TWM648086U - Body trajectory movement record recognition and trajectory big data analysis system - Google Patents

Body trajectory movement record recognition and trajectory big data analysis system Download PDF

Info

Publication number
TWM648086U
TWM648086U TW112202568U TW112202568U TWM648086U TW M648086 U TWM648086 U TW M648086U TW 112202568 U TW112202568 U TW 112202568U TW 112202568 U TW112202568 U TW 112202568U TW M648086 U TWM648086 U TW M648086U
Authority
TW
Taiwan
Prior art keywords
trajectory
user
action
movement
record
Prior art date
Application number
TW112202568U
Other languages
Chinese (zh)
Inventor
曾建榮
曾湘庭
Original Assignee
格敦企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格敦企業股份有限公司 filed Critical 格敦企業股份有限公司
Priority to TW112202568U priority Critical patent/TWM648086U/en
Publication of TWM648086U publication Critical patent/TWM648086U/en

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Image Analysis (AREA)

Abstract

本創作是一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統,包括一 行動軌跡偵測裝置、一處理伺服裝置及一雲端數據資料伺服器。行動軌跡偵測裝置是供偵測使用者依據一特定動作的導引,並記錄與蒐集一肢體軌跡動作以產生一肢體軌跡資訊。處理伺服裝置是供分析並記錄肢體軌跡資訊,並產生專屬使用者的一肢體軌跡識別數據。雲端數據資料伺服器是供接收使用者的肢體軌跡識別數據,依據肢體軌跡識別數據進行機器人智慧學習的數據分析與數據統整,以分析並產生對應的一健康圖形表,以供確認使用者的身體狀態。 This creation is a body trajectory movement record recognition and trajectory big data analysis system, including a A motion trajectory detection device, a processing server device and a cloud data server. The action trajectory detection device is used to detect the user's guidance based on a specific action, and record and collect a body trajectory action to generate a body trajectory information. The processing servo device is used to analyze and record limb trajectory information, and generate limb trajectory identification data exclusive to the user. The cloud data server is used to receive the user's body trajectory recognition data, perform data analysis and data integration of robot intelligent learning based on the body trajectory recognition data, and analyze and generate a corresponding health graph to confirm the user's health status. physical condition.

Description

肢體軌跡動作紀錄辨識及軌跡大數據分析系統 Body trajectory movement record recognition and trajectory big data analysis system

本創作是有關一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統,特別是一種可有效進行被檢驗者的肢體動作數據化,並將數據化的肢體動作數據資料進行紀錄與有效率評估的一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統。 This creation is about a body trajectory movement record recognition and trajectory big data analysis system. In particular, it is a system that can effectively digitize the body movements of the subject, and record and efficiently evaluate the digitized body movement data. Trajectory action record identification and trajectory big data analysis system.

人的身體健康狀態,可由肢體動作的協調性看出大致問題,因此有許多健康評估的方式,都會導引被檢驗者進行相關的預設動作,這些動作可以是連續的動作也可以是分段式的動作,並由醫生在一旁對被檢驗者的動作進行評估,最後再以評估的結果診斷被檢驗者的健康狀況。 A person's physical health status can be generally seen from the coordination of body movements. Therefore, there are many health assessment methods that will guide the examinee to perform related preset actions. These actions can be continuous actions or segmented actions. The doctor will evaluate the subject's movements on the side, and finally use the evaluation results to diagnose the health condition of the subject.

然而,這樣的診斷對於醫生而言相當費時,而相關檢驗都是由醫生以肉眼直接觀察評估,無法對被檢驗者的每一個肢體動作進行數據化的紀錄,因此所得到的評估報告無法有詳細的數據做為檢驗標準的評估,而且以肉眼觀察也很容易誤判,導致評估的結果失真。 However, such a diagnosis is quite time-consuming for doctors, and the relevant examinations are all directly observed and evaluated by doctors with the naked eye. They cannot record every physical movement of the subject in a digital way, so the evaluation report obtained cannot be detailed. The data is used as the evaluation of the inspection standard, and it is easy to misjudge with the naked eye, resulting in distortion of the evaluation results.

因此,如何提供一種可有效進行被檢驗者的肢體動作數據化,並將數據化的肢體動作數據資料進行紀錄與有效率的評估,令評估報告有詳細的數據做為檢驗標準的評估,增加檢驗的效率與避免檢驗的誤判,這將會是本案所要著重的問題與焦點。 Therefore, how to provide a method that can effectively digitize the body movements of the subject, and record and efficiently evaluate the digitized body movement data, so that the assessment report has detailed data as the assessment of the inspection standards, increasing the number of inspections The efficiency and avoidance of misjudgments in inspection will be the issues and focus of this case.

本創作之一目的在於提供一種可有效進行被檢驗者的肢體動作數據化的一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統。 One of the purposes of this creation is to provide a body trajectory movement record recognition and trajectory big data analysis system that can effectively digitize the subject's body movements.

本創作之另一目的在於令評估報告有詳細的數據做為檢驗標準的評估的一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統。 Another purpose of this creation is to provide a body trajectory action record recognition and trajectory big data analysis system for the evaluation report with detailed data as a test standard.

本創作之又一目的在於提供增加檢驗的效率與避免檢驗的誤判的一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統。 Another purpose of this creation is to provide a body trajectory movement record recognition and trajectory big data analysis system that increases the efficiency of inspection and avoids misjudgments in inspection.

本創作之一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統,是依據一使用者的肢體軌跡動作,並分析所述使用者的身體狀態,其中所述系統包括一行動軌跡偵測裝置、一處理伺服裝置及一雲端數據資料伺服器。所述行動軌跡偵測裝置是供偵測所述使用者依據一特定動作的導引,並記錄與蒐集肢體軌跡動作以產生一肢體軌跡資訊。所述處理伺服裝置包括一信號傳輸單元及一處理單元。所述信號傳輸單元是供信號連接至所述行動軌跡偵測裝置,並供接收所述肢體軌跡資訊。所述處理單元是供分析並記錄所述肢體軌跡資訊,並產生專屬所述使用者的一肢體軌跡識別數據。所述雲端數據資料伺服器是與信號傳輸單元信號連接,並供接收所述使用者的肢體軌跡識別數據,依據肢體軌跡識別數據進行機器人智慧學習的數據分析與數據統整,以分析並產生對應的一健康圖形表,以供確認使用者的身體狀態。 This creation is a body trajectory movement record recognition and trajectory big data analysis system, which is based on a user's body trajectory movement and analyzes the user's physical state. The system includes a movement trajectory detection device, a processing server device and a cloud data server. The action trajectory detection device is used to detect the user's guidance according to a specific action, and record and collect body trajectory actions to generate a body trajectory information. The processing servo device includes a signal transmission unit and a processing unit. The signal transmission unit is used for signal connection to the movement trajectory detection device and for receiving the body trajectory information. The processing unit is used to analyze and record the limb trajectory information, and generate limb trajectory identification data exclusive to the user. The cloud data server is signal-connected to the signal transmission unit and is used to receive the user's body trajectory recognition data, and perform data analysis and data integration for robot intelligent learning based on the body trajectory recognition data to analyze and generate corresponding data. A health graphic chart for confirming the user's physical status.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,更包括一動作導引裝置,是與所述信號傳輸單元信號連接,供導引所述使用者做出預設的所述特定動作,其中所述處理伺服裝置更包括一資料庫,係供儲存對應所述特定動作 的一導引影像資料,並提供至所述動作導引裝置,由所述動作導引裝置接收並顯示。 The above-mentioned body trajectory movement record recognition and trajectory big data analysis system further includes an action guidance device, which is signal-connected to the signal transmission unit for guiding the user to perform the preset specific action. , wherein the processing server device further includes a database for storing the information corresponding to the specific action. A guidance image data is provided to the action guidance device, and is received and displayed by the action guidance device.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中所述動作導引裝置是一虛擬實境眼鏡或VR頭盔或任一傳輸裝置,是供所述使用者配載在頭部,並供顯示所述特定動作的導引。 As mentioned above, the body trajectory movement record recognition and trajectory big data analysis system, wherein the movement guidance device is a virtual reality glasses or VR helmet or any transmission device for the user to mount on the head, and provide guidance for displaying said specific action.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中所述動作導引裝置是一顯示裝置,並供顯示所述特定動作的導引。 As mentioned above, the body trajectory action record recognition and trajectory big data analysis system, wherein the action guidance device is a display device and is used to display the guidance of the specific action.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中所述肢體軌跡識別數據具有一時間紀錄資訊及一動作達成率資訊,其中所述處理單元包括一完成時間紀錄模組及一動作達成率紀錄模組。所述完成時間紀錄模組,是供紀錄所述使用者完成肢體軌跡動作的時間並產生所述時間紀錄資訊。所述動作達成率紀錄模組是供紀錄所述使用者達成肢體軌跡動作的達成率並產生所述動作達成率資訊。 As mentioned above, the body trajectory action record recognition and trajectory big data analysis system, wherein the body trajectory identification data has a time record information and an action achievement rate information, wherein the processing unit includes a completion time recording module and an action Achievement rate record module. The completion time recording module is used to record the time when the user completes the body trajectory movement and generate the time recording information. The action achievement rate recording module is used to record the user's achievement rate of body trajectory actions and generate the action achievement rate information.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中所述行動軌跡偵測裝置包括一動態捕捉攝影機、深度攝像機或任一多功能相機,是供深度拍攝並捕捉所述使用者的肢體軌跡動作以分析所述肢體軌跡資訊。 As mentioned above, the body trajectory movement record recognition and trajectory big data analysis system, wherein the movement trajectory detection device includes a dynamic capture camera, a depth camera or any multi-function camera, which is used for depth photography and capturing of the user. Body trajectory actions to analyze the body trajectory information.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中所述行動軌跡偵測裝置包括一壓力感測器,是供所述使用者站立,並供偵測所述使用者的雙腳壓力分佈以分析所述肢體軌跡資訊。 As mentioned above, the body trajectory movement record recognition and trajectory big data analysis system, wherein the movement trajectory detection device includes a pressure sensor for the user to stand and for detecting the user's feet. Pressure distribution to analyze the limb trajectory information.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中所述行動軌跡偵測裝置包括一應變規感測器,是供配置在所述使用者身上,並供偵測所述使用者動作時的動作變化以分析所述肢體軌跡資訊。 As mentioned above, the body trajectory movement record recognition and trajectory big data analysis system, wherein the movement trajectory detection device includes a strain gauge sensor, which is configured on the user and detects the user. Movement changes during movement to analyze the limb trajectory information.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中所述行動軌跡偵測裝置包括一傳感器,是供偵測所述使用者動作變化時的光影變化以分析所述肢體軌跡資訊。 As mentioned above, the body trajectory movement record recognition and trajectory big data analysis system, wherein the movement trajectory detection device includes a sensor for detecting changes in light and shadow when the user's movements change to analyze the body trajectory information.

如上所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中所述行動軌跡偵測裝置包括一智慧穿載裝置,是供偵測所述使用者依據所述特定動作的導引時的一生理變化數據,並提供至所述處理單元,由所述處理單元上傳至所述雲端數據資料伺服器,依據生理變化數據進行機器人智慧學習的數據分析與數據統整,以分析並產生對應的所述健康圖形表。 As mentioned above, the body trajectory movement record recognition and trajectory big data analysis system, wherein the movement trajectory detection device includes a smart wearing device for detecting the user's guidance according to the specific movement. Physiological change data is provided to the processing unit, which is uploaded to the cloud data server. Data analysis and data integration of robot intelligent learning are performed based on the physiological change data to analyze and generate corresponding data. Describe the health graphics chart.

本案之一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統,是透過行動軌跡偵測裝置對使用者的肢體動作進行數據化並產生肢體軌跡識別數據。並由雲端數據資料伺服器依據肢體軌跡識別數據產生對應的健康圖形表。如此一來,可有效將使用者的肢體動作數據化,並將數據化的肢體動作數據資料進行紀錄與有效率的評估,令評估報告有詳細的數據做為檢驗標準的評估,增加檢驗的效率與避免檢驗的誤判,並達成上述所有目的。 This case involves a body trajectory movement record recognition and trajectory big data analysis system that digitizes the user's body movements through a movement trajectory detection device and generates body trajectory recognition data. And the cloud data server generates corresponding health graphs based on the body trajectory recognition data. In this way, the user's body movements can be effectively digitized, and the digitized body movement data can be recorded and evaluated efficiently, so that the assessment report will have detailed data for evaluation of inspection standards, increasing the efficiency of inspection. and avoid misjudgments in inspections, and achieve all the above purposes.

1:行動軌跡偵測裝置 1:Motion track detection device

11:動態捕捉攝影機 11:Motion capture camera

12:壓力感測器 12: Pressure sensor

13:應變規感測器 13: Strain gauge sensor

14:傳感器 14: Sensor

15:智慧穿載裝置 15:Smart loading device

2:處理伺服裝置 2: Handle the servo device

21:信號傳輸單元 21: Signal transmission unit

22:處理單元 22: Processing unit

221:完成時間紀錄模組 221:Complete time record module

222:動作達成率紀錄模組 222: Action achievement rate record module

23:資料庫 23:Database

3:雲端數據資料伺服器 3: Cloud data server

圖1所繪示為本案的一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統之方塊圖;及圖2所繪示為圖1的肢體軌跡動作紀錄辨識及軌跡大數據分析系統的行動軌跡偵測裝置的方塊圖。 Figure 1 shows a block diagram of a body trajectory action record recognition and trajectory big data analysis system in this case; and Figure 2 shows the action trajectory detection of the body trajectory action record recognition and trajectory big data analysis system in Figure 1 Block diagram of the device.

本案一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統,是依據一使用者的肢體軌跡動作,並分析使用者的身體狀態。請參考圖1所示,包括一行動軌跡偵測裝置1、一處理伺服裝置2、一雲端數據資料伺服器3及一動作導引裝置4,其中動作導引裝置4是供導引該使用者做出預設的特定動作。行動軌跡偵測裝置1是供偵測使用者依據特定動作的導引的肢體軌跡動作,並將肢體軌跡動作記錄與蒐集以產生一肢體軌跡資訊。處理伺服裝置2則包括一信號傳輸單元21、一處理單元22及一資料庫23。所述的信號傳輸單元21是供信號連接至行動軌跡偵測裝置1,並供接收肢體軌跡資訊。處理單元22是供分析並記錄肢體軌跡資訊,並產生專屬該使用者的一肢體軌跡識別數據。雲端數據資料伺服器3是與信號傳輸單元21信號連接,並供接收使用者的肢體軌跡識別數據,依據肢體軌跡識別數據進行機器人智慧學習的數據分析與數據統整,以分析並產生對應的一健康圖形表,以做為確認使用者的身體狀態的參考數據資料。其中資料庫23更儲存有對應特定動作的一導引影像資料,而動作導引裝置4是與信號傳輸單元21信號連接,可接收導引影像資料收並顯示。 This case is a body trajectory movement record recognition and trajectory big data analysis system, which is based on a user's body trajectory movements and analyzes the user's physical state. Please refer to Figure 1, which includes a movement trajectory detection device 1, a processing server device 2, a cloud data server 3 and an action guidance device 4, where the action guidance device 4 is used to guide the user Perform a preset specific action. The motion trajectory detection device 1 is used to detect the user's body trajectory movements according to the guidance of specific movements, and record and collect the body trajectory movements to generate a body trajectory information. The processing server device 2 includes a signal transmission unit 21, a processing unit 22 and a database 23. The signal transmission unit 21 is used for signal connection to the motion trajectory detection device 1 and for receiving body trajectory information. The processing unit 22 is used to analyze and record limb trajectory information, and generate limb trajectory identification data unique to the user. The cloud data server 3 is connected to the signal transmission unit 21 and is used to receive the user's body trajectory recognition data, and perform data analysis and data integration for robot intelligent learning based on the body trajectory recognition data to analyze and generate a corresponding Health graphs are used as reference data to confirm the user's physical status. The database 23 further stores a guidance image data corresponding to a specific action, and the action guidance device 4 is signal-connected to the signal transmission unit 21 and can receive the guidance image data and display it.

其中肢體軌跡識別數據具有一時間紀錄資訊及一動作達成率資訊,且本例中的處理單元22包括一完成時間紀錄模組221及一動作達成率紀錄模組222。所述的完成時間紀錄模組221是供紀錄使用者完成肢體軌跡動作的時間並產生所述的時間紀錄資訊。動作達成率紀錄模組222是供紀錄使用者達成肢體軌跡動作的達成率並產生所述的動作達成率資訊。 The body trajectory recognition data has a time record information and an action achievement rate information, and the processing unit 22 in this example includes a completion time recording module 221 and an action achievement rate recording module 222. The completion time recording module 221 is used to record the time when the user completes the body trajectory movement and generate the time recording information. The action achievement rate recording module 222 is used to record the user's achievement rate of body trajectory actions and generate the action achievement rate information.

在本例中,動作導引裝置4是一虛擬實境眼鏡,是供使用者載在臉上,使用者能身處在虛擬實境中,並利用AR/VR/MR或任何虛擬影像提示引導,使使用者 做出預設的特定動作。當然本例的動作導引裝置4亦可是顯示裝置(例如投影機或螢幕來呈現),並供顯示該特定動作的導引。 In this example, the motion guidance device 4 is a virtual reality glasses, which is mounted on the user's face. The user can be in the virtual reality and use AR/VR/MR or any virtual image prompt guidance. , so that the user Perform a preset specific action. Of course, the action guidance device 4 in this example can also be a display device (such as a projector or a screen), and is used to display guidance for the specific action.

一併參考圖2所示,在本例中行動軌跡偵測裝置1包括一動態捕捉攝影機11、一壓力感測器12、一應變規感測器13、一傳感器14及一智慧穿載裝置15。其中動態捕捉攝影機11在本例中可以是攝像頭、多功能型攝像頭、深度攝像頭或深度相機,是供深度拍攝並捕捉使用者的肢體軌跡動作以分析肢體軌跡資訊。壓力感測器12是供使用者站立,並偵測使用者的雙腳壓力分佈以分析肢體軌跡資訊。應變規感測器13是供配置在使用者身上,並供偵測使用者動作時的動作變化以分析該肢體軌跡資訊。傳感器14在本例中是一雷射投影器或紅外線感應器,可供偵測使用者動作變化時的光影變化以分析肢體軌跡資訊。 Referring also to FIG. 2 , in this example, the motion trajectory detection device 1 includes a motion capture camera 11 , a pressure sensor 12 , a strain gauge sensor 13 , a sensor 14 and a smart wearing device 15 . The dynamic capture camera 11 in this example can be a camera, a multi-function camera, a depth camera or a depth camera, which is used for depth photography and capturing the user's body trajectory movements to analyze body trajectory information. The pressure sensor 12 is used for the user to stand and detect the pressure distribution of the user's feet to analyze limb trajectory information. The strain gauge sensor 13 is configured on the user's body and detects movement changes during the user's movements to analyze the body trajectory information. In this example, the sensor 14 is a laser projector or an infrared sensor, which can detect changes in light and shadow when the user moves to analyze body trajectory information.

而智慧穿載裝置15在本例中可以是健康手環錶(例如Apple watch),可供偵測使用者依據該特定動作的導引時的一生理變化數據(例如血壓、呼吸及心跳等變化),並提供至處理單元,由處理單元22上傳至雲端數據資料伺服器3,依據生理變化數據進行機器人智慧學習的數據分析與數據統整,以分析並產生對應的健康圖形表。 In this example, the smart wearable device 15 can be a health bracelet watch (such as an Apple watch), which can detect physiological change data (such as changes in blood pressure, respiration, heartbeat, etc.) when the user is guided by the specific action. ;

本案之一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統,是透過行動軌跡偵測裝置對使用者的肢體動作進行數據化並產生肢體軌跡識別數據,並可配合虛擬實境眼鏡、投影機或螢幕進行特定動作的導引,令導引的程序數位化。以及可透過行動軌跡偵測裝置進行使用者的動作、專心平衡及肢體軌跡等進行偵測,並由雲端數據資料伺服器依據肢體軌跡識別數據產生對應的健康圖形表。如此一來,可有效將使用者的肢體動作數據化,並將數據化的肢體動作數據資料進 行紀錄與有效率的評估,令評估報告有詳細的數據做為檢驗標準的評估,增加檢驗的效率與避免檢驗的誤判,並達成上述所有目的。 This case is a body trajectory movement record recognition and trajectory big data analysis system that digitizes the user's body movements through a movement trajectory detection device and generates body trajectory recognition data, and can be used with virtual reality glasses, projectors or screens Conduct guidance for specific actions and digitize the guidance process. In addition, the user's movements, concentration balance and body trajectories can be detected through the motion trajectory detection device, and the cloud data server generates corresponding health graphs based on the body trajectory recognition data. In this way, the user's body movements can be effectively digitized, and the digitized body movement data can be Record keeping and efficient assessment, so that the assessment report has detailed data for the assessment of inspection standards, increasing the efficiency of inspection and avoiding misjudgment of inspection, and achieving all the above purposes.

本創作以實施例說明如上,然其並非用以限定本創作所主張之專利權利範圍。其專利保護範圍當視後附之申請專利範圍及其等同領域而定。凡本領域具有通常知識者,在不脫離本專利精神或範圍內,所作之更動或潤飾,均屬於本創作所揭示精神下所完成之等效改變或設計,且應包含在下述之申請專利範圍內。 The embodiments of this invention are described above, but they are not intended to limit the scope of the patent rights claimed by this invention. The scope of patent protection shall depend on the appended patent application scope and its equivalent fields. Any changes or modifications made by those with ordinary knowledge in the art without departing from the spirit or scope of this patent shall be equivalent changes or designs completed within the spirit disclosed in this invention, and shall be included in the following patent application scope. within.

1:行動軌跡偵測裝置 1:Motion track detection device

2:處理伺服裝置 2: Handle the servo device

21:信號傳輸單元 21: Signal transmission unit

22:處理單元 22: Processing unit

221:完成時間紀錄模組 221:Complete time record module

222:動作達成率紀錄模組 222: Action achievement rate record module

23:資料庫 23:Database

3:雲端數據資料伺服器 3: Cloud data server

Claims (10)

一種肢體軌跡動作紀錄辨識及軌跡大數據分析系統,是依據一位或多位使用者的肢體軌跡動作,並分析該使用者的身體狀態,其中該系統包括:一行動軌跡偵測裝置,是供偵測該使用者依據一特定動作的導引,並記錄與蒐集肢體軌跡動作以產生一肢體軌跡資訊;一處理伺服裝置,包括:一信號傳輸單元,是供信號連接至該行動軌跡偵測裝置,並供接收該肢體軌跡資訊;及一處理單元,是供分析並記錄該肢體軌跡資訊,並產生專屬該使用者的一肢體軌跡識別數據;及一雲端數據資料伺服器,是與信號傳輸單元信號連接,並供接收該使用者的肢體軌跡識別數據,依據肢體軌跡識別數據進行機器人智慧學習的數據分析與數據統整,以分析並產生對應的一健康圖形表,以供確認使用者的身體狀態。 A body trajectory movement record recognition and trajectory big data analysis system is based on the body trajectory movements of one or more users and analyzes the user's physical status. The system includes: a movement trajectory detection device for Detect the user's guidance according to a specific action, and record and collect body trajectory movements to generate body trajectory information; a processing server device includes: a signal transmission unit for signal connection to the action trajectory detection device , and for receiving the body trajectory information; and a processing unit for analyzing and recording the body trajectory information, and generating a body trajectory identification data exclusive to the user; and a cloud data server, for communicating with the signal transmission unit Signal connection is used to receive the user's body trajectory recognition data, and perform data analysis and data integration of the robot's intelligent learning based on the body trajectory recognition data to analyze and generate a corresponding health graph to confirm the user's body condition. 如請求項1所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,更包括一動作導引裝置,是與該信號傳輸單元信號連接,供導引該使用者做出預設的該特定動作,其中該處理伺服裝置更包括一資料庫,係供儲存對應該特定動作的一導引影像資料,並提供至該動作導引裝置,由該動作導引裝置接收並顯示。 The body trajectory action record recognition and trajectory big data analysis system as described in claim 1 further includes an action guidance device that is signal-connected to the signal transmission unit for guiding the user to perform the preset specific action. , wherein the processing server device further includes a database for storing a guidance image data corresponding to the specific action, and provides it to the action guidance device, and is received and displayed by the action guidance device. 如請求項2所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中該動作導引裝置是一虛擬實境眼鏡、VR頭盔或任一傳輸裝置,是供該使用者配載在頭部,並供顯示該特定動作的導引。 The body trajectory movement record recognition and trajectory big data analysis system as described in claim 2, wherein the movement guidance device is a virtual reality glasses, VR helmet or any transmission device for the user to mount on the head , and provide guidance for displaying that specific action. 如請求項2所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中該動作導引裝置是一顯示裝置,並供顯示該特定動作的導引。 The body trajectory action record recognition and trajectory big data analysis system as described in claim 2, wherein the action guidance device is a display device and is used to display guidance for the specific action. 如請求項1所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中該肢體軌跡識別數據具有一時間紀錄資訊及一動作達成率資訊,其中該處理單元包括:一完成時間紀錄模組,是供紀錄該使用者完成肢體軌跡動作的時間並產生該時間紀錄資訊;及一動作達成率紀錄模組,是供紀錄該使用者達成肢體軌跡動作的達成率並產生該動作達成率資訊。 The body trajectory action record recognition and trajectory big data analysis system as described in claim 1, wherein the body trajectory recognition data has a time record information and an action achievement rate information, and the processing unit includes: a completion time record module, It is used to record the time when the user completes the body trajectory action and generate the time record information; and an action achievement rate recording module is used to record the achievement rate of the user's body trajectory action and generate the action achievement rate information. 如請求項1所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中該行動軌跡偵測裝置包括一動態捕捉攝影機、深度攝像機或任一多功能相機,是供深度拍攝並捕捉該使用者的肢體軌跡動作以分析該肢體軌跡資訊。 The body trajectory movement record recognition and trajectory big data analysis system as described in claim 1, wherein the movement trajectory detection device includes a dynamic capture camera, a depth camera or any multi-function camera for depth photography and capturing of the user body trajectory actions to analyze the limb trajectory information. 如請求項1所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中該行動軌跡偵測裝置包括一壓力感測器,是供該使用者站立,並供偵測該使用者的雙腳壓力分佈以分析該肢體軌跡資訊。 The body trajectory movement record recognition and trajectory big data analysis system as described in claim 1, wherein the movement trajectory detection device includes a pressure sensor for the user to stand and for detecting the user's feet Pressure distribution to analyze the limb trajectory information. 如請求項1所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中該行動軌跡偵測裝置包括一應變規感測器,是供配置在該使用者身上,並供偵測該使用者動作時的動作變化以分析該肢體軌跡資訊。 The body trajectory movement record recognition and trajectory big data analysis system as described in claim 1, wherein the movement trajectory detection device includes a strain gauge sensor for being disposed on the user and for detecting the user Movement changes during movement to analyze the limb trajectory information. 如請求項1所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中該行動軌跡偵測裝置包括一傳感器,是供偵測該使用者動作變化時的光影變化以分析該肢體軌跡資訊。 The body trajectory movement record recognition and trajectory big data analysis system as described in claim 1, wherein the movement trajectory detection device includes a sensor for detecting light and shadow changes when the user's movements change to analyze the body trajectory information. 如請求項1所述的肢體軌跡動作紀錄辨識及軌跡大數據分析系統,其中該行動軌跡偵測裝置包括一智慧穿載裝置,是供偵測該使用者依據該特定動作的導引時的一生理變化數據,並提供至該處理單元,由該處理單元上傳至該雲端數據資料伺服器,依據生理變化數據進行機器人智慧學習的數據分析與數據統整,以分析並產生對應的該健康圖形表。 The body trajectory movement record recognition and trajectory big data analysis system as described in claim 1, wherein the movement trajectory detection device includes a smart wearing device for detecting the user's guidance according to the specific movement. The physiological change data is provided to the processing unit, and the processing unit uploads it to the cloud data server. Based on the physiological change data, data analysis and data integration of the robot's intelligent learning are performed to analyze and generate the corresponding health graphic table. .
TW112202568U 2023-03-22 2023-03-22 Body trajectory movement record recognition and trajectory big data analysis system TWM648086U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112202568U TWM648086U (en) 2023-03-22 2023-03-22 Body trajectory movement record recognition and trajectory big data analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112202568U TWM648086U (en) 2023-03-22 2023-03-22 Body trajectory movement record recognition and trajectory big data analysis system

Publications (1)

Publication Number Publication Date
TWM648086U true TWM648086U (en) 2023-11-11

Family

ID=89721029

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112202568U TWM648086U (en) 2023-03-22 2023-03-22 Body trajectory movement record recognition and trajectory big data analysis system

Country Status (1)

Country Link
TW (1) TWM648086U (en)

Similar Documents

Publication Publication Date Title
US20210174934A1 (en) Remote assessment of emotional status
EP2772828B1 (en) Individual body discrimination device and individual body discrimination method
EP3232909B1 (en) Approach for measuring capillary refill time
Wang et al. Screening early children with autism spectrum disorder via response-to-name protocol
KR20170052628A (en) Motor task analysis system and method
CN105701331A (en) Computer-aided diagnosis apparatus and computer-aided diagnosis method
US20230309882A1 (en) Multispectral reality detector system
CN108882853A (en) Measurement physiological parameter is triggered in time using visual context
Krupicka et al. Motion capture system for finger movement measurement in Parkinson disease
JP5197188B2 (en) Event identification system
Huang et al. Image-recognition-based system for precise hand function evaluation
Jayawardena et al. Automated filtering of eye gaze metrics from dynamic areas of interest
TWM648086U (en) Body trajectory movement record recognition and trajectory big data analysis system
TWI681755B (en) System and method for measuring scoliosis
KR102565852B1 (en) Autism spectrum disorder evaluation method based on facial expression analysis
CN115813343A (en) Child behavior abnormity evaluation method and system
Bungay et al. Contactless hand tremor amplitude measurement using smartphones: development and pilot evaluation
Gamaethige et al. “SenseA”-Autism Early Signs and Pre-Aggressive Detector through Image Processing
Aldenhoven et al. mBalance: Detect Postural Imbalance with Mobile Devices
Yao et al. An intelligent augmented lifelike avatar app for virtual physical examination of suspected strokes
Naydanova et al. Objective evaluation of motor symptoms in parkinson’s disease via a dual system of leap motion controllers
KR20220086853A (en) Extrapyramidal symptom evaluation system by quantified drug
Al-khalidi et al. Tracing the region of interest in thermal human face for respiration monitoring
Yu et al. Video-based analysis reveals atypical social gaze in people with autism spectrum disorder
WO2019018577A1 (en) Systems and methods for analyzing behavior of a human subject