TWM648255U - 電腦系統 - Google Patents

電腦系統 Download PDF

Info

Publication number
TWM648255U
TWM648255U TW112206984U TW112206984U TWM648255U TW M648255 U TWM648255 U TW M648255U TW 112206984 U TW112206984 U TW 112206984U TW 112206984 U TW112206984 U TW 112206984U TW M648255 U TWM648255 U TW M648255U
Authority
TW
Taiwan
Prior art keywords
model
interval
accuracy
historical
data
Prior art date
Application number
TW112206984U
Other languages
English (en)
Inventor
呂易儒
陳照元
林宗穎
林煒恩
Original Assignee
玉山商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 玉山商業銀行股份有限公司 filed Critical 玉山商業銀行股份有限公司
Priority to TW112206984U priority Critical patent/TWM648255U/zh
Publication of TWM648255U publication Critical patent/TWM648255U/zh

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一種電腦系統包含一處理裝置及電連接該處理裝置的一通訊裝置與一儲存裝置。該處理裝置將對應一第一時間區間的一區間資料對一人工智慧模型作訓練,而獲得用於評估一待辨識標籤的一區間模型。該儲存裝置儲存有一歷史模型,該歷史模型用於評估該待辨識標籤,且經由對應一第二時間區間的一歷史資料對該人工智慧模型作訓練而獲得。該處理裝置將該區間資料分別輸入該區間模型及該歷史模型而獲得一第一準確度及一第二準確度,並根據該第一準確度及該第二準確度將該區間模型及該歷史模型之其中至少一者作部署,以用於評估該待辨識標籤。

Description

電腦系統
本新型是有關於一種電腦系統,特別是指一種用於更新人工智慧模型的電腦系統。
隨著人工智慧技術的發展與進步,各種人工智慧模型(如機器學習模型)也開始應用於金融科技領域,例如:藉由將客戶的刷卡資料輸入模型以預測與評估此交易是否屬於盜刷信用卡的行為。然而,現有的監督式模型或非監督式模型的訓練方法通常是採用長期的歷史資料(如過去10年或30年的刷卡資料)或短期的區間資料(如最近3個月的刷卡資料)作為模型的訓練資料。當人工智慧模型是藉由長期的歷史資料來訓練而部署時,不但導致模型的資料量龐大且訓練後的模型也不能準確地判斷出新型態的盜刷行為。反之,當人工智慧模型是藉由短期的區間資料來訓練而部署時,會造成無法準確地判斷出過去歷史曾發生過的盜刷態樣。因此,如何對人工智慧模型作訓練與部署而更新便成為一個待解決的問題。
因此,本新型的目的,即在提供一種兼顧模型準確度與訓練資料量以更新人工智慧模型的電腦系統。
本新型提供一種電腦系統,適用於儲存一區間資料及一歷史資料的一資料庫,並包含一通訊裝置、一儲存裝置、及一處理裝置。
該通訊裝置用於提供連網功能,以與該資料庫建立連線。該儲存裝置儲存一人工智慧模型及一歷史模型,該歷史模型用於評估一待辨識標籤,且經由對應一第二時間區間的該歷史資料對該人工智慧模型作訓練而獲得。該處理裝置電連接該通訊裝置及該儲存裝置,並經由該通訊裝置取得該資料庫所儲存的該區間資料,該區間資料對應一第一時間區間,該第二時間區間早於該第一時間區間且大於該第一時間區間。
該處理裝置將該區間資料對該人工智慧模型作訓練,而獲得用於評估該待辨識標籤的一區間模型,並將該區間資料輸入該區間模型而獲得對應該待辨識標籤的一第一準確度,且將該區間資料輸入該歷史模型而獲得對應該待辨識標籤的一第二準確度。該處理裝置根據該第一準確度及該第二準確度將該區間模型及該歷史模型之其中至少一者作部署,以用於評估該待辨識標籤。
在一些實施態樣中,其中,當該處理裝置判斷該第一準確度大於該第二準確度時,該處理裝置選擇該區間模型作部署,而當該處理裝置判斷該第一準確度小於該第二準確度時,該處理裝置選擇該歷史模型作部署。
在另一些實施態樣中,其中,當該處理裝置判斷該第一準確度與該第二準確度的比例等於A:B時,將該區間模型及該歷史模型作部署,且計算該區間模型的一輸出數值乘以A/(A+B)加上該歷史模型的另一輸出數值乘以B/(A+B)而獲得一綜合輸出數值,並對該綜合輸出數值作判斷而獲得該待辨識標籤的結果。
在另一些實施態樣中,其中,當該處理裝置判斷該第一準確度大於該第二準確度時,該處理裝置先將該區間資料之其中至少對應該待辨識標籤者加入至該歷史資料,且經由更新後的該歷史資料對該人工智慧模型作訓練而獲得更新後的該歷史模型。接著,該處理裝置重新將該區間資料輸入更新後的該歷史模型而獲得更新後的該第二準確度。該處理裝置再根據該第一準確度及更新後的該第二準確度將該區間模型及該歷史模型之其中至少一者作部署,以用於評估該待辨識標籤。
在另一些實施態樣中,其中,該第一時間區間是最接近當下月份的前三個月,該區間資料是多個刷卡資料,該待辨識標籤是信用卡盜刷交易,該歷史資料是另外多個刷卡資料。
本新型的功效在於:藉由對應該第一時間區間(即較短時間區間)的該區間資料作訓練而獲得的該區間模型,及對應該第二時間區間(即較長時間區間)的該歷史資料作訓練而獲得的該歷史模型,使得該電腦系統的該處理裝置根據兩種模型對於該區間資料所對應的該第一準確度及該第二準確度,決定如何部署兩種模型,而能夠實現一種兼顧模型準確度與訓練資料量以更新人工智慧模型的電腦系統。
在本新型被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。
參閱圖1,本新型電腦系統1之一實施例,適用於一資料庫9,並包含一通訊裝置13、一儲存裝置12、及一處理裝置11。在本實施例中,該資料庫9例如是銀行的一伺服器,並儲存一區間資料及一歷史資料。該區間資料例如是對應一第一時間區間的多個刷卡資料(即多個行為資料),該歷史資料例如是對應一第二時間區間的另外多個刷卡資料(即另外多個行為資料),該第二時間區間早於該第一時間區間且大於該第一時間區間。
該通訊裝置13例如是一乙太網路卡或一無線網路模組(如Wi-FI模組),並用於提供連網功能,以與該資料庫9建立連線。該儲存裝置12例如是一個或多個硬碟,並儲存一人工智慧模型。該處理裝置11例如一個或多個中央處理器,並電連接該通訊裝置13及該儲存裝置12。也就是說,該電腦系統1例如是一個或多個電腦主機或伺服器。
參閱圖1與圖2,本新型電腦系統更新人工智慧模型的一第一態樣,包含步驟S1~S4。
於步驟S1,該電腦系統1的該處理裝置11經由該通訊裝置13取得該資料庫9所儲存的該區間資料,並將對應該第一時間區間的該區間資料對該人工智慧模型作訓練,而獲得用於評估該行為資料的一待辨識標籤的一區間模型。該處理裝置11將該區間模型儲存於該儲存裝置12,或者還儲存至該資料庫9。在本實施態樣中,該人工智慧模型是一種監督式機器學習模型(如線性迴歸、隨機森林、支持向量機等),該待辨識標籤是信用卡盜刷交易,也就是說,訓練後的該區間模型用於接收任一個刷卡資料,以評估對應的刷卡交易是否屬於盜刷交易。舉例來說,該第一時間區間是最接近當下月份的前三個月,當下月份是1月,則該第一時間區間的該區間資料是去年10月至12月的多個刷卡資料,每一個刷卡資料例如包含交易型態、實付金額、消費地國別等等。接著,執行步驟S2。另外要補充說明的是:在其他的實施態樣中,該待辨識標籤也可以用來預測消費者行為(如是否會購買某商品),或偵測警示帳戶等。
於步驟S2,該電腦系統1的該儲存裝置12還事先儲存一歷史模型,該歷史模型與該區間模型相似,同樣用於評估該行為資料的該待辨識標籤,差別在於是經由對應該第二時間區間的該歷史資料對該人工智慧模型作訓練而獲得。承續前例,該第二時間區間例如是去年10月之前的10年,則該第二時間區間的該歷史資料是11年前10月至去年9月的多個刷卡資料。接著,執行步驟S3。
於步驟S3,該電腦系統1的該處理裝置11將該區間資料的每一該刷卡資料輸入該區間模型而獲得對應該待辨識標籤的一第一準確度,並將該區間資料的每一該刷卡資料輸入該歷史模型而獲得對應該待辨識標籤的一第二準確度。準確度(如該第一準確度及該第二準確度)是人工智慧技術領域中用於評估衡量模型預測表現的通用指標名稱,例如包含準確率(Accuracy)、F值(F1 score)、精確率(Precision)、召回率(Recall)等。承續前例,在已知去年10月至12月的多個刷卡資料之其中哪一者是屬於盜刷交易的情況下,該電腦系統1將去年10月至12月的多個刷卡資料分別輸入至該區間模型及該歷史模型,以分別獲知兩種模型判斷哪些刷卡交易是屬於盜刷交易,進而判斷該第一準確度及該第二準確度。接著,執行步驟S4。
於步驟S4,該電腦系統1的該處理裝置11根據該第一準確度及該第二準確度將該區間模型及該歷史模型之其中至少一者作部署,以用於評估任一該行為資料的該待辨識標籤。在本實施態樣中,當該處理裝置11判斷該第一準確度與該第二準確度的比例等於A:B(如3:1)時,該處理裝置11將該區間模型及該歷史模型作部署,且在判斷任一刷卡資料是否屬於盜刷交易時,將該刷卡資料輸入該區間模型,以獲得一第一輸出數值,且將該刷卡資料輸入該歷史模型以獲得一第二輸出數值,並計算該第一輸出數值乘以A/(A+B)(如3/4)加上該第二輸出數值乘以B/(A+B)(如1/4)而獲得一綜合輸出數值,並對該綜合輸出數值作判斷而獲得該待辨識標籤的結果。模型(如該區間模型及該歷史模型)所輸出的輸出數值(如該第一輸出數值及該第二輸出數值)即為預測機率值,且介於0與1之間。舉例來說,輸出數值越接近1表示盜刷機率越高,因此,該電腦系統1能夠在判斷出該綜合輸出數值大於一預設閾值時,判斷對應的該刷卡資料屬於盜刷交易。該預設閾值例如是0.5、0.8、或依據過往的數據來決定合適的大小。
而在其他的實施態樣中,該處理裝置11也可以改為在判斷出該第一準確度大於該第二準確度時,選擇該區間模型作部署,而當該處理裝置11判斷出該第一準確度小於該第二準確度時,選擇該歷史模型作部署。此外,當該處理裝置11判斷出該第一準確度大於該第二準確度時,該處理裝置11也可以將該區間資料之其中至少對應該待辨識標籤者加入至該歷史資料,且經由更新後的該歷史資料對該人工智慧模型作訓練而獲得更新後的該歷史模型。
參閱圖1與圖3,本新型電腦系統更新人工智慧模型的一第二態樣,包含步驟S1~S5。該第二態樣與該第一態樣的步驟S1~S4相同,差異在於步驟S3之後執行步驟S5及以下的內容。
於步驟S5,該電腦系統1的該處理裝置11判斷是否對該歷史模型作更新,當該處理裝置11判斷該第一準確度大於該第二準確度時,也就是判斷出該歷史模型要更新時,該處理裝置11將該區間資料之其中至少對應該待辨識標籤者加入至該歷史資料,且經由更新後的該歷史資料對該人工智慧模型作訓練而獲得更新後的該歷史模型,接著,再執行步驟S3。而當該處理裝置11判斷該歷史模型是已經根據該區間資料作訓練而更新時,也就是判斷出該歷史模型不要再更新時,則執行步驟S4。
舉例來說,初始時,用於訓練該人工智慧模型而獲得該歷史模型的該歷史資料所對應的該第二時間區間是1年,當該區間模型對該區間資料的該等刷卡資料作評估的準確度高於該歷史模型對該區間資料的該等刷卡資料作評估的準確度時,例如該區間資料中具有5筆對應盜刷交易的刷卡資料,則該處理裝置11將該區間資料中至少該5筆對應盜刷交易的刷卡資料加入至原有的該歷史資料中,使得該歷史模型能夠根據更新後的該歷史資料作訓練,進而使得更新的該歷史模型能夠在對該區間資料作評估時獲得更為提高的準確度。此外,藉由步驟S4對該歷史模型的執行更新,不但能夠提高該歷史模型對於較新的該區間資料的準確度,還能夠同時兼顧資料量不會快速膨脹的好處。
綜上所述,藉由對應該第一時間區間(即較短時間區間)的該區間資料作訓練而獲得的該區間模型,及對應該第二時間區間(即較長時間區間)的該歷史資料作訓練而獲得的該歷史模型,使得該電腦系統1不但能夠根據兩種模型對於該區間資料所對應的該第一準確度及該第二準確度,決定如何部署兩種模型,還能夠在該區間模型的準確度高於該歷史模型時,對該歷史模型作訓練而更新,進而能夠實現一種兼顧模型準確度與訓練資料量以更新人工智慧模型的電腦系統,故確實能達成本新型的目的。
惟以上所述者,僅為本新型的實施例而已,當不能以此限定本新型實施的範圍,凡是依本新型申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本新型專利涵蓋的範圍內。
1:電腦系統
11:處理裝置
12:儲存裝置
13:通訊裝置
9:資料庫
S1~S5:步驟
本新型的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明本新型電腦系統的一實施例; 圖2是一流程圖,說明該實施例更新人工智慧模型的一第一態樣;及 圖3是一流程圖,說明該實施例更新人工智慧模型的一第二態樣。
1:電腦系統
11:處理裝置
12:儲存裝置
13:通訊裝置
9:資料庫

Claims (5)

  1. 一種電腦系統,適用於儲存一區間資料及一歷史資料的一資料庫,並包含: 一通訊裝置,用於提供連網功能,以與該資料庫建立連線; 一儲存裝置,儲存一人工智慧模型及一歷史模型,該歷史模型用於評估一待辨識標籤,且經由對應一第二時間區間的該歷史資料對該人工智慧模型作訓練而獲得,及 一處理裝置,電連接該通訊裝置及該儲存裝置,並經由該通訊裝置取得該資料庫所儲存的該區間資料,該區間資料對應一第一時間區間,該第二時間區間早於該第一時間區間且大於該第一時間區間, 該處理裝置將該區間資料對該人工智慧模型作訓練,而獲得用於評估該待辨識標籤的一區間模型,並將該區間資料輸入該區間模型而獲得對應該待辨識標籤的一第一準確度,且將該區間資料輸入該歷史模型而獲得對應該待辨識標籤的一第二準確度, 該處理裝置根據該第一準確度及該第二準確度將該區間模型及該歷史模型之其中至少一者作部署,以用於評估該待辨識標籤。
  2. 如請求項1所述的電腦系統,其中,當該處理裝置判斷該第一準確度大於該第二準確度時,該處理裝置選擇該區間模型作部署,而當該處理裝置判斷該第一準確度小於該第二準確度時,該處理裝置選擇該歷史模型作部署。
  3. 如請求項1所述的電腦系統,其中,當該處理裝置判斷該第一準確度與該第二準確度的比例等於A:B時,將該區間模型及該歷史模型作部署,且計算該區間模型的一輸出數值乘以A/(A+B)加上該歷史模型的另一輸出數值乘以B/(A+B)而獲得一綜合輸出數值,並對該綜合輸出數值作判斷而獲得該待辨識標籤的結果。
  4. 如請求項1所述的電腦系統,其中,當該處理裝置判斷該第一準確度大於該第二準確度時,該處理裝置先將該區間資料之其中至少對應該待辨識標籤者加入至該歷史資料,且經由更新後的該歷史資料對該人工智慧模型作訓練而獲得更新後的該歷史模型,接著,該處理裝置重新將該區間資料輸入更新後的該歷史模型而獲得更新後的該第二準確度,該處理裝置再根據該第一準確度及更新後的該第二準確度將該區間模型及該歷史模型之其中至少一者作部署,以用於評估該待辨識標籤。
  5. 如請求項1所述的電腦系統,其中,該第一時間區間是最接近當下月份的前三個月,該區間資料是多個刷卡資料,該待辨識標籤是信用卡盜刷交易,該歷史資料是另外多個刷卡資料。
TW112206984U 2023-07-05 2023-07-05 電腦系統 TWM648255U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112206984U TWM648255U (zh) 2023-07-05 2023-07-05 電腦系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112206984U TWM648255U (zh) 2023-07-05 2023-07-05 電腦系統

Publications (1)

Publication Number Publication Date
TWM648255U true TWM648255U (zh) 2023-11-11

Family

ID=89721357

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112206984U TWM648255U (zh) 2023-07-05 2023-07-05 電腦系統

Country Status (1)

Country Link
TW (1) TWM648255U (zh)

Similar Documents

Publication Publication Date Title
TWI712981B (zh) 風險辨識模型訓練方法、裝置及伺服器
US20200134716A1 (en) Systems and methods for determining credit worthiness of a borrower
US20180081787A1 (en) Virtual Payments Environment
US11250433B2 (en) Using semi-supervised label procreation to train a risk determination model
US11210673B2 (en) Transaction feature generation
US11694208B2 (en) Self learning machine learning transaction scores adjustment via normalization thereof accounting for underlying transaction score bases relating to an occurrence of fraud in a transaction
CN111144899B (zh) 识别虚假交易的方法及装置和电子设备
US20230162230A1 (en) Systems and methods for targeting content based on implicit sentiment analysis
US20220067460A1 (en) Variance Characterization Based on Feature Contribution
US20230252517A1 (en) Systems and methods for automatically providing customized financial card incentives
TWM648255U (zh) 電腦系統
CN114298825A (zh) 还款积极度评估方法及装置
Kazemi et al. Estimation of optimum thresholds for binary classification using genetic algorithm: An application to solve a credit scoring problem
CN113094654A (zh) 一种产品数据处理方法、装置及设备
US20240070128A1 (en) Methods and apparatus for generating clean datasets from impure datasets
Antony et al. Predicting of Credit Risk Using Machine Learning Algorithms
CN114677186B (zh) 金融产品的报价计算方法、装置、计算机设备和存储介质
CN109255663A (zh) 针对代币的评分方法、装置、计算机设备和存储介质
US11887143B2 (en) Record management system for enabling access to a record
CN114493821B (zh) 数据核销方法、装置、计算机设备和存储介质
CN113344587B (zh) 数据等级的确定方法、装置、电子设备及存储介质
CN117114741B (zh) 一种基于商户画像分析的信息决策方法及系统
CN117724973B (zh) 一种基于业务场景的估值系统回归测试方法及装置
US20240127251A1 (en) Systems and methods for predicting cash flow
US20240070688A1 (en) Multi-encoder model architecture for calculating attrition