stage circuit 10 and the inductor L in Figure 1, so their description is omitted here. The outputs of all phases in the multi-phase power converter circuit 100 will be summed together at the phase output terminal NPHA to provide an output voltage VOUT at the voltage output terminal NOUT. The sum of all phase outputs in the multi-phase power converter circuit 100 may be, for example, the sum of the phase current IL in FIG. 1 and the phase currents of the other phases. Since the remaining phases of the multi-phase power converter circuit 100 are not shown in Figure 1, in the embodiments described later, the phase current IL in Figure 1 will be used to represent the sum of all phase currents.

於一些實施例中,在相輸出端NPHA及電壓輸出端NOUT之間,一電阻器RCO及一去耦合(decoupling)電容器CO串聯連接,並與負載電阻器RL並聯連接,以最佳化多相電源轉換器電路100對於負載暫態(load transient)的響應能力。In some embodiments, a resistor RCO and a decoupling capacitor CO are connected in series between the phase output terminal NPHA and the voltage output terminal NOUT, and are connected in parallel with the load resistor RL to optimize the multi-phase The ability of the power converter circuit 100 to respond to load transients.

舉例來說,於一些實務應用中,負載可能因為一時的任務變動(例如:運行特定應用程式及/或軟體)而需要較大的工作電流,亦即,多相電源轉換器電路100需要增加相電流IL的量值。基於一些非理想因素,相電流IL無法立即增加至負載所需要的工作電流量值。這時候,多相電源轉換器電路100中電性耦接於電壓輸出端NOUT的去耦合電容器CO將放電,以彌補相電流IL的不足。然而,去耦合電容器CO的放電導致輸出電壓VOUT發生下衝(undershoot)。For example, in some practical applications, the load may require a larger operating current due to temporary task changes (such as running specific applications and/or software). That is, the multi-phase power converter circuit 100 needs to increase the number of phases. The magnitude of current IL. Due to some non-ideal factors, the phase current IL cannot immediately increase to the operating current required by the load. At this time, the decoupling capacitor CO electrically coupled to the voltage output terminal NOUT in the multi-phase power converter circuit 100 will be discharged to make up for the lack of phase current IL. However, the discharge of the decoupling capacitor CO causes the output voltage VOUT to undershoot.

有鑑於此,於一些實施例中,控制電路20及導通時間產生電路30耦接於電壓輸出端NOUT及功率級電路10之間,來形成一回饋迴路。通過此回饋迴路,多相電源轉換器電路100可改善輸出電壓VOUT的下衝現象,此原理將於後述段落中進一步說明。In view of this, in some embodiments, the control circuit 20 and the on-time generating circuit 30 are coupled between the voltage output terminal NOUT and the power stage circuit 10 to form a feedback loop. Through this feedback loop, the multi-phase power converter circuit 100 can improve the undershoot phenomenon of the output voltage VOUT. This principle will be further explained in the following paragraphs.

於一些實施例中,如第1圖所示,控制電路20包含一誤差偵測電路21、一補償產生電路22、一斜坡產生電路23及一比較電路24。誤差偵測電路21耦接於相輸出端NPHA及電壓輸出端NOUT,用以偵測相電流IL及輸出電壓VOUT,用以接收一參考電壓VDAC,並用以依據相電流IL、輸出電壓VOUT及參考電壓VDAC輸出一誤差訊號VERR。由此可知,誤差訊號VERR關聯於相電流IL、輸出電壓VOUT及參考電壓VDAC。補償產生電路22耦接於誤差偵測電路21,用以接收參考電壓VDAC及誤差訊號VERR,並用以依據參考電壓VDAC及誤差訊號VERR輸出一補償訊號VCOMP。斜坡產生電路23耦接於誤差偵測電路21,用以接收誤差訊號VERR,並用以依據誤差訊號VERR輸出一斜坡訊號VRAMP。又,比較電路24耦接於補償產生電路22、斜坡產生電路23及導通時間產生電路30,用以接收補償訊號VCOMP及斜坡訊號VRAMP,並用以比較補償訊號VCOMP及斜坡訊號VRAMP。In some embodiments, as shown in FIG. 1 , the control circuit 20 includes an error detection circuit 21 , a compensation generation circuit 22 , a slope generation circuit 23 and a comparison circuit 24 . The error detection circuit 21 is coupled to the phase output terminal NPHA and the voltage output terminal NOUT for detecting the phase current IL and the output voltage VOUT, for receiving a reference voltage VDAC, and for detecting the phase current IL, the output voltage VOUT and the reference voltage VDAC. The voltage VDAC outputs an error signal VERR. It can be seen that the error signal VERR is related to the phase current IL, the output voltage VOUT and the reference voltage VDAC. The compensation generating circuit 22 is coupled to the error detection circuit 21 for receiving the reference voltage VDAC and the error signal VERR, and for outputting a compensation signal VCOMP according to the reference voltage VDAC and the error signal VERR. The slope generating circuit 23 is coupled to the error detection circuit 21 for receiving the error signal VERR, and for outputting a slope signal VRAMP according to the error signal VERR. In addition, the comparison circuit 24 is coupled to the compensation generation circuit 22, the slope generation circuit 23 and the on-time generation circuit 30, for receiving the compensation signal VCOMP and the slope signal VRAMP, and for comparing the compensation signal VCOMP and the slope signal VRAMP.

承接前述實務應用的說明,於一些實施例中,輸出電壓VOUT因為負載任務變動而大幅降低(亦即,輸出電壓VOUT發生下衝),進一步影響了依據相電流IL、輸出電壓VOUT及參考電壓VDAC輸出的誤差訊號VERR。舉例來說,誤差訊號VERR的量值(例如,電壓位準等)將會增加。接著,誤差訊號VERR的變化分別影響了補償訊號VCOMP及斜坡訊號VRAMP,使補償訊號VCOMP的量值及斜坡訊號VRAMP的量值都發生了變化。具體而言,斜坡訊號VRAMP可能於某一時間點跨越補償訊號VCOMP,此部分將於後述段落中搭配第2及3圖進一步說明。本文中「一訊號跨越另一訊號」的描述表示所述訊號的電壓位準超過或大於所述另一訊號的電壓位準。Following the above description of practical applications, in some embodiments, the output voltage VOUT is significantly reduced due to changes in the load task (that is, the output voltage VOUT undershoots), further affecting the phase current IL, the output voltage VOUT and the reference voltage VDAC. The output error signal VERR. For example, the magnitude (eg, voltage level, etc.) of the error signal VERR will increase. Then, the change in the error signal VERR affects the compensation signal VCOMP and the slope signal VRAMP respectively, causing the magnitude of the compensation signal VCOMP and the magnitude of the slope signal VRAMP to change. Specifically, the ramp signal VRAMP may cross the compensation signal VCOMP at a certain point in time. This part will be further explained in the following paragraphs with Figures 2 and 3. The description of "one signal crossing another signal" herein means that the voltage level of the signal exceeds or is greater than the voltage level of the other signal.

於一些實施例中,如第1圖所示,比較電路24在斜坡訊號VRAMP跨越補償訊號VCOMP時,將產生至少一觸發脈衝PTRI至導通時間產生電路30。藉由觸發脈衝PTRI的觸發,導通時間產生電路30將例如,藉由改變前述控制訊號的占空比(duty ratio),控制功率級電路10依據一預設占空比運作,以增加相電流IL並穩定輸出電壓VOUT。In some embodiments, as shown in FIG. 1 , the comparison circuit 24 generates at least one trigger pulse PTRI to the on-time generating circuit 30 when the ramp signal VRAMP crosses the compensation signal VCOMP. By triggering the trigger pulse PTRI, the on-time generating circuit 30 will, for example, by changing the duty ratio of the aforementioned control signal, control the power stage circuit 10 to operate according to a preset duty ratio to increase the phase current IL. and stabilize the output voltage VOUT.

於一些實施例中,誤差訊號VERR的量值隨著相電流IL的增加以及輸出電壓VOUT的穩定(即,輸出電壓VOUT的下衝現象獲得改善)而減少,使得補償訊號VCOMP可能於某一時間點後的另一時間點跨越斜坡訊號VRAMP。響應於補償訊號VCOMP跨越斜坡訊號VRAMP,比較電路24停止產生觸發脈衝PTRI至導通時間產生電路30,而導通時間產生電路30則對應地控制功率級電路10依據一原始占空比運作,其中此原始占空比低於前述預設占空比。In some embodiments, the magnitude of the error signal VERR decreases as the phase current IL increases and the output voltage VOUT stabilizes (that is, the undershoot phenomenon of the output voltage VOUT is improved), so that the compensation signal VCOMP may be at a certain time The ramp signal VRAMP is crossed at another time point after the point. In response to the compensation signal VCOMP crossing the ramp signal VRAMP, the comparison circuit 24 stops generating the trigger pulse PTRI to the on-time generating circuit 30, and the on-time generating circuit 30 correspondingly controls the power stage circuit 10 to operate according to an original duty cycle, where this original The duty cycle is lower than the aforementioned preset duty cycle.

由上述實施例的說明可知,控制電路20用以依據相輸出端NPHA的相電流IL、輸出電壓VOUT及參考電壓VDAC產生誤差訊號VERR,用以依據參考電壓VDAC及誤差訊號VERR產生補償訊號VCOMP,用以依據誤差訊號VERR產生斜坡訊號VRAMP,並用以在斜坡訊號VRAMP跨越補償訊號VCOMP時,觸發導通時間產生電路30控制功率級電路10依據預設占空比運作,使相電流IL增加。此外,控制電路20還用以在補償訊號VCOMP跨越斜坡訊號VRAMP時,觸發導通時間產生電路30控制功率級電路10依據原始占空比運作,使相電流IL減小。As can be seen from the description of the above embodiments, the control circuit 20 is used to generate the error signal VERR based on the phase current IL, the output voltage VOUT and the reference voltage VDAC of the phase output terminal NPHA, and to generate the compensation signal VCOMP based on the reference voltage VDAC and the error signal VERR. used to generate the ramp signal VRAMP according to the error signal VERR, and to trigger the on-time generating circuit 30 to control the power stage circuit 10 to operate according to the preset duty cycle to increase the phase current IL when the ramp signal VRAMP crosses the compensation signal VCOMP. In addition, the control circuit 20 is also used to trigger the on-time generating circuit 30 to control the power stage circuit 10 to operate according to the original duty cycle to reduce the phase current IL when the compensation signal VCOMP crosses the ramp signal VRAMP.

接著將搭配第2圖說明誤差偵測電路21、補償產生電路22、斜坡產生電路23及比較電路24的電路結構。請參閱第2圖,第2圖為依據本申請的一些實施例繪示的控制電路20的電路示意圖。Next, the circuit structure of the error detection circuit 21, the compensation generation circuit 22, the slope generation circuit 23 and the comparison circuit 24 will be explained with reference to Figure 2. Please refer to Figure 2. Figure 2 is a circuit schematic diagram of the control circuit 20 according to some embodiments of the present application.

於第2圖的實施例中,誤差偵測電路21包含一電阻器201、一運算電路211及一運算電路221。於一些實施例中,電阻器201耦接於第1圖中多相電源轉換器電路100的相輸出端NPHA,並用以產生與相電流IL相依的一轉換電壓VL,亦即,轉換電壓VL為對應相電流IL的相依電源。如第2圖所示,轉換電壓VL可具有表示相電流IL與電阻器201的一電阻值RI相乘的電壓位準。運算電路211耦接於電阻器201,用以接收轉換電壓VL及參考電壓VDAC,並用以依據參考電壓VDAC與轉換電壓VL的一差值,產生一相依參考電壓VREF。具體而言,相依參考電壓VREF可具有參考電壓VDAC減去轉換電壓VL的電壓位準。搭配轉換電壓VL的說明可知,相依參考電壓VREF的電壓位準與相電流IL的量值相關。運算電路221耦接於運算電路211,用以接收相依參考電壓VREF及輸出電壓VOUT,並用以依據相依參考電壓VREF與輸出電壓VOUT的一差值,產生誤差訊號VERR。具體而言,誤差訊號VERR可具有表示相依參考電壓VREF減去輸出電壓VOUT的電壓位準。綜合上述,誤差訊號VERR的電壓位準可通過下方公式(1)計算出來。 …(1) In the embodiment of FIG. 2 , the error detection circuit 21 includes a resistor 201 , an arithmetic circuit 211 and an arithmetic circuit 221 . In some embodiments, the resistor 201 is coupled to the phase output terminal NPHA of the multi-phase power converter circuit 100 in Figure 1 and is used to generate a conversion voltage VL dependent on the phase current IL, that is, the conversion voltage VL is Dependent power source corresponding to phase current IL. As shown in FIG. 2 , the conversion voltage VL may have a voltage level representing the phase current IL multiplied by a resistance value RI of the resistor 201 . The operation circuit 211 is coupled to the resistor 201 for receiving the conversion voltage VL and the reference voltage VDAC, and for generating a dependent reference voltage VREF according to a difference between the reference voltage VDAC and the conversion voltage VL. Specifically, the dependent reference voltage VREF may have a voltage level equal to the reference voltage VDAC minus the conversion voltage VL. From the description of the conversion voltage VL, it can be seen that the voltage level of the dependent reference voltage VREF is related to the magnitude of the phase current IL. The operation circuit 221 is coupled to the operation circuit 211 for receiving the dependent reference voltage VREF and the output voltage VOUT, and for generating the error signal VERR according to a difference between the dependent reference voltage VREF and the output voltage VOUT. Specifically, the error signal VERR may have a voltage level representing the dependent reference voltage VREF minus the output voltage VOUT. Based on the above, the voltage level of the error signal VERR can be calculated by the following formula (1). …(1)

於上述公式(1)中,電阻值RI及參考電壓VDAC兩者經預先設定為固定值。舉例來說,電阻值RI為0.5~4毫歐姆,而參考電壓VDAC為0~1.52伏特。此外,相依參考電壓VREF即是設定給多相電源轉換器電路100的輸出電壓VOUT追隨的一個參考值。In the above formula (1), both the resistance value RI and the reference voltage VDAC are preset to fixed values. For example, the resistor value RI is 0.5~4 milliohms, and the reference voltage VDAC is 0~1.52 volts. In addition, the dependent reference voltage VREF is a reference value set for the output voltage VOUT of the multi-phase power converter circuit 100 to follow.

於第2圖的實施例中,補償產生電路22包含一放大電路202以及一運算電路212。放大電路202耦接於誤差偵測電路21,用以接收誤差訊號VERR,並用以將誤差訊號VERR放大,以輸出一放大誤差訊號VERRA。運算電路212耦接於放大電路202及比較電路24,用以接收參考電壓VDAC及放大誤差訊號VERRA,並用以依據參考電壓VDAC與放大誤差訊號VERRA的一差值,輸出補償訊號VCOMP。具體而言,補償訊號VCOMP可具有參考電壓VDAC減去放大誤差訊號VERRA的電壓位準。本新型將誤差量(即誤差訊號VERR)經過放大電路202進行放大,再與參考電壓VDAC作相減。如此一來,誤差量會透過放大電路202快速反應在補償訊號VCOMP上(因為補償訊號VCOMP的產生並未透過積分器與轉導放大器),讓斜坡訊號VRAMP與補償訊號VCOMP更快交越來快速降低誤差量(即,降低誤差訊號VERR的量值)。因此會讓整體控制迴路(例如,控制電路20及導通時間產生電路30)有更好的暫態響應。In the embodiment of FIG. 2 , the compensation generating circuit 22 includes an amplifying circuit 202 and an arithmetic circuit 212 . The amplifier circuit 202 is coupled to the error detection circuit 21 for receiving the error signal VERR, and for amplifying the error signal VERR to output an amplified error signal VERRA. The operation circuit 212 is coupled to the amplifier circuit 202 and the comparison circuit 24 for receiving the reference voltage VDAC and the amplified error signal VERRA, and for outputting the compensation signal VCOMP based on a difference between the reference voltage VDAC and the amplified error signal VERRA. Specifically, the compensation signal VCOMP may have a voltage level equal to the reference voltage VDAC minus the amplified error signal VERRA. In the present invention, the error amount (ie, the error signal VERR) is amplified through the amplification circuit 202, and then subtracted from the reference voltage VDAC. In this way, the error amount will quickly react on the compensation signal VCOMP through the amplifier circuit 202 (because the compensation signal VCOMP is not generated through the integrator and the transduction amplifier), allowing the slope signal VRAMP and the compensation signal VCOMP to cross each other faster. Reduce the amount of error (ie, reduce the magnitude of the error signal VERR). Therefore, the overall control loop (for example, the control circuit 20 and the on-time generating circuit 30) will have better transient response.

由第2圖中補償產生電路22的說明可知,於一些實施例中,補償產生電路22用以接收參考電壓VDAC與誤差訊號VERR,用以將誤差訊號VERR放大,並用以依據基於參考電壓VDAC與經放大的誤差訊號VERR產生的一計算值(亦即,參考電壓VDAC與放大誤差訊號VERRA的差值)輸出補償訊號VCOMP。As can be seen from the description of the compensation generation circuit 22 in Figure 2, in some embodiments, the compensation generation circuit 22 is used to receive the reference voltage VDAC and the error signal VERR, to amplify the error signal VERR, and to generate a signal based on the reference voltage VDAC and the error signal VERR. A calculated value generated by the amplified error signal VERR (that is, the difference between the reference voltage VDAC and the amplified error signal VERRA) outputs the compensation signal VCOMP.

於第2圖的實施例中,斜坡產生電路23包含一電容器223、一積分電路203以及一轉導放大電路213。積分電路203耦接於誤差偵測電路21,用以接收誤差訊號VERR,並用以積分誤差訊號VERR,以輸出一積分誤差訊號VERRI。轉導放大電路213耦接於積分電路203、電容器223及比較電路24,用以接收一第一電源電壓VDD、積分誤差訊號VERRI及一第二電源電壓VEE,並用以轉換積分誤差訊號VERRI為一轉換電流IERRI,以藉由轉換電流IERRI對電容器223充電,從而輸出斜坡訊號VRAMP。In the embodiment of FIG. 2 , the slope generating circuit 23 includes a capacitor 223 , an integrating circuit 203 and a transconductance amplifier circuit 213 . The integrating circuit 203 is coupled to the error detection circuit 21 for receiving the error signal VERR, integrating the error signal VERR, and outputting an integrated error signal VERRI. The transconduction amplifier circuit 213 is coupled to the integrating circuit 203, the capacitor 223 and the comparison circuit 24, and is used to receive a first power supply voltage VDD, an integrated error signal VERRI and a second power supply voltage VEE, and to convert the integrated error signal VERRI into a The conversion current IERRI is used to charge the capacitor 223 through the conversion current IERRI, thereby outputting the ramp signal VRAMP.

由第2圖中斜坡產生電路23的說明可知,於一些實施例中,斜坡產生電路23用以接收誤差訊號VERR,用以對誤差訊號VERR執行運算(亦即,積分運算),並用以對經執行運算的誤差訊號VERR(即,積分誤差訊號VERRI)進行電壓電流轉換,以輸出斜坡訊號VRAMP。As can be seen from the description of the slope generating circuit 23 in Figure 2, in some embodiments, the slope generating circuit 23 is used to receive the error signal VERR, to perform an operation (that is, an integral operation) on the error signal VERR, and to perform an integral operation on the error signal VERR. The error signal VERR (that is, the integrated error signal VERRI) that performs the operation is converted into voltage and current to output a ramp signal VRAMP.

於第2圖的實施例中,比較電路24包含一比較器204以及一延遲電路214。如第2圖所示,比較器204具有一反相輸入端及一非反相輸入端。補償產生電路22耦接於比較器204的反相輸入端,且斜坡產生電路23耦接於比較器204的非反相輸入端。換句話說,比較器204的反相輸入端用以接收補償訊號VCOMP,且比較器204的非反相輸入端用以接收斜坡訊號VRAMP。據此,比較器204比較斜坡訊號VRAMP及補償訊號VCOMP,以輸出一設定訊號SET。於一些實施例中,比較器204用以依據斜坡訊號VRAMP及補償訊號VCOMP的比較結果,調整設定訊號SET的電壓位準。延遲電路214耦接於比較器204,用以接收設定訊號SET,並用以延遲設定訊號SET的輸出,以輸出另一設定訊號SETD。In the embodiment of FIG. 2 , the comparison circuit 24 includes a comparator 204 and a delay circuit 214 . As shown in Figure 2, the comparator 204 has an inverting input terminal and a non-inverting input terminal. The compensation generating circuit 22 is coupled to the inverting input terminal of the comparator 204 , and the slope generating circuit 23 is coupled to the non-inverting input terminal of the comparator 204 . In other words, the inverting input terminal of the comparator 204 is used to receive the compensation signal VCOMP, and the non-inverting input terminal of the comparator 204 is used to receive the ramp signal VRAMP. Accordingly, the comparator 204 compares the ramp signal VRAMP and the compensation signal VCOMP to output a setting signal SET. In some embodiments, the comparator 204 is used to adjust the voltage level of the setting signal SET according to the comparison result of the ramp signal VRAMP and the compensation signal VCOMP. The delay circuit 214 is coupled to the comparator 204 for receiving the setting signal SET, and for delaying the output of the setting signal SET to output another setting signal SETD.

接著搭配第3圖進一步說明斜坡訊號VRAMP、補償訊號VCOMP、設定訊號SET及設定訊號SETD之間的關係。請參閱第3圖,第3圖為依據本申請的一些實施例繪示的多相電源轉換器電路100中一些訊號的時序圖。Next, the relationship between the slope signal VRAMP, the compensation signal VCOMP, the setting signal SET and the setting signal SETD is further explained with Figure 3. Please refer to FIG. 3. FIG. 3 is a timing diagram of some signals in the multi-phase power converter circuit 100 according to some embodiments of the present application.

於一些實施例中,如第3圖所示,在時間T1,輸出電壓VOUT因為負載任務變動而降低。搭配前述公式(1)可知,在相電流IL尚未增加的情況下,輸出電壓VOUT降低將導致誤差訊號VERR的電壓位準增加。接著,由上述關於補償訊號VCOMP的說明可知,誤差訊號VERR電壓位準的增加將導致補償訊號VCOMP的電壓位準減少。又,隨著誤差訊號VERR電壓位準的變化,斜坡訊號VRAMP的電壓位準逐漸開始有連續斜坡波形(或連續三角波形、鋸齒波形等)的變化。由第3圖可知,補償訊號VCOMP及斜坡訊號VRAMP對輸出電壓VOUT的下降實質上做出相反反應。據此,在時間T1,斜坡訊號VRAMP跨越(或大於)補償訊號VCOMP。In some embodiments, as shown in Figure 3, at time T1, the output voltage VOUT decreases due to load task changes. Combining with the aforementioned formula (1), it can be seen that when the phase current IL has not yet increased, the decrease in the output voltage VOUT will cause the voltage level of the error signal VERR to increase. Next, from the above description of the compensation signal VCOMP, it can be known that an increase in the voltage level of the error signal VERR will cause a decrease in the voltage level of the compensation signal VCOMP. Furthermore, as the voltage level of the error signal VERR changes, the voltage level of the ramp signal VRAMP gradually begins to change in a continuous ramp waveform (or continuous triangular waveform, sawtooth waveform, etc.). As can be seen from Figure 3, the compensation signal VCOMP and the ramp signal VRAMP essentially react in opposite ways to the drop of the output voltage VOUT. Accordingly, at time T1, the ramp signal VRAMP crosses (or is greater than) the compensation signal VCOMP.

承接比較器204依據斜坡訊號VRAMP及補償訊號VCOMP的比較結果來調整設定訊號SET的電壓位準的實施例,如第2圖所示,比較器204在斜坡訊號VRAMP大於補償訊號VCOMP時,將設定訊號SET從一第一電壓位準V1調整至高於第一電壓位準V1的一第二電壓位準V2。又,第二電壓位準V2的設定訊號SET經由延遲電路214延遲而等時間間隔地輸出(亦即,作為另一設定訊號SETD輸出),以產生至少一觸發脈衝PTRI。Following the embodiment in which the comparator 204 adjusts the voltage level of the setting signal SET according to the comparison result of the slope signal VRAMP and the compensation signal VCOMP, as shown in Figure 2, the comparator 204 will set the setting signal when the slope signal VRAMP is greater than the compensation signal VCOMP. The signal SET is adjusted from a first voltage level V1 to a second voltage level V2 higher than the first voltage level V1. In addition, the setting signal SET of the second voltage level V2 is delayed through the delay circuit 214 and outputted at equal time intervals (that is, output as another setting signal SETD) to generate at least one trigger pulse PTRI.

接著,如第1圖所示,觸發脈衝PTRI觸發導通時間產生電路30控制功率級電路10依據預設占空比運作。舉例來說,於一些實施例中,功率級電路10中的驅動電路11經由導通時間產生電路30控制,調整用於驅動高側開關12的驅動訊號VGH及用於驅動低側開關13的驅動訊號VGL,使得功率級電路10依據預設占空比運作。Then, as shown in FIG. 1 , the trigger pulse PTRI triggers the on-time generating circuit 30 to control the power stage circuit 10 to operate according to the preset duty cycle. For example, in some embodiments, the driving circuit 11 in the power stage circuit 10 is controlled by the on-time generating circuit 30 to adjust the driving signal VGH for driving the high-side switch 12 and the driving signal for driving the low-side switch 13 VGL enables the power stage circuit 10 to operate according to the preset duty cycle.

於第3圖中,在時間T1之後,驅動訊號VGH的每個週期都有一致能期間PE以及一禁能期間PD。由第3圖可知,驅動訊號VGH在時間T1之後的致能期間PE大致上等同於驅動訊號VGH在時間T1之前的致能期間。然而,驅動訊號VGH在時間T1之後的禁能期間PD明顯短於驅動訊號VGH在時間T1之前的禁能期間。換句話說,驅動訊號VGH的占空比在時間T1之後(亦即,在觸發脈衝PTRI觸發導通時間產生電路30之後)增加。In Figure 3, after time T1, each cycle of the driving signal VGH has an enabling period PE and a disabling period PD. It can be seen from FIG. 3 that the enabling period PE of the driving signal VGH after the time T1 is substantially equal to the enabling period of the driving signal VGH before the time T1 . However, the disabling period PD of the driving signal VGH after the time T1 is significantly shorter than the disabling period of the driving signal VGH before the time T1 . In other words, the duty cycle of the driving signal VGH increases after the time T1 (that is, after the trigger pulse PTRI triggers the on-time generating circuit 30).

於第3圖的實施例中,高側開關12在致能期間PE導通,並在禁能期間PD關斷(turn-off)。也就是說,在時間T1之後,高側開關12會頻繁交替導通及關斷,此亦表示功率級電路10每單位時間的輸出量會增加。由於高側開關12與低側開關13 通常交替地導通,低側開關13的操作可基於高側開關12的操作推論得知,故在此省略低側開關13及驅動訊號VGL的說明。In the embodiment of FIG. 3 , the high-side switch 12 turns PE on during the enable period, and turns off (PD) during the disable period. That is to say, after time T1, the high-side switch 12 will frequently turn on and off alternately, which also means that the output of the power stage circuit 10 per unit time will increase. Since the high-side switch 12 and the low-side switch 13 are usually turned on alternately, the operation of the low-side switch 13 can be inferred based on the operation of the high-side switch 12 , so the description of the low-side switch 13 and the driving signal VGL is omitted here.

總而言之,功率級電路10依據預設占空比(例如,致能期間PE占致能期間PE及禁能期間PD加總的百分比)運作,從而使第1圖中的相電流IL增加,並使輸出電壓VOUT下降速度如第3圖所示趨緩。In summary, the power stage circuit 10 operates according to the preset duty cycle (for example, the enable period PE accounts for the percentage of the enable period PE and the disable period PD), thereby increasing the phase current IL in Figure 1 and causing The output voltage VOUT decreases slowly as shown in Figure 3.

於一些實施例中,相電流IL實質上接近負載所需的工作電流,且輸出電壓VOUT實質上接近前述相依參考電壓VREF(亦即,輸出電壓VOUT穩定,且輸出電壓VOUT的下衝現象得到改善)。誤差訊號VERR在此情況下的電壓位準將明顯小於誤差訊號VERR在時間T1時的電壓位準。基於誤差訊號VERR電壓位準的降低,補償訊號VCOMP的電壓位準會增加,且斜坡訊號VRAMP的電壓位準開始從連續斜坡波形變化回平坦波形。據此,如第3圖所示,在一時間T2,補償訊號VCOMP跨越(或大於)斜坡訊號VRAMP。In some embodiments, the phase current IL is substantially close to the operating current required by the load, and the output voltage VOUT is substantially close to the aforementioned dependent reference voltage VREF (that is, the output voltage VOUT is stable, and the undershoot phenomenon of the output voltage VOUT is improved ). The voltage level of the error signal VERR in this case will be significantly smaller than the voltage level of the error signal VERR at time T1. Based on the decrease in the voltage level of the error signal VERR, the voltage level of the compensation signal VCOMP will increase, and the voltage level of the ramp signal VRAMP begins to change from a continuous ramp waveform back to a flat waveform. Accordingly, as shown in Figure 3, at time T2, the compensation signal VCOMP crosses (or is greater than) the ramp signal VRAMP.

由前述比較電路24的說明可知,隨著補償訊號VCOMP跨越斜坡訊號VRAMP,比較器204將設定訊號SET從第二電壓位準V2調整至第一電壓位準V1,進一步使延遲電路214所輸出的設定訊號SETD也維持在第一電壓位準V1(此相當於沒有產生觸發脈衝PTRI)。由此可知,比較電路24在補償訊號VCOMP跨越斜坡訊號VRAMP時,即停止產生觸發脈衝PTRI。請注意,第一電壓位準V1可以是一低邏輯位準,且第二電壓位準V2可以是一高邏輯位準。It can be seen from the above description of the comparison circuit 24 that as the compensation signal VCOMP crosses the ramp signal VRAMP, the comparator 204 adjusts the setting signal SET from the second voltage level V2 to the first voltage level V1, further causing the delay circuit 214 to output The setting signal SETD is also maintained at the first voltage level V1 (this is equivalent to the trigger pulse PTRI not being generated). It can be seen from this that the comparison circuit 24 stops generating the trigger pulse PTRI when the compensation signal VCOMP crosses the ramp signal VRAMP. Please note that the first voltage level V1 may be a low logic level, and the second voltage level V2 may be a high logic level.

請參閱第4圖,第4圖為依據本申請的一些實施例繪示的多相電源轉換器電路100中一些訊號及相關技術中一些訊號的時序圖。Please refer to FIG. 4. FIG. 4 is a timing diagram of some signals in the multi-phase power converter circuit 100 and some signals in related technologies according to some embodiments of the present application.

第4圖繪示了採用前述本申請電路架構所產生的補償訊號VCOMP及斜坡訊號VRAMP,並繪示了採用相關技術電路架構所產生的一斜坡訊號Vramp及固定的一門檻值VTH。由第4圖可知,相較於斜坡訊號Vramp在時間T3才與門檻值VTH發生交叉(亦即,斜坡訊號Vramp跨越門檻值VTH),本申請的補償訊號VCOMP及斜坡訊號VRAMP在早於時間T3的時間T1即已發生交叉(亦即,斜坡訊號VRAMP跨越補償訊號VCOMP)。因此,如第4圖所示,本申請的驅動訊號VGH提早相關技術中的一驅動訊號Vgh一步產生密集且連續的多個脈衝(亦即,功率級電路10提早一步開始以預設占空比運作)。Figure 4 shows the compensation signal VCOMP and the ramp signal VRAMP generated by using the circuit structure of the present application, and also shows a ramp signal Vramp and a fixed threshold VTH generated by using the circuit structure of the related technology. As can be seen from Figure 4, compared with the ramp signal Vramp crossing the threshold VTH at time T3 (that is, the ramp signal Vramp crosses the threshold VTH), the compensation signal VCOMP and the ramp signal VRAMP of the present application are earlier than the time T3. The crossover has occurred at time T1 (that is, the ramp signal VRAMP crosses the compensation signal VCOMP). Therefore, as shown in FIG. 4 , the driving signal VGH of the present application generates dense and continuous multiple pulses one step earlier than the driving signal Vgh in the related art (that is, the power stage circuit 10 starts one step earlier with the preset duty cycle). operation).

由上述本申請的實施方式可知,藉由對輸出電壓VOUT的變化做出相反反應的補償訊號VCOMP及斜坡訊號VRAMP,本申請的控制電路20及多相電源轉換器電路100相較於相關技術,具有較佳的負載暫態響應能力等優勢。As can be seen from the above embodiments of the present application, by using the compensation signal VCOMP and the ramp signal VRAMP that react oppositely to changes in the output voltage VOUT, the control circuit 20 and the multi-phase power converter circuit 100 of the present application are better than related technologies. It has the advantages of better load transient response capability.

應當理解,本申請的多相電源轉換器電路100並不限於第1圖所示的電路架構。舉例來說,導通時間產生電路30可整合於控制電路20中。據此,於一些實施例中,多相電源轉換器電路100包含功率級電路10及控制電路20。控制電路20耦接於功率級電路10、相輸出端NPHA及電壓輸出端NOUT。在此電路架構下,控制電路20將在斜坡訊號VRAMP跨越補償訊號VCOMP時,控制功率級電路10依據預設占空比運作,使相電流IL增加。It should be understood that the multi-phase power converter circuit 100 of the present application is not limited to the circuit architecture shown in FIG. 1 . For example, the on-time generating circuit 30 can be integrated into the control circuit 20 . Accordingly, in some embodiments, the multi-phase power converter circuit 100 includes a power stage circuit 10 and a control circuit 20 . The control circuit 20 is coupled to the power stage circuit 10, the phase output terminal NPHA and the voltage output terminal NOUT. Under this circuit structure, the control circuit 20 will control the power stage circuit 10 to operate according to the preset duty cycle to increase the phase current IL when the ramp signal VRAMP crosses the compensation signal VCOMP.

此外,由第2圖的實施例可知,比較電路24包含比較器204及延遲電路214,並在斜坡訊號VRAMP大於補償訊號VCOMP時,將設定訊號SETD的電壓位準以等時間間隔的方式從第一電壓位準V1切換至第二電壓位準V2,以產生至少一觸發脈衝PTRI。然而,本申請並不限於此。舉例來說,延遲電路214可省略,或整合於導通時間產生電路30中。據此,於一些實施例中,延遲電路214從第2圖的比較電路24中省略。在此電路架構下,在斜坡訊號VRAMP跨越補償訊號VCOMP時,比較電路24將設定訊號SET從第一電壓位準V1調整至第二電壓位準V2,來產生觸發脈衝PTRI。In addition, it can be seen from the embodiment of FIG. 2 that the comparison circuit 24 includes a comparator 204 and a delay circuit 214, and when the ramp signal VRAMP is greater than the compensation signal VCOMP, the voltage level of the setting signal SETD is changed from the first voltage to the second voltage at equal time intervals. A voltage level V1 is switched to a second voltage level V2 to generate at least one trigger pulse PTRI. However, the present application is not limited to this. For example, the delay circuit 214 can be omitted or integrated into the on-time generating circuit 30 . Accordingly, in some embodiments, the delay circuit 214 is omitted from the comparison circuit 24 in FIG. 2 . Under this circuit structure, when the ramp signal VRAMP crosses the compensation signal VCOMP, the comparison circuit 24 adjusts the setting signal SET from the first voltage level V1 to the second voltage level V2 to generate the trigger pulse PTRI.

雖然本新型已以實施方式揭露如上,然其並非用以限定本新型,所屬技術領域具有通常知識者在不脫離本新型之精神和範圍內,當可作各種更動與潤飾,因此本新型之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention is The scope shall be determined by the appended patent application scope.

10:功率級電路 11:驅動電路 12:高側開關 13:低側開關 20:控制電路 21:誤差偵測電路 22:補償產生電路 23:斜坡產生電路 24:比較電路 30:導通時間產生電路 100:多相電源轉換器電路 201,RCO:電阻器 202:放大電路 203:積分電路 204:比較器 211,212,221:運算電路 213:轉導放大電路 214:延遲電路 223:電容器 CO:去耦合電容器 GND:接地電壓 IERRI:轉換電流 IL:相電流 L:電感器 NIN:電壓輸入端 NPHA:相輸出端 NPS:輸出端 NOUT:電壓輸出端 PD:禁能期間 PE:致能期間 PTRI:觸發脈衝 RI:電阻值 RL:負載電阻器 SET,SETD:設定訊號 T1,T2,T3:時間 V1:第一電壓位準 V2:第二電壓位準 VCOMP:補償訊號 VDAC:參考電壓 VDD:第一電源電壓 VEE:第二電源電壓 VERR:誤差訊號 VERRA:放大誤差訊號 VERRI:積分誤差訊號 VGH,VGL,Vgh:驅動訊號 VIN:輸入電壓 VL:轉換電壓 VOUT:輸出電壓 VRAMP,Vramp:斜坡訊號 VREF:相依參考電壓 VTH:門檻值 10: Power stage circuit 11: Drive circuit 12:High side switch 13: Low side switch 20:Control circuit 21: Error detection circuit 22: Compensation generation circuit 23:Ramp generation circuit 24:Comparison circuit 30: On-time generation circuit 100:Polyphase power converter circuit 201,RCO:Resistor 202: Amplification circuit 203: Integral circuit 204: Comparator 211, 212, 221: Arithmetic circuit 213: Transconduction amplification circuit 214: Delay circuit 223:Capacitor CO: decoupling capacitor GND: ground voltage IERRI: conversion current IL: phase current L:Inductor NIN: voltage input terminal NPHA: Phase output terminal NPS: output NOUT: voltage output terminal PD: period of disablement PE: enabling period PTRI: trigger pulse RI: resistance value RL: load resistor SET, SETD: setting signal T1, T2, T3: time V1: first voltage level V2: second voltage level VCOMP: compensation signal VDAC: reference voltage VDD: first power supply voltage VEE: second power supply voltage VERR: error signal VERRA: Amplify error signal VERRI: Integral error signal VGH, VGL, Vgh: drive signal VIN: input voltage VL: conversion voltage VOUT: output voltage VRAMP, Vramp: ramp signal VREF: dependent reference voltage VTH: threshold value

第1圖為依據本申請的一些實施例繪示的一種多相電源轉換器電路的電路示意圖。 第2圖為依據本申請的一些實施例繪示的一種控制電路的電路示意圖。 第3圖為依據本申請的一些實施例繪示的多相電源轉換器電路中一些訊號的時序圖。 第4圖為依據本申請的一些實施例繪示的多相電源轉換器電路中一些訊號及相關技術中一些訊號的時序圖。 Figure 1 is a circuit schematic diagram of a multi-phase power converter circuit according to some embodiments of the present application. Figure 2 is a circuit schematic diagram of a control circuit according to some embodiments of the present application. Figure 3 is a timing diagram of some signals in a multi-phase power converter circuit according to some embodiments of the present application. Figure 4 is a timing diagram of some signals in a multi-phase power converter circuit and some signals in related technologies according to some embodiments of the present application.

10:功率級電路 10: Power stage circuit

11:驅動電路 11: Drive circuit

12:高側開關 12: High side switch

13:低側開關 13: Low side switch

20:控制電路 20:Control circuit

21:誤差偵測電路 21: Error detection circuit

22:補償產生電路 22: Compensation generation circuit

23:斜坡產生電路 23:Ramp generation circuit

24:比較電路 24:Comparison circuit

30:導通時間產生電路 30: On-time generation circuit

100:多相電源轉換器電路 100:Polyphase power converter circuit

RCO:電阻器 RCO: resistor

CO:去耦合電容器 CO: decoupling capacitor

GND:接地電壓 GND: ground voltage

IL:相電流 IL: phase current

L:電感器 L:Inductor

NIN:電壓輸入端 NIN: voltage input terminal

NPHA:相輸出端 NPHA: Phase output terminal

NPS:輸出端 NPS: output

NOUT:電壓輸出端 NOUT: voltage output terminal

PTRI:觸發脈衝 PTRI: trigger pulse

RL:負載電阻器 RL: load resistor

VCOMP:補償訊號 VCOMP: compensation signal

VDAC:參考電壓 VDAC: reference voltage

VERR:誤差訊號 VERR: error signal

VGH,VGL:驅動訊號 VGH, VGL: drive signal

VIN:輸入電壓 VIN: input voltage

VOUT:輸出電壓 VOUT: output voltage

VRAMP:斜坡訊號 VRAMP: ramp signal

Claims (10)

一種控制電路,適用於一多相電源轉換器電路,並包含: 一誤差偵測電路,耦接於該多相電源轉換器電路的一相輸出端及一電壓輸出端,用以偵測該相輸出端的一相電流及該電壓輸出端的一輸出電壓,並用以輸出關聯於該相電流、該輸出電壓及一參考電壓的一誤差訊號; 一補償產生電路,耦接於該誤差偵測電路,並用以依據該誤差訊號及該參考電壓,輸出一補償訊號; 一斜坡產生電路,耦接於該誤差偵測電路,並用以依據該誤差訊號,輸出一斜坡訊號:以及 一比較電路,耦接於該補償產生電路及該斜坡產生電路,用以接收該補償訊號及該斜坡訊號,並用以在該斜坡訊號跨越該補償訊號時,產生至少一觸發脈衝。 A control circuit adapted to a multi-phase power converter circuit and comprising: An error detection circuit, coupled to a phase output terminal and a voltage output terminal of the multi-phase power converter circuit, is used to detect a phase current of the phase output terminal and an output voltage of the voltage output terminal, and to output an error signal associated with the phase current, the output voltage and a reference voltage; a compensation generating circuit coupled to the error detection circuit and used to output a compensation signal based on the error signal and the reference voltage; a slope generating circuit coupled to the error detection circuit and used to output a slope signal based on the error signal: and A comparison circuit is coupled to the compensation generation circuit and the slope generation circuit for receiving the compensation signal and the slope signal, and for generating at least one trigger pulse when the slope signal crosses the compensation signal. 如請求項1所述之控制電路,其中該補償產生電路包含: 一放大電路,耦接於該誤差偵測電路,用以接收該誤差訊號,並用以放大該誤差訊號,以輸出一放大誤差訊號;以及 一運算電路,耦接於該放大電路及該比較電路,用以接收該參考電壓及該放大誤差訊號,並用以依據該參考電壓與該放大誤差訊號的一差值,輸出該補償訊號。 The control circuit as described in claim 1, wherein the compensation generating circuit includes: an amplifier circuit coupled to the error detection circuit for receiving the error signal and amplifying the error signal to output an amplified error signal; and An operation circuit is coupled to the amplification circuit and the comparison circuit for receiving the reference voltage and the amplified error signal, and for outputting the compensation signal based on a difference between the reference voltage and the amplified error signal. 如請求項1所述之控制電路,其中該斜坡產生電路包含: 一電容器; 一積分電路,耦接於該誤差偵測電路,用以接收該誤差訊號,並用以積分該誤差訊號,以輸出一積分誤差訊號;以及 一轉導放大電路,耦接於該積分電路、該電容器及該比較電路,用以接收該積分誤差訊號,並用以轉換該積分誤差訊號為一轉換電流,以藉由該轉換電流對該電容器充電,從而輸出該斜坡訊號。 The control circuit as described in claim 1, wherein the slope generating circuit includes: a capacitor; An integrating circuit coupled to the error detection circuit for receiving the error signal and integrating the error signal to output an integrated error signal; and A transconductance amplifier circuit, coupled to the integrating circuit, the capacitor and the comparison circuit, is used to receive the integrated error signal, and to convert the integrated error signal into a conversion current to charge the capacitor through the conversion current. , thereby outputting the slope signal. 如請求項1所述之控制電路,其中該比較電路用以輸出一設定訊號,並用以依據該補償訊號及該誤差訊號,調整該設定訊號的電壓位準,其中該比較電路在該斜坡訊號大於該補償訊號時,將該設定訊號的電壓位準等時間間隔地從一第一電壓位準切換至一第二電壓位準,以產生該至少一觸發脈衝。The control circuit as described in claim 1, wherein the comparison circuit is used to output a setting signal and adjust the voltage level of the setting signal based on the compensation signal and the error signal, wherein the comparison circuit is used when the slope signal is greater than When compensating the signal, the voltage level of the setting signal is switched from a first voltage level to a second voltage level at equal time intervals to generate the at least one trigger pulse. 如請求項1所述之控制電路,其中該比較電路包含: 一比較器,用以輸出一設定訊號,用以比較該斜坡訊號及該補償訊號,並用以依據該斜坡訊號及該補償訊號的比較結果,調整該設定訊號的電壓位準,其中該比較器在該斜坡訊號大於該補償訊號時,將該設定訊號從一第一電壓位準調整至一第二電壓位準;以及 一延遲電路,耦接於該比較器,並用以等時間間隔地輸出該第二電壓位準的該設定訊號,以產生該至少一觸發脈衝。 The control circuit as described in claim 1, wherein the comparison circuit includes: A comparator for outputting a setting signal for comparing the slope signal and the compensation signal, and for adjusting the voltage level of the setting signal based on the comparison result of the slope signal and the compensation signal, wherein the comparator is When the ramp signal is greater than the compensation signal, the setting signal is adjusted from a first voltage level to a second voltage level; and A delay circuit is coupled to the comparator and used to output the setting signal of the second voltage level at equal time intervals to generate the at least one trigger pulse. 如請求項1所述之控制電路,其中該誤差偵測電路包含: 一電阻器,耦接於該多相電源轉換器電路的該相輸出端,並用以產生與該相電流相依的一轉換電壓; 一第一運算電路,耦接於該電阻器,用以接收該轉換電壓及該參考電壓,並用以依據該參考電壓與該轉換電壓的一差值,產生一相依參考電壓;以及 一第二運算電路,耦接於該第一運算電路,用以接收該相依參考電壓及該輸出電壓,並用以依據該相依參考電壓與該輸出電壓的一差值,產生該誤差訊號。 The control circuit as described in claim 1, wherein the error detection circuit includes: a resistor coupled to the phase output end of the multi-phase power converter circuit and used to generate a conversion voltage dependent on the phase current; a first operation circuit coupled to the resistor for receiving the conversion voltage and the reference voltage, and for generating a dependent reference voltage based on a difference between the reference voltage and the conversion voltage; and A second operation circuit is coupled to the first operation circuit for receiving the dependent reference voltage and the output voltage, and for generating the error signal based on a difference between the dependent reference voltage and the output voltage. 如請求項1所述之控制電路,其中該多相電源轉換器電路包含一導通時間產生電路及一功率級電路,且該至少一觸發脈衝用以觸發該導通時間產生電路控制該功率級電路依據一預設占空比運作。The control circuit as claimed in claim 1, wherein the multi-phase power converter circuit includes a conduction time generating circuit and a power stage circuit, and the at least one trigger pulse is used to trigger the conduction time generating circuit to control the power stage circuit according to A preset duty cycle operation. 一種多相電源轉換器電路,用以在一電壓輸入端接收一輸入電壓,用以在一電壓輸出端輸出一輸出電壓,並包含: 一功率級電路,耦接於該電壓輸入端,並經由一電感器耦接於一相輸出端;以及 一控制電路,耦接於該功率級電路、該相輸出端及該電壓輸出端,用以依據該相輸出端的一相電流、該輸出電壓及一參考電壓產生一誤差訊號,用以依據該參考電壓及該誤差訊號產生一補償訊號,用以依據該誤差訊號產生一斜坡訊號,並用以在該斜坡訊號跨越該補償訊號時,控制該功率級電路依據一預設占空比運作,使該相電流增加。 A multi-phase power converter circuit is used for receiving an input voltage at a voltage input terminal and for outputting an output voltage at a voltage output terminal, and includes: a power stage circuit coupled to the voltage input terminal and coupled to a phase output terminal via an inductor; and A control circuit, coupled to the power stage circuit, the phase output terminal and the voltage output terminal, is used to generate an error signal based on a phase current of the phase output terminal, the output voltage and a reference voltage, and is used to generate an error signal according to the reference voltage. The voltage and the error signal generate a compensation signal, which is used to generate a slope signal according to the error signal, and is used to control the power stage circuit to operate according to a preset duty cycle when the slope signal crosses the compensation signal, so that the phase The current increases. 如請求項8所述之多相電源轉換器電路,其中該控制電路包含: 一誤差偵測電路,耦接於該相輸出端及該電壓輸出端,用以偵測該相電流及該輸出電壓,並用以輸出關聯於該相電流、該輸出電壓及該參考電壓的該誤差訊號; 一補償產生電路,耦接於該誤差偵測電路,用以放大該誤差訊號,並用以依據基於該參考電壓與經放大的該誤差訊號產生的一計算值,輸出該補償訊號; 一斜坡產生電路,耦接於該誤差偵測電路,用以對該誤差訊號執行運算,並用以對經執行運算的該誤差訊號進行電壓電流轉換,以輸出該斜坡訊號;以及 一比較電路,耦接於該補償產生電路及該斜坡產生電路,用以接收該補償訊號及該斜坡訊號,並用以在該斜坡訊號大於該補償訊號時,產生至少一觸發脈衝。 The multi-phase power converter circuit as claimed in claim 8, wherein the control circuit includes: An error detection circuit, coupled to the phase output terminal and the voltage output terminal, is used to detect the phase current and the output voltage, and is used to output the error associated with the phase current, the output voltage and the reference voltage. signal; a compensation generating circuit coupled to the error detection circuit for amplifying the error signal and outputting the compensation signal based on a calculated value based on the reference voltage and the amplified error signal; A slope generating circuit, coupled to the error detection circuit, is used to perform calculations on the error signal, and is used to perform voltage-current conversion on the calculated error signal to output the slope signal; and A comparison circuit is coupled to the compensation generation circuit and the slope generation circuit for receiving the compensation signal and the slope signal, and for generating at least one trigger pulse when the slope signal is greater than the compensation signal. 如請求項9所述之多相電源轉換器電路,其中該控制電路還包含: 一導通時間產生電路,耦接於該比較電路及該功率級電路之間,並用以經該至少一觸發脈衝觸發而控制該功率級電路依據該預設占空比運作。 The multi-phase power converter circuit as described in claim 9, wherein the control circuit further includes: An on-time generating circuit is coupled between the comparison circuit and the power stage circuit, and is used to control the power stage circuit to operate according to the preset duty cycle by being triggered by the at least one trigger pulse.
TW112211541U 2023-10-25 2023-10-25 Multi-phase power converter circuit and control circuit thereof TWM651275U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112211541U TWM651275U (en) 2023-10-25 2023-10-25 Multi-phase power converter circuit and control circuit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112211541U TWM651275U (en) 2023-10-25 2023-10-25 Multi-phase power converter circuit and control circuit thereof

Publications (1)

Publication Number Publication Date
TWM651275U true TWM651275U (en) 2024-02-01

Family

ID=90823621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112211541U TWM651275U (en) 2023-10-25 2023-10-25 Multi-phase power converter circuit and control circuit thereof

Country Status (1)

Country Link
TW (1) TWM651275U (en)

Similar Documents

Publication Publication Date Title
CN110326206B (en) Fixed frequency DC-DC converter
US10601318B2 (en) Switching converter using pulse-frequency modulation and current-mode control
US9548651B2 (en) Advanced control circuit for switched-mode DC-DC converter
US7453250B2 (en) PWM controller with dual-edge modulation using dual ramps
US9991794B2 (en) Hybrid capacitive-inductive voltage converter
TWI400868B (en) Dc to dc buck-boost voltage converter and method performed by the same
US7327124B2 (en) Control apparatus and method for a boost-inverting converter
US20130038302A1 (en) Control circuit of a dc/dc converter and the method thereof
US20070064454A1 (en) Circuit and method for soft start from a residual voltage
US8884598B2 (en) Method and apparatus for operating a DC/DC converter
JP2008131746A (en) Step-up/down switching regulator
TW200818676A (en) Power converter with hysteretic control
TWI796869B (en) Adaptive constant on-time control circuit and switching converter and method thereof
US10199919B2 (en) Zero dead time control circuit
US9634563B2 (en) Ramp signal generating method and generator thereof, and pulse width modulation signal generator
US7688050B2 (en) Switching power supply controller with unidirectional transient gain change
TWI473400B (en) Dc-dc controller and control method thereof
TW201919317A (en) A converter and method of drive and control thereof
JP2006014559A (en) Dc/dc converter
US10469073B1 (en) Signal reconstruction circuit
CN111082657A (en) Buck-boost converter and control method
EP4195482A1 (en) Feedback circuit with adjustable loop gain for a boost converter
TWM651275U (en) Multi-phase power converter circuit and control circuit thereof
CN113507209B (en) Pulse width modulation DC-DC converter, control method and electronic equipment
TW201409907A (en) DC-DC converter operating in pulse width modulation mode or pulse-skipping mode and switching method thereof