TWM644905U - Display device having micro-type lighting units in backlight thereof - Google Patents

Display device having micro-type lighting units in backlight thereof Download PDF

Info

Publication number
TWM644905U
TWM644905U TW112202732U TW112202732U TWM644905U TW M644905 U TWM644905 U TW M644905U TW 112202732 U TW112202732 U TW 112202732U TW 112202732 U TW112202732 U TW 112202732U TW M644905 U TWM644905 U TW M644905U
Authority
TW
Taiwan
Prior art keywords
light
micro
quantum dots
display device
optical switch
Prior art date
Application number
TW112202732U
Other languages
Chinese (zh)
Inventor
蔡秉諭
Original Assignee
瑩耀科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑩耀科技股份有限公司 filed Critical 瑩耀科技股份有限公司
Priority to TW112202732U priority Critical patent/TWM644905U/en
Publication of TWM644905U publication Critical patent/TWM644905U/en

Links

Images

Abstract

本新型提供一種顯示裝置,包括一包括多個微型發光單元的背光模組、一位於背光模組上方的光開關層以及一位於光開關層上方的濾光層。背光模組中各個微型發光單元可被獨立控制而單獨自由發光。光開關層控制背光模組之微型發光單元所發出之光線穿透與否。濾光層包括多個量子點,並且每個微型發光單元發出之光線之色彩由每個量子點轉換,並透過量子點構成多個次畫素單元。 The present invention provides a display device, which includes a backlight module including a plurality of micro-light-emitting units, an optical switch layer located above the backlight module, and a filter layer located above the optical switch layer. Each micro-light-emitting unit in the backlight module can be independently controlled to emit light independently. The optical switch layer controls whether the light emitted by the micro-light-emitting unit of the backlight module penetrates or not. The filter layer includes a plurality of quantum dots, and the color of the light emitted by each micro-light-emitting unit is converted by each quantum dot, and multiple sub-pixel units are formed through the quantum dots.

Description

背光具微型發光單元的顯示裝置 Display device with micro light-emitting unit in backlight

本新型涉及一種顯示裝置。更具體地說,本新型涉及一種背光具微型發光單元的顯示裝置。 The present invention relates to a display device. More specifically, the present invention relates to a display device with a micro-light-emitting unit in the backlight.

最近,液晶顯示裝置作為一種重要的人機介面得到了迅速發展。便攜式電子裝置、電腦或電視機可以通過液晶顯示裝置表示複雜的消息。 Recently, liquid crystal display devices have been rapidly developed as an important human-computer interface. Portable electronic devices, computers or televisions can display complex messages through liquid crystal display devices.

基於大可見面積、緊湊體積和低能耗的優點,液晶顯示(LCD)裝置越來越受歡迎,並已成為主流。傳統的液晶顯示裝置100如第1圖所示。液晶顯示裝置100由下而上排列包括背光模組111、第一偏振片112、第一基板113、晶體管層114、第一電極115、液晶層116、第二電極117、濾光片118、第二基板119和第二偏振片120。然後簡要描述LCD裝置100的操作機制。液晶層116中的液晶分子在施加電場時被扭曲。晶體管層114中的一個或多個晶體管用於控制液晶分子的扭曲方向並起到控制光開關的作用。由背光模組111發出的光通過第一偏振片112和第二偏振片120,用於產生不同的偏振方向 光,以與液晶分子的扭曲方向結合以控制亮度變化以形成灰階。透過濾光片118形成多個具有不同色彩的子畫素118a。通過組合多個子畫素118a可以形成具有全彩色的畫素,從而構成人眼可視之色彩。子畫素118a的形成是由晶體管層114中的每個晶體管定義的。此外,取向膜(圖未繪)可以設置在第一基板113和第二基板119上,用於取向液晶分子。電場可以通過第一電極115和第二電極117施加到晶體管層114。 Based on the advantages of large visible area, compact size and low energy consumption, liquid crystal display (LCD) devices have become increasingly popular and have become mainstream. A conventional liquid crystal display device 100 is shown in FIG. 1 . The liquid crystal display device 100 is arranged from bottom to top and includes a backlight module 111, a first polarizer 112, a first substrate 113, a transistor layer 114, a first electrode 115, a liquid crystal layer 116, a second electrode 117, a filter 118, Two substrates 119 and a second polarizer 120 . Then the operating mechanism of the LCD device 100 is briefly described. The liquid crystal molecules in the liquid crystal layer 116 are twisted when an electric field is applied. One or more transistors in the transistor layer 114 are used to control the twisting direction of the liquid crystal molecules and control the optical switch. The light emitted by the backlight module 111 passes through the first polarizer 112 and the second polarizer 120 to generate different polarization directions. Light combines with the twisting direction of liquid crystal molecules to control brightness changes to form gray scales. The transmission filter 118 forms a plurality of sub-pixels 118a with different colors. By combining multiple sub-pixels 118a, a pixel with full color can be formed, thereby forming colors visible to the human eye. The formation of sub-pixel 118a is defined by each transistor in transistor layer 114. In addition, an alignment film (not shown) may be disposed on the first substrate 113 and the second substrate 119 for aligning liquid crystal molecules. An electric field may be applied to the transistor layer 114 through the first electrode 115 and the second electrode 117 .

然而,這種液晶顯示裝置100的功率效率、亮度、對比度以及色彩均勻度是低的,因為只有從背光模組111發出的少數光可以穿過液晶層116。此外,晶體管層114的製造工藝是複雜的,從而增加了製造成本。再者,習知濾光片118使用彩色光阻形成子畫素118a的結構,此種方式產生之色彩已無法滿足現代對高解析度、高亮度、高對比度以及廣色域的需求。 However, the power efficiency, brightness, contrast and color uniformity of this liquid crystal display device 100 are low because only a small amount of light emitted from the backlight module 111 can pass through the liquid crystal layer 116 . In addition, the manufacturing process of the transistor layer 114 is complicated, thereby increasing the manufacturing cost. Furthermore, the conventional filter 118 uses colored photoresist to form the structure of the sub-pixels 118a. The colors produced by this method can no longer meet modern demands for high resolution, high brightness, high contrast and wide color gamut.

因此,對上述液晶顯示裝置100的改良仍為必要。 Therefore, improvements to the above-mentioned liquid crystal display device 100 are still necessary.

本新型係提供一種背光具微型發光單元的顯示裝置,透過具量子點之濾光層、配合具微型發光單元之背光模組,可獲得廣色域、高色彩均勻性及高色彩飽和度。 The present invention provides a display device with a micro-light-emitting unit in the backlight. Through a filter layer with quantum dots and a backlight module with a micro-light-emitting unit, a wide color gamut, high color uniformity and high color saturation can be obtained.

本新型之一目的在提供一種顯示裝置,包括一包括多個微型發光單元的背光模組、一位於背光模組上方的光開關層以及一位於光開關層上方的濾光層。背光模組中各微型發光單元可被獨立控制而單獨自由發光。光開關層控制背光模組之各微型發光單元所發出之光線穿透與否。濾光層包括多個具 不同顏色之量子點,並且各個微型發光單元發出之光線之色彩由各個量子點轉換,並透過各個具不同顏色之量子點構成多個具不同顏色之次畫素單元。 One object of the present invention is to provide a display device, which includes a backlight module including a plurality of micro-light-emitting units, an optical switch layer located above the backlight module, and a filter layer located above the optical switch layer. Each micro-light-emitting unit in the backlight module can be independently controlled to emit light independently. The optical switch layer controls whether the light emitted by each micro-light-emitting unit of the backlight module penetrates or not. The filter layer includes multiple Quantum dots of different colors, and the color of the light emitted by each micro-light-emitting unit is converted by each quantum dot, and multiple sub-pixel units of different colors are formed through each quantum dot of different colors.

上述顯示裝置中,微型發光單元發出的光色包括紅色、綠色及藍色,此時多個量子點包括紅色量子點、綠色量子點及藍色量子點,並且各個量子點的顏色對應轉換各個微型發光單元發出的光色。 In the above display device, the light colors emitted by the micro-light-emitting units include red, green and blue. At this time, the plurality of quantum dots include red quantum dots, green quantum dots and blue quantum dots, and the color of each quantum dot is correspondingly converted into each micro-light-emitting unit. The color of light emitted by the light-emitting unit.

上述顯示裝置中,多個微型發光單元發出的光色為單一藍色,此時多個量子點包括紅色量子點及綠色量子點。 In the above display device, the light color emitted by the plurality of micro-light-emitting units is single blue. In this case, the plurality of quantum dots include red quantum dots and green quantum dots.

上述顯示裝置中,光開關層可包括液晶材質或電致變色材質。 In the above display device, the optical switch layer may include liquid crystal material or electrochromic material.

上述顯示裝置中,微型背光模組所發射之光線穿透光開關層後,光開關層受控而改變其透光度以調節光線之穿透比例。 In the above display device, after the light emitted by the micro backlight module penetrates the optical switch layer, the optical switch layer is controlled to change its light transmittance to adjust the penetration ratio of the light.

上述顯示裝置中,更包括一位於背光模組與光開關層之間的第一偏光片以及一位於濾光層上的第二偏光片。 The above display device further includes a first polarizer located between the backlight module and the optical switch layer and a second polarizer located on the filter layer.

上述顯示裝置中,更包括一位於背光模組與光開關層之間的第一電極以及一位於光開關層及濾光層之間的第二電極。其中光開關層之透光度受控於第一電極及第二電極之間形成之電場。 The above display device further includes a first electrode located between the backlight module and the optical switch layer and a second electrode located between the optical switch layer and the filter layer. The transmittance of the optical switch layer is controlled by the electric field formed between the first electrode and the second electrode.

上述顯示裝置中,微型發光單元發射之光線之波長隨施加於第一電極以及第二電極間之電壓變化而改變,進而調變量子點之轉換效率。 In the above display device, the wavelength of the light emitted by the micro-light-emitting unit changes as the voltage applied between the first electrode and the second electrode changes, thereby modulating the conversion efficiency of the quantum dots.

上述顯示裝置中,濾光層的各量子點間設有一遮 罩。 In the above display device, a mask is provided between each quantum dot of the filter layer. cover.

上述顯示裝置中,各微型發光單元之尺寸為微米尺寸。 In the above display device, the size of each micro light-emitting unit is micron size.

100:液晶顯示裝置 100:Liquid crystal display device

111:背光模組 111:Backlight module

112:第一偏振片 112: First polarizer

113:第一基板 113: First substrate

114:晶體管層 114:Transistor layer

115:第一電極 115: first electrode

116:液晶層 116: Liquid crystal layer

117:第二電極 117:Second electrode

118:濾光片 118:Optical filter

118a:子畫素 118a: sub-pixel

119:第二基板 119:Second substrate

120:第二偏振片 120: Second polarizer

200:顯示裝置 200:Display device

210:背光模組 210:Backlight module

211:微型發光單元 211:Micro light emitting unit

220:光開關層 220: Optical switch layer

221:電致變色材質 221:Electrochromic material

222:電解質層 222:Electrolyte layer

223:離子儲存層 223:Ion storage layer

230:濾光層 230: Filter layer

240:第一偏光片 240:The first polarizer

250:第二偏光片 250: Second polarizer

260:第一電極 260: first electrode

270:第二電極 270:Second electrode

300:紅色次畫素單元 300: red sub-pixel unit

400:綠色次畫素單元 400: Green sub-pixel unit

500:藍色次畫素單元 500: blue sub-pixel unit

600:遮罩 600:Mask

第1圖係繪示習知液晶顯示裝置之結構示意圖; Figure 1 is a schematic structural diagram of a conventional liquid crystal display device;

第2A圖係繪示依據本新型一實施例之顯示裝置之結構示意圖; Figure 2A is a schematic structural diagram of a display device according to an embodiment of the present invention;

第2B圖係繪示依據本新型另一實施例之顯示裝置之結構示意圖; Figure 2B is a schematic structural diagram of a display device according to another embodiment of the present invention;

第3A圖係繪示第2A圖中之光開關層使用液晶材質時之完整結構示意圖; Figure 3A is a schematic diagram showing the complete structure of the optical switch layer in Figure 2A when liquid crystal material is used;

第3B圖係繪示第2B圖中之光開關層使用液晶材質時之完整結構示意圖; Figure 3B is a schematic diagram of the complete structure of the optical switch layer in Figure 2B when using liquid crystal material;

第4A圖係繪示第2A圖中之光開關層使用電致變色材質時之完整結構示意圖;以及 Figure 4A is a schematic diagram showing the complete structure of the optical switch layer in Figure 2A when using electrochromic material; and

第4B圖係繪示第2B圖中之光開關層使用電致變色材質時之完整結構示意圖。 Figure 4B is a schematic diagram of the complete structure of the optical switch layer in Figure 2B when using electrochromic material.

以下將參照圖式說明本新型之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本新型。也 就是說,在本新型部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式及著重於本案主要技術特徵,一些習知慣用、非必要的結構與元件,將在圖式中以簡單示意的方式繪示或省略之。並且,相類似的元件亦可能使用相同的編號表示之。 Several embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details will be explained together in the following narrative. However, it should be understood that these practical details should not be used to limit the invention. also That is to say, in some embodiments of the present invention, these practical details are not necessary. In addition, in order to simplify the drawings and focus on the main technical features of this case, some commonly used and unnecessary structures and components will be shown in a simple schematic manner or omitted in the drawings. In addition, similar components may also be represented by the same number.

本新型中,用語「第一」、「第二」、「上」、「下」、「之間」係為描述一相對位置,實際上因應實際狀況,不排除有排列次序更動之可能。舉例而言,當基板位於最上層時,其餘各層結構可能為向下延伸排列,此時「第一」、「第二」、「上」、「下」之相對位置關係亦可能相對應改變。 In the present invention, the terms "first", "second", "upper", "lower" and "between" are used to describe a relative position. In fact, depending on the actual situation, the possibility of changing the order of arrangement is not ruled out. For example, when the substrate is located on the top layer, the other layer structures may be arranged downward. At this time, the relative positions of "first", "second", "upper" and "lower" may also change accordingly.

請一併參照第2A圖及第2B圖。 Please refer to Figure 2A and Figure 2B together.

一種顯示裝置200包括一包括多個微型發光單元211的背光模組210、一位於所述背光模組210上方的光開關層220以及一位於所述光開關層220上方的濾光層230。 A display device 200 includes a backlight module 210 including a plurality of micro light-emitting units 211, an optical switch layer 220 located above the backlight module 210, and a filter layer 230 located above the optical switch layer 220.

背光模組210中的各微型發光單元211可被獨立控制而單獨自由發光。 Each micro-light-emitting unit 211 in the backlight module 210 can be independently controlled to emit light independently.

光開關層220可控制背光模組210之微型發光單元211所發出之光線穿透與否。再詳而言之,背光模組210之微型發光單元211發射之光線穿透光開關層220後,光開關層220受控而改變其透光度,藉此調節光線之穿透比例。透過調節光線之穿透比例,可調節最終呈現之亮度(灰階)、對比等視覺特性。 The optical switch layer 220 can control whether the light emitted by the micro-light-emitting unit 211 of the backlight module 210 is transmitted or not. In more detail, after the light emitted by the micro-light-emitting unit 211 of the backlight module 210 penetrates the optical switch layer 220, the optical switch layer 220 is controlled to change its light transmittance, thereby adjusting the penetration ratio of the light. By adjusting the penetration ratio of light, the final visual characteristics such as brightness (gray scale) and contrast can be adjusted.

濾光層230包括多個具不同顏色之量子點231,並且每個微型發光單元211發出之光線之色彩由每個量子點231 轉換,並透過具不同顏色之量子點231於濾光層230構成多個具不同顏色之次畫素單元300、400、500。 The filter layer 230 includes a plurality of quantum dots 231 with different colors, and the color of the light emitted by each micro-light-emitting unit 211 is determined by each quantum dot 231 The quantum dots 231 of different colors are converted into a plurality of sub-pixel units 300, 400, and 500 of different colors in the filter layer 230.

量子點231為尺寸低至奈米級的小型半導體晶體。它們的性質與塊狀半導體具有極大差異。量子點231最顯著的特徵是通過改變它們的尺寸和離散能級來調節半導體帶隙(即所謂的量子侷限效應,Quantum Confinement Effect)。此外,將量子點231應用於顯示器時,基於其較窄的發射線寬(例如,發射半高寬(FWHM)約為20至30奈米),可獲得較窄的光譜。通過窄光譜可獲得極高的色彩飽和度,可覆蓋最嚴格的Rec.2020色域標準的90%以上,因此可得到廣色域的視覺效果。量子點231的窄發射線寬也令它們相當適合作為例如8K或更高解析度之高清顯示器中的LED背光源元件。 Quantum dots 231 are small semiconductor crystals with dimensions as low as nanometers. Their properties are very different from bulk semiconductors. The most notable feature of quantum dots 231 is the ability to adjust the semiconductor band gap by changing their size and discrete energy levels (the so-called Quantum Confinement Effect). In addition, when quantum dots 231 are applied to displays, a narrower spectrum can be obtained based on their narrow emission linewidth (eg, emission half-maximum (FWHM) of about 20 to 30 nanometers). Extremely high color saturation can be obtained through the narrow spectrum, which can cover more than 90% of the most stringent Rec.2020 color gamut standard, so the visual effect of a wide color gamut can be obtained. The narrow emission linewidth of quantum dots 231 also makes them suitable as LED backlight components in high-definition displays such as 8K or higher resolution.

量子點231之材料可包含II-VI族元素化合物、III-V族元素化合物、鈣鈦礦(Perovskite)量子點、由上述II-VI族元素化合物及/或III-V族元素化合物包覆形成之核殼結構化合物或摻雜納米晶顆粒。其中,II-VI族元素可包括硒化鎘(CdSe)、碲化鎘(CdTe)、硫化鎂(MgS)、硒化鎂(MgSe)、碲化鎂(MgTe)、硫化鈣(CaS)、硒化鈣(CaSe)、碲化鈣(CaTe)、硫化鍶(SrS)、硒化鍶(SrSe)、碲化鍶(SrTe)、硫化鋇(BaS)、硒化鋇(BaSe)、碲化鋇(BaTe)、硫化鋅(ZnS)、硒化鋅(ZnSe)、碲化鋅(ZnTe)或硫化鎘(CdS)等;III-V族元素化合物可包括氮化鎵(GaN)、磷化鎵(GaP)、砷化鎵(GaAs)、氮化銦(lnN)、磷化銦(lnP)或砷化銦(InAs)等,惟不以上述材質為限。 The material of the quantum dot 231 may include II-VI group element compounds, III-V group element compounds, perovskite quantum dots, and be formed by coating the above-mentioned II-VI group element compounds and/or III-V group element compounds. Core-shell structure compounds or doped nanocrystalline particles. Among them, II-VI group elements may include cadmium selenide (CdSe), cadmium telluride (CdTe), magnesium sulfide (MgS), magnesium selenide (MgSe), magnesium telluride (MgTe), calcium sulfide (CaS), selenium Calcium sulfide (CaSe), calcium telluride (CaTe), strontium sulfide (SrS), strontium selenide (SrSe), strontium telluride (SrTe), barium sulfide (BaS), barium selenide (BaSe), barium telluride ( BaTe), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe) or cadmium sulfide (CdS), etc.; III-V element compounds can include gallium nitride (GaN), gallium phosphide (GaP ), gallium arsenide (GaAs), indium nitride (lnN), indium phosphide (lnP) or indium arsenide (InAs), etc., but are not limited to the above materials.

多個量子點231可具有紅色、綠色、藍色或前述顏色任意組合之顏色。微型發光單元211發射之光線可激發量子點231,透過不同顏色之量子點231轉換而形成不同光色,最終呈現至人眼而形成彩色圖像。可理解地,彩色圖像係由多個畫素(pixel)單元所構成。因此,上述不同顏色之量子點231可彼此堆疊排列構成可視圖像之多個不同顏色之次畫素單元300、400、500。不同顏色之量子點231可具有不同排列方式而形成不同色彩飽和度。舉例而言,量子點231可排列成方形、三角形或馬賽克形而組成不同排列型態之次畫素單元300、400、500,獲致不同之顯色效果。 The plurality of quantum dots 231 may have colors of red, green, blue, or any combination of the aforementioned colors. The light emitted by the micro-light-emitting unit 211 can excite the quantum dots 231 and convert the quantum dots 231 of different colors to form different light colors, which are finally presented to the human eye to form a color image. It can be understood that a color image is composed of multiple pixel units. Therefore, the above-mentioned quantum dots 231 of different colors can be stacked and arranged to form multiple sub-pixel units 300, 400, and 500 of different colors of the visible image. Quantum dots 231 of different colors can be arranged in different ways to form different color saturations. For example, the quantum dots 231 can be arranged in a square, triangular or mosaic shape to form sub-pixel units 300, 400 and 500 in different arrangements to achieve different color rendering effects.

上述量子點231可呈微粒狀,其微粒直徑可介於1奈米至10奈米之間,且各量子點231之重量比例可進行不同調配。 The above-mentioned quantum dots 231 can be in the form of particles, and the diameter of the particles can be between 1 nanometer and 10 nanometers, and the weight ratio of each quantum dot 231 can be adjusted differently.

形成上述各量子點231之堆疊排列可透過諸如噴墨法(Inject)、化學溶膠法(chemical colloidal method)、自組成法(self-assembly method)、微影蝕刻法(lithography and etching)或分閘法(split-gate approach)等方式。透過化學溶膠法合成,可製作多層層疊(multilayered)量子點231,過程簡易且適於量產。自組成法(self-assembly method)可採用化學氣相沉積(chemical vapor deposition)製程,令量子點231在特定基材表面自聚生長,可大量生產規則排列的量子點231。微影蝕刻法(lithography and etching)以光束或電子束直接於基材上蝕刻製作出所要之圖案。分閘法(split-gate approach)則以外加電壓的方式在二維量子井平面上產生二維 侷限,可改變量子點231的形狀與大小。 The stacked arrangement of each quantum dot 231 can be formed by methods such as inkjet method (Inject), chemical colloidal method (chemical colloidal method), self-assembly method (self-assembly method), lithography and etching method (lithography and etching), or gate separation. method (split-gate approach) and other methods. Through chemical sol method synthesis, multilayered quantum dots 231 can be produced. The process is simple and suitable for mass production. The self-assembly method can use a chemical vapor deposition process to allow the quantum dots 231 to self-grow on the surface of a specific substrate, thereby mass-producing regularly arranged quantum dots 231. Lithography and etching uses a light beam or electron beam to directly etch a substrate to create the desired pattern. The split-gate approach generates a two-dimensional quantum well plane by applying an external voltage. Limitation, the shape and size of the quantum dot 231 can be changed.

於不同實施例中,微型發光單元211可發出不同光色以組合成不同顏色之背光,並透過不同顏色之量子點231轉換成不同光色。 In different embodiments, the micro light-emitting unit 211 can emit different light colors to be combined into different colors of backlight, and converted into different light colors through quantum dots 231 of different colors.

第2A圖實施例中,微型發光單元211發出的光色包括紅色、綠色及藍色,此時多個量子點231包括紅色量子點、綠色量子點及藍色量子點,並且各個量子點231的顏色對應各個微型發光單元211發出的光色。換句話說,微型發光單元211發出之紅色光透過紅色量子點轉換成紅光,微型發光單元211發出之綠色光透過綠色量子點轉換成綠光,微型發光單元211發出之藍色光透過綠色量子點轉換成藍光,再由透過紅色量子點轉換之紅光組成紅色次畫素單元300、透過綠色量子點轉換之綠光組成綠色次畫素單元400以及透過藍色量子點轉換之藍光組成藍色次畫素單元500,進而可組成全彩之光色。 In the embodiment of Figure 2A, the light colors emitted by the micro-light-emitting unit 211 include red, green and blue. At this time, the plurality of quantum dots 231 include red quantum dots, green quantum dots and blue quantum dots, and each quantum dot 231 has The color corresponds to the color of light emitted by each micro-light-emitting unit 211. In other words, the red light emitted by the micro light-emitting unit 211 is converted into red light through the red quantum dots, the green light emitted by the micro light-emitting unit 211 is converted into green light through the green quantum dots, and the blue light emitted by the micro light-emitting unit 211 is converted into green light through the green quantum dots. It is converted into blue light, and then the red light converted through the red quantum dots forms the red sub-pixel unit 300, the green light converted through the green quantum dots forms the green sub-pixel unit 400, and the blue light converted through the blue quantum dots forms the blue sub-pixel unit 300. The pixel unit 500 can then form a full-color light color.

第2B圖實施例中,微型發光單元211發出的光色為單一藍色,此時濾光層230中之量子點231包括紅色量子點及綠色量子點分別對應微型發光單元211,而濾光層230中則未設有藍色量子點231。換句話說,微型發光單元211發出之藍色光,部分透過紅色量子點轉換成紅光組成紅色次畫素單元300,部分透過綠色量子點轉換成綠光組成綠色次畫素單元400,部分未經過量子點轉換而直接射出藍光組成藍色次畫素單元500,進而組成全彩之光色。此實施例中,微型發光單元211發出的光色亦可為單一紫色。 In the embodiment of Figure 2B, the light color emitted by the micro-light-emitting unit 211 is single blue. At this time, the quantum dots 231 in the filter layer 230 include red quantum dots and green quantum dots respectively corresponding to the micro-light-emitting unit 211, and the filter layer 230 There are no blue quantum dots 231 in 230 . In other words, part of the blue light emitted by the micro light-emitting unit 211 is converted into red light through the red quantum dots to form the red sub-pixel unit 300, part of it is converted into green light through the green quantum dots to form the green sub-pixel unit 400, and part of it is not passed through. The quantum dots convert and directly emit blue light to form the blue sub-pixel unit 500, thereby forming a full-color light color. In this embodiment, the light color emitted by the micro-light-emitting unit 211 can also be single purple.

上述顯示裝置200中,濾光層230的各量子點231所形成之次畫素單元300、400、500間可設有一遮罩600,可阻擋各次畫素單元300、400、500間的雜散光,避免混光,確保發光均勻度及飽和度。遮罩600通常使用黑色吸光材質,但不以此為限。 In the above display device 200, a mask 600 can be provided between the sub-pixel units 300, 400, and 500 formed by each quantum dot 231 of the filter layer 230, which can block the interference between the sub-pixel units 300, 400, and 500. Astigmatize light, avoid light mixing, and ensure uniformity and saturation of light. The mask 600 is usually made of black light-absorbing material, but is not limited to this.

光開關層220可控制背光模組210之微型發光單元211所發出之光線穿透比例,以控制亮度(灰階)、對比等光學特性。光開關層220可選用包括液晶材質或電致變色材質。 The optical switch layer 220 can control the light transmission ratio emitted by the micro-light-emitting unit 211 of the backlight module 210 to control optical properties such as brightness (gray scale) and contrast. The optical switch layer 220 may be made of liquid crystal material or electrochromic material.

當光開關層220選用液晶材質時,顯示裝置200之完整結構之示例請參照第3A圖及第3B圖。相較於前述第2A圖及第2B圖實施例,第3A圖及第3B圖實施例中,顯示裝置200更包括一位於背光模組210與光開關層220之間的第一偏光片240以及一位於濾光層230上的第二偏光片250。同時,顯示裝置200亦包括一位於背光模組210與光開關層220之間的第一電極260以及一位於光開關層220及濾光層230之間的第二電極270。光開關層220之透光度受控於第一電極260以及第二電極270之間形成之電場,以形成所需之灰階。 When the optical switch layer 220 is made of liquid crystal material, please refer to Figure 3A and Figure 3B for examples of the complete structure of the display device 200 . Compared with the aforementioned embodiments in Figures 2A and 2B, in the embodiments in Figures 3A and 3B, the display device 200 further includes a first polarizer 240 between the backlight module 210 and the optical switch layer 220; A second polarizer 250 located on the filter layer 230. At the same time, the display device 200 also includes a first electrode 260 between the backlight module 210 and the optical switch layer 220 and a second electrode 270 between the optical switch layer 220 and the filter layer 230 . The transmittance of the optical switch layer 220 is controlled by the electric field formed between the first electrode 260 and the second electrode 270 to form a required gray scale.

上述顯示裝置200中,各微型發光單元211之尺寸可為毫米或以下,更佳為微米尺寸。基於微型發光單元211通常使用無機發光二極體(LED),其為不連續之點光源,因此造成背光均勻性不足之問題。並且因點光源先天發光特性之影響,造成漏光、對比低、色彩飽和度差等視覺缺陷。為解決上述問題,一種方式係將各微型發光單元211縮小以於相同面積下置入更多之微型發光單元211,期能形成類似面光源之發光效果。本新型則更於濾光層230中引入不同顏色之量子點231,與尺寸縮小至微米尺寸之微型發光單元211相互搭配,同時可提高色彩飽和度以及增加色域,以因應未來高畫質顯示裝置之需求。 In the above-mentioned display device 200, the size of each micro-light-emitting unit 211 can be millimeters or less, preferably micron size. The micro-light-emitting unit 211 usually uses an inorganic light-emitting diode (LED), which is a discontinuous point light source, thus causing a problem of insufficient backlight uniformity. Moreover, due to the innate luminous characteristics of point light sources, visual defects such as light leakage, low contrast, and poor color saturation are caused. In order to solve the above problem, one way is to reduce the size of each micro-light-emitting unit 211 so as to place more micro-light-emitting units 211 in the same area, hoping to achieve a luminous effect similar to that of a surface light source. This new model further introduces quantum dots 231 of different colors into the filter layer 230, which are matched with the micro-light-emitting units 211 reduced in size to micron size. At the same time, the color saturation and color gamut can be improved to cope with future high-definition displays. Device requirements.

第3A圖中,微型發光單元211發出的光色包括紅色、綠色及藍色,此時多個量子點231包括紅色量子點、綠色量子點及藍色量子點。微型發光單元211發出的光透過紅色量子點轉換形成紅色次畫素單元300、透過綠色量子點轉換之綠光組成綠色次畫素單元400以及透過藍色量子點轉換之藍光組成藍色次畫素單元500。各次畫素單元300、400、500間設置有遮罩600以阻擋雜散光。第3B圖中,則不設置藍色量子點。微型發光單元211發出單一藍光,微型發光單元211發出的光部分透過紅色量子點轉換形成紅色次畫素單元300、部分透過綠色量子點轉換之綠光組成綠色次畫素單元400,但部分藍色光則不經過任何量子點轉換直接射出形成藍色次畫素單元500。 In Figure 3A, the light colors emitted by the micro light-emitting unit 211 include red, green and blue. At this time, the plurality of quantum dots 231 include red quantum dots, green quantum dots and blue quantum dots. The light emitted by the micro-light-emitting unit 211 is converted through red quantum dots to form a red sub-pixel unit 300, the green light converted through green quantum dots forms a green sub-pixel unit 400, and the blue light converted through blue quantum dots forms a blue sub-pixel unit. Unit 500. A mask 600 is provided between each pixel unit 300, 400, and 500 to block stray light. In Figure 3B, no blue quantum dots are provided. The micro-light-emitting unit 211 emits a single blue light. Part of the light emitted by the micro-light-emitting unit 211 is converted by red quantum dots to form the red sub-pixel unit 300, and part of the light is converted by green quantum dots to form the green sub-pixel unit 400, but part of the light is blue. The light is directly emitted to form the blue sub-pixel unit 500 without any quantum dot conversion.

當光開關層220選用電致變色材質時,顯示裝置200之完整結構之示例請參照第4A圖及第4B圖。相較於前述第2A圖及第2B圖實施例,第4A圖及第4B圖實施例中,顯示裝置200更包括一位於背光模組210與光開關層220之間的第一偏光片240以及一位於濾光層230上的第二偏光片250。同時,顯示裝置200亦包括一位於背光模組210與光開關層220之間的第一電極260以及一位於光開關層220及濾光層230之間的第二電極270。光開關層220之透光度亦受控於第一電極260以及第二電極270之間形成之電場以形成所需之灰階。另基於 電致變色原理,第4A圖中之光開關層220係由上而下排列由電致變色材質221、電解質層222以及離子儲存層223所組成。 When the optical switch layer 220 is made of electrochromic material, please refer to Figure 4A and Figure 4B for examples of the complete structure of the display device 200 . Compared with the aforementioned embodiments in Figures 2A and 2B, in the embodiments in Figures 4A and 4B, the display device 200 further includes a first polarizer 240 between the backlight module 210 and the optical switch layer 220; A second polarizer 250 located on the filter layer 230. At the same time, the display device 200 also includes a first electrode 260 between the backlight module 210 and the optical switch layer 220 and a second electrode 270 between the optical switch layer 220 and the filter layer 230 . The transmittance of the optical switch layer 220 is also controlled by the electric field formed between the first electrode 260 and the second electrode 270 to form a required gray scale. Also based on Based on the electrochromic principle, the optical switch layer 220 in Figure 4A is composed of an electrochromic material 221, an electrolyte layer 222 and an ion storage layer 223 arranged from top to bottom.

當外加電壓施加於第一電極260及第二電極270時,其間形成電場,並於電場的作用下發生氧化還原反應,令電致變色材質221產生變色而可形成透明態,可令微型發光單元211之光線穿透。更詳而言之,其係藉由電極層所提供的電子以及離子儲存層223與電解質層222內部的離子,經過氧化還原反應令電致變色材質221之結構發生變化而變色,變色程度則可透過第一電極260及第二電極270間形成之電場控制,藉以控制所需之灰階程度。 When an external voltage is applied to the first electrode 260 and the second electrode 270, an electric field is formed therebetween, and an oxidation-reduction reaction occurs under the action of the electric field, causing the electrochromic material 221 to change color and form a transparent state, which can make the micro-light-emitting unit 211 light penetration. To be more specific, the electrons provided by the electrode layer and the ions inside the ion storage layer 223 and the electrolyte layer 222 cause the structure of the electrochromic material 221 to change and change color through a redox reaction. The degree of discoloration can be The required gray level is controlled by controlling the electric field formed between the first electrode 260 and the second electrode 270 .

第4A圖中,微型發光單元211發出的光色包括紅色、綠色及藍色,此時多個量子點231包括紅色量子點、綠色量子點及藍色量子點。微型發光單元211發出的光透過紅色量子點轉換形成紅色次畫素單元300、透過綠色量子點轉換之綠光組成綠色次畫素單元400以及透過藍色量子點轉換之藍光組成藍色次畫素單元500。各次畫素單元300、400、500間設置有遮罩600以阻擋雜散光。第4B圖中,則不設置藍色量子點。微型發光單元211發出單一藍光,微型發光單元211發出的光部分透過紅色量子點轉換形成紅色次畫素單元300、部分透過綠色量子點轉換之綠光組成綠色次畫素單元400,但部分藍色光則不經過任何量子點轉換直接射出形成藍色次畫素單元500。 In Figure 4A, the light colors emitted by the micro light-emitting unit 211 include red, green and blue. At this time, the plurality of quantum dots 231 include red quantum dots, green quantum dots and blue quantum dots. The light emitted by the micro-light-emitting unit 211 is converted through red quantum dots to form a red sub-pixel unit 300, the green light converted through green quantum dots forms a green sub-pixel unit 400, and the blue light converted through blue quantum dots forms a blue sub-pixel unit. Unit 500. A mask 600 is provided between each pixel unit 300, 400, and 500 to block stray light. In Figure 4B, no blue quantum dots are provided. The micro-light-emitting unit 211 emits a single blue light. Part of the light emitted by the micro-light-emitting unit 211 is converted by red quantum dots to form the red sub-pixel unit 300, and part of the light is converted by green quantum dots to form the green sub-pixel unit 400, but part of the light is blue. The light is directly emitted to form the blue sub-pixel unit 500 without any quantum dot conversion.

綜合言之,背光模組210之微型發光單元211發射之光線可激發各種顏色量子點231而轉換光色,以對應形成具 有紅色、綠色、藍色或前述顏色任意組合光色之次畫素單元300、400、500,進而形成全彩之圖像,並且透過量子點231窄發射線寬之特性,形成均勻發光及廣色域。再者,於一實施例,微型發光單元211發射之光線之波長可隨施加於第一電極260及第二電極間270之電壓變化而改變,進而可調變對不同顏色之量子點231之激發效率。此係因不同顏色之量子點231對其激發光源之波長之響應不一,而隨施加之電壓變化,將令微型發光單元211發射之光線之波長產生藍移(波長峰值往短波長偏移)或紅移(波長峰值往長波長偏移)之變化,因此對不同顏色之量子點231之激發效率亦相應發生變化。 To sum up, the light emitted by the micro light-emitting unit 211 of the backlight module 210 can excite the quantum dots 231 of various colors and convert the light color to form specific There are sub-pixel units 300, 400, 500 with red, green, blue or any combination of the aforementioned colors, thereby forming a full-color image, and through the narrow emission linewidth characteristics of the quantum dots 231, uniform luminescence and broad spectrum are formed. color gamut. Furthermore, in one embodiment, the wavelength of the light emitted by the micro-light-emitting unit 211 can change as the voltage applied between the first electrode 260 and the second electrode 270 changes, thereby modulating the excitation of the quantum dots 231 of different colors. efficiency. This is because the quantum dots 231 of different colors respond differently to the wavelength of the excitation light source, and as the applied voltage changes, the wavelength of the light emitted by the micro-light-emitting unit 211 will be blue-shifted (the wavelength peak shifts to a shorter wavelength) or Changes in red shift (wavelength peak shifts toward longer wavelengths), therefore the excitation efficiency of quantum dots 231 of different colors also changes accordingly.

據上,本新型揭示之顯示裝置200,透過量子點231之材料特性,搭配尺寸縮小的微型發光單元211,達到更高的光轉換效率、更高亮度、更高對比度、更高色彩飽和度、更廣視角以及更廣色域。再者,光開關層220使用電致變色材質亦提供了習知使用液晶材質之另一種替代方案,提供降低製造成本及達到不同功效之另一種創新結構。 According to the above, the display device 200 disclosed in the present invention, through the material properties of the quantum dots 231 and the reduced size of the micro-light-emitting unit 211, can achieve higher light conversion efficiency, higher brightness, higher contrast, higher color saturation, Wider viewing angles and wider color gamut. Furthermore, the use of electrochromic materials for the optical switch layer 220 also provides another alternative to the conventional use of liquid crystal materials, providing another innovative structure that reduces manufacturing costs and achieves different effects.

雖然本新型已以實施方式揭露如上,然其並非用以限定本新型,任何熟習此技藝者,在不脫離本新型之精神和範圍內,當可作各種之更動與潤飾,因此本新型之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone familiar with this art can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention is The scope shall be determined by the appended patent application scope.

200:顯示裝置 200:Display device

210:背光模組 210:Backlight module

211:微型發光單元 211:Micro light emitting unit

220:光開關層 220: Optical switch layer

230:濾光層 230: Filter layer

231:量子點 231:Quantum dots

300:紅色次畫素單元 300: red sub-pixel unit

400:綠色次畫素單元 400: Green sub-pixel unit

500:藍色次畫素單元 500: blue sub-pixel unit

600:遮罩 600:Mask

Claims (11)

一種顯示裝置,包括: A display device including: 一包括多個微型發光單元的背光模組,其中各所述微型發光單元被獨立控制而單獨自由發光; A backlight module including a plurality of micro-light-emitting units, wherein each of the micro-light-emitting units is independently controlled to emit light independently; 一位於所述背光模組上方的光開關層,其控制所述背光模組之各所述微型發光單元所發出之光線穿透與否;以及 An optical switch layer located above the backlight module, which controls whether the light emitted by each of the micro-light-emitting units of the backlight module passes through; and 一位於所述光開關層上方的濾光層,其中所述濾光層包括多個具不同顏色之量子點,並且各個所述微型發光單元發出之光線之色彩由各個所述量子點轉換,並透過各個所述具不同顏色之量子點構成多個具不同顏色之次畫素單元。 A filter layer located above the optical switch layer, wherein the filter layer includes a plurality of quantum dots with different colors, and the color of the light emitted by each of the micro-light-emitting units is converted by each of the quantum dots, and A plurality of sub-pixel units with different colors are formed through each of the quantum dots with different colors. 如申請專利範圍第1項所述的顯示裝置,其中所述微型發光單元發出的光色包括紅色、綠色及藍色,此時所述多個量子點包括紅色量子點、綠色量子點及藍色量子點,並且各個所述量子點的顏色對應轉換各個所述微型發光單元發出的光色。 As in the display device described in item 1 of the patent application, the light colors emitted by the micro-light-emitting unit include red, green and blue, and the plurality of quantum dots include red quantum dots, green quantum dots and blue quantum dots. Quantum dots, and the color of each quantum dot correspondingly converts the color of light emitted by each of the micro-light-emitting units. 如申請專利範圍第1項所述的顯示裝置,其中所述多個微型發光單元發出的光色為單一藍色,此時所述多個量子點包括紅色量子點及綠色量子點。 For the display device described in Item 1 of the patent application, the light color emitted by the plurality of micro-light-emitting units is single blue, and in this case, the plurality of quantum dots include red quantum dots and green quantum dots. 如申請專利範圍第1項所述的顯示裝置,其中所述光開關層包括液晶材質。 For the display device described in claim 1 of the patent application, the optical switch layer includes a liquid crystal material. 如申請專利範圍第1項所述的顯示裝置,其中所述光開關層包括電致變色材質。 For the display device described in claim 1 of the patent application, the optical switch layer includes an electrochromic material. 如申請專利範圍第1項所述的顯示裝置,其中所述微型背光模組所發射之光線穿透所述光開關層後,所述光開關層受控而改變其透光度以調節所述光線之穿透比例。 The display device as described in item 1 of the patent application, wherein after the light emitted by the micro backlight module penetrates the optical switch layer, the optical switch layer is controlled to change its light transmittance to adjust the The penetration ratio of light. 如申請專利範圍第1項所述的顯示裝置,更包括:一位於所述背光模組及所述光開關層之間的第一偏光片;以及一位於所述濾光層上方的第二偏光片。 The display device as described in item 1 of the patent application further includes: a first polarizer located between the backlight module and the optical switch layer; and a second polarizer located above the filter layer. piece. 如申請專利範圍第1項所述的顯示裝置,更包括:一位於所述背光模組及所述光開關層之間的第一電極;以及一位於所述光開關層及所述濾光層之間的第二電極;其中所述光開關層之透光度受控於所述第一電極及所述第二電極之間形成之電場。 The display device as described in item 1 of the patent application further includes: a first electrode located between the backlight module and the optical switch layer; and a first electrode located between the optical switch layer and the filter layer The second electrode between them; wherein the transmittance of the optical switch layer is controlled by the electric field formed between the first electrode and the second electrode. 如申請專利範圍第8項所述的顯示裝置,其中所述微型發光單元發射之光線之波長隨施加於所述第一電極以及所述第二電極間之電壓變化而改變,進而調變所述量子點之轉換效率。 As in the display device described in item 8 of the patent application, the wavelength of the light emitted by the micro-light-emitting unit changes with the change of the voltage applied between the first electrode and the second electrode, thereby modulating the Quantum dot conversion efficiency. 如申請專利範圍第1項所述的顯示裝置,其中所述濾光層的各所述量子點間設有一遮罩。 For the display device described in claim 1 of the patent application, a mask is provided between each quantum dot of the filter layer. 如申請專利範圍第1項所述的顯示裝置,其中各所述微型發光單元之尺寸為微米尺寸。 For the display device described in Item 1 of the patent application, the size of each of the micro-light-emitting units is micron size.
TW112202732U 2023-03-24 2023-03-24 Display device having micro-type lighting units in backlight thereof TWM644905U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112202732U TWM644905U (en) 2023-03-24 2023-03-24 Display device having micro-type lighting units in backlight thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112202732U TWM644905U (en) 2023-03-24 2023-03-24 Display device having micro-type lighting units in backlight thereof

Publications (1)

Publication Number Publication Date
TWM644905U true TWM644905U (en) 2023-08-11

Family

ID=88559944

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112202732U TWM644905U (en) 2023-03-24 2023-03-24 Display device having micro-type lighting units in backlight thereof

Country Status (1)

Country Link
TW (1) TWM644905U (en)

Similar Documents

Publication Publication Date Title
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
EP2757409B1 (en) Liquid crystal display device comprising a blue light source and a quantum-dot colour generating structure and method of manufacturing said device
US9405146B2 (en) Quantum dot color filter, liquid crystal panel and display device
US20200144327A1 (en) Light emitting diode module and display device
US9247613B2 (en) Quantum dot electroluminescence display device and display apparatus
EP3026486B1 (en) Liquid crystal display screen and display device
US11069753B2 (en) Display apparatus and method of manufacturing the same
WO2018188360A1 (en) Led chip, led light emitting substrate, display device and control method therefor
US10247985B2 (en) Color filter substrate, display panel and display device
US20150219965A1 (en) Liquid crystal display panel, display device, and manufacturing method of liquid crystal display panel
WO2019052002A1 (en) Color film substrate and display device
JP2015220069A (en) Display device
KR20180129024A (en) Display apparatus
WO2016045271A1 (en) Display substrate and preparation method therefor, and display device
US20180374904A1 (en) Oled display device and manufacturing method thereof
KR20180107443A (en) Photoluminescence device, method of manufacturing the same and display apparatus having the same
KR20180114979A (en) Display apparatus and method of manufacturing the same
TW201947756A (en) Pixel array substrate and driving method thereof
KR20190005277A (en) Display apparatus and method of manufacturing the same
WO2021032198A1 (en) Color film substrate, display panel and display apparatus
CN207851469U (en) Display panel and display device
KR20190083024A (en) Display apparatus and method of driving the same
US20220255030A1 (en) Color conversion substrate, manufacturing method thereof and display panel
TWI740379B (en) Lighting module
US20160377788A1 (en) Backlight module and liquid crystal display device using the same