TWM643714U - Building system - Google Patents

Building system Download PDF

Info

Publication number
TWM643714U
TWM643714U TW112201042U TW112201042U TWM643714U TW M643714 U TWM643714 U TW M643714U TW 112201042 U TW112201042 U TW 112201042U TW 112201042 U TW112201042 U TW 112201042U TW M643714 U TWM643714 U TW M643714U
Authority
TW
Taiwan
Prior art keywords
constructed
computing device
construction
position coordinates
coordinate system
Prior art date
Application number
TW112201042U
Other languages
Chinese (zh)
Inventor
沈揚庭
王宓琦
廖士豪
黃廉凱
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW112201042U priority Critical patent/TWM643714U/en
Publication of TWM643714U publication Critical patent/TWM643714U/en

Links

Images

Abstract

一種營建系統適用於對一待建構物件之多個待建構部分進行一建造處理,並包含一機械手臂、一影像拍攝模組及一運算裝置。該運算裝置在一虛擬空間產生一相關於該待建構物件的三維模型,對於每一待建構部分,藉由該運算裝置控制該機械手臂移動該影像拍攝模組至四個不同拍攝位置分別拍攝四張相關於該待建構部分的影像,並根據該待建構部分所對應之該等影像及該等拍攝位置,校正該待建構部分於該虛擬空間之位置座標,且根據該等待建構部分於該虛擬空間之校正後的位置座標,控制該機械手臂移動至該等待建構部分並進行該建造處理。A construction system is suitable for performing a construction process on a plurality of parts to be constructed of an object to be constructed, and includes a mechanical arm, an image shooting module and a computing device. The computing device generates a three-dimensional model related to the object to be constructed in a virtual space. For each part to be constructed, the computing device controls the mechanical arm to move the image capture module to four different shooting positions to capture four images related to the part to be constructed, and corrects the position coordinates of the part to be constructed in the virtual space according to the images and the shooting positions corresponding to the part to be constructed. Wait for the build part and do the build process.

Description

營建系統Construction system

本新型是有關於一種營建系統,特別是指一種整合電腦視覺與機械手臂之利用機械手臂的營建系統。The present invention relates to a construction system, in particular to a construction system using a mechanical arm which integrates computer vision and a mechanical arm.

目前國內的營建技術雖然穩定,但卻難有在技術層面突破,在營建現場大多仍然採用穩定但卻是高危險和勞力密集的工法,這也直接和間接影響了國家整體在實際場域實證上的機會。此外,受人口結構老化影響,勞動力減少是全球已開發國家所共同面對的人口問題,未來整體勞動力參與率勢必不增反減。Although the domestic construction technology is stable at present, it is difficult to make breakthroughs at the technical level. Most of the construction sites still use stable but highly dangerous and labor-intensive construction methods. This also directly and indirectly affects the country as a whole. Opportunities for field demonstrations. In addition, due to the aging of the population structure, the reduction of the labor force is a common population problem faced by developed countries around the world. In the future, the overall labor force participation rate is bound to decrease rather than increase.

國內營建產業要能配合政府推動的數位轉型,需要從營建產業的智慧化作為轉型的契機,透過機械手臂的導入可協助建築產業跳脫出勞力密集與高度危險的窠臼,轉而帶入人機協同的概念,帶動未來的產業走向「設計為本、科技中介、構築為用」的新方向,引領人機協同型人才的培育與輸出,進而帶動智慧營建的產業典範轉移。To be able to cooperate with the digital transformation promoted by the government, the domestic construction industry needs to take the intelligentization of the construction industry as an opportunity for transformation. The introduction of robotic arms can help the construction industry break out of the labor-intensive and highly dangerous situation, and instead introduce the concept of human-machine collaboration, driving the future industry to a new direction of "design-oriented, technology-mediated, and construction-oriented", leading the cultivation and output of human-machine collaborative talents, and then driving the industrial model transfer of smart construction.

然而,現有的機械手臂大多用在工廠的自動化控制,其中兩個特點是離線編程(Off-line Programming)和點到點(PTP)的工作路徑控制。這兩點對於要將機械手臂運用到建築取向的數位製造來說將會面臨很大的挑戰。首先是建築設計師大多是用三維的模型來進行專案的設計,而非先從機械手臂工作路徑來思考,再者是工廠的製程方法大多是單向的工作流程(One-directional Workflow),也就是說對於要產出的製品要很明確的被預先編寫程控制程序,這種預先建立好的製程(Established Workflow)對於大量生產來說或許是個利多,但是對於建築行業來說,恐不適合一成不變的運行模式,而需要適時地根據外在環境的改變,即時的調整工作路徑以符合當下的作動目標或使用者的意圖。However, most of the existing robotic arms are used in factory automation control, two of which are off-line programming (Off-line Programming) and point-to-point (PTP) work path control. These two points will face great challenges for the application of robotic arms to architectural-oriented digital manufacturing. First of all, architectural designers mostly use three-dimensional models to design projects, rather than thinking about the working path of the robotic arm. Furthermore, the factory’s manufacturing methods are mostly one-directional workflows (One-directional Workflow), which means that the products to be produced must be clearly programmed in advance. This pre-established workflow (Established Workflow) may be beneficial for mass production. When the external environment changes, the working path can be adjusted in real time to meet the current action target or user's intention.

因此,本新型之目的,即在提供一種可適時地根據外在環境即時的調整工作路徑的營建系統。Therefore, the purpose of the present invention is to provide a construction system that can timely adjust the working path according to the external environment.

於是,本新型營建系統,適用於對一待建構物件之多個待建構部分進行一建造處理,並包含一機械手臂、一安裝於該機械手臂的影像拍攝模組,及一信號連接該機械手臂及該影像拍攝模組的運算裝置。Therefore, the new construction system is suitable for performing a construction process on a plurality of parts to be constructed of an object to be constructed, and includes a robot arm, an image capture module installed on the robot arm, and a computing device for signal connection between the robot arm and the image capture module.

其中,該運算裝置在一虛擬空間產生一相關於該待建構物件的三維模型,其中該虛擬空間之座標系統與一世界座標系統相符,對於每一待建構部分,藉由該運算裝置控制該機械手臂移動該影像拍攝模組至四個不同拍攝位置分別拍攝四張相關於該待建構部分的影像,並根據該待建構部分所對應之該等影像及該等拍攝位置,校正該待建構部分於該虛擬空間之位置座標,且根據該等待建構部分於該虛擬空間之校正後的位置座標,控制該機械手臂移動至該等待建構部分於該世界座標系統之位置座標,並對該等待建構部分進行該建造處理。Wherein, the computing device generates a three-dimensional model related to the object to be constructed in a virtual space, wherein the coordinate system of the virtual space is consistent with a world coordinate system. For each part to be constructed, the computing device controls the mechanical arm to move the image shooting module to four different shooting positions to capture four images related to the part to be constructed respectively, and correct the position coordinates of the part to be constructed in the virtual space according to the images and the shooting positions corresponding to the part to be constructed, and according to the part to be constructed The corrected position coordinates in the virtual space control the mechanical arm to move to the position coordinates of the part waiting to be constructed in the world coordinate system, and perform the construction process on the part waiting to be constructed.

本新型之功效在於:藉由該運算裝置控制該機械手臂移動該影像拍攝模組至四個不同拍攝位置分別拍攝四張相關於該待建構部分的影像,並根據該待建構部分所對應之該等影像及該等拍攝位置,校正該待建構部分於該虛擬空間之位置座標,且根據該等待建構部分於該虛擬空間之校正後的位置座標,控制該機械手臂移動,結合電腦視覺以達成機械手臂可以根據環境的變化來進行即時調整之目的。The function of the present invention is: control the mechanical arm to move the image shooting module to four different shooting positions by the computing device to shoot four images related to the part to be constructed, and correct the position coordinates of the part to be constructed in the virtual space according to the images corresponding to the part to be constructed and the shooting positions, and control the movement of the robot arm according to the corrected position coordinates of the part waiting to be constructed in the virtual space.

參閱圖1與圖5,本新型營建系統的實施例,適用於對一待建構物件100之多個待建構部分101進行一建造處理。在本實施方式中,該等待建構部分101分別為多個待焊接點,然並不以此為限。該營建系統1包含一機械手臂11、一安裝於該機械手臂11之影像拍攝模組12及一信號連接該機械手臂11及該影像拍攝模組12的運算裝置13。該機械手臂11包含一用於輸出焊料的焊料輸出模組111、一用於融化焊料的焊接模組112及一機械臂本體,該機械手臂11之實施態樣例如為一經焊接功能之改裝後的上銀RA620機械手臂11。該影像拍攝模組12之實施態樣例如為一深度相機。該運算裝置13之實施態樣例如為一伺服器、一個人電腦、一筆記型電腦、一平板電腦或一智慧型手機等。Referring to FIG. 1 and FIG. 5 , the embodiment of the new construction system is suitable for performing a construction process on a plurality of parts 101 to be constructed of an object 100 to be constructed. In this embodiment, the waiting construction parts 101 are a plurality of points to be welded respectively, but it is not limited thereto. The construction system 1 includes a robot arm 11 , an image capture module 12 installed on the robot arm 11 , and a computing device 13 signally connecting the robot arm 11 and the image capture module 12 . The robot arm 11 includes a solder output module 111 for outputting solder, a welding module 112 for melting solder, and a robot arm body. The implementation of the robot arm 11 is, for example, a modified Shangyin RA620 robot arm 11 with a soldering function. An implementation of the image capture module 12 is, for example, a depth camera. The implementation of the computing device 13 is, for example, a server, a personal computer, a notebook computer, a tablet computer, or a smart phone.

參閱圖1、圖2與圖5,以下將藉由一利用機械手臂的營建方法來說明該營建系統1的運作細節,該利用機械手臂的營建方法包含下列步驟。Referring to FIG. 1 , FIG. 2 and FIG. 5 , the operation details of the construction system 1 will be described below through a construction method using a robotic arm. The construction method using a robotic arm includes the following steps.

在步驟21中,該運算裝置13在一虛擬空間產生一相關於該待建構物件100與該機械手臂11的三維模型,其中該虛擬空間之座標系統與一世界座標系統相符。值得特別說明的是,該三維模型係透過該運算裝置13經由一使用者之輸入操作而產生,其中該三維模型中對應該待建構物件100的物件模型之大小比例與該待建構物件100之大小比例相符,該三維模型中對應該機械手臂11的手臂模型之大小比例與該機械手臂11之大小比例相符。In step 21 , the computing device 13 generates a three-dimensional model related to the object to be constructed 100 and the robot arm 11 in a virtual space, wherein the coordinate system of the virtual space is consistent with a world coordinate system. It is worth noting that the three-dimensional model is generated through the computing device 13 through a user's input operation, wherein the size ratio of the object model corresponding to the object 100 to be constructed in the three-dimensional model is consistent with the size ratio of the object 100 to be constructed, and the size ratio of the arm model corresponding to the robot arm 11 in the three-dimensional model is consistent with the size ratio of the robot arm 11.

在步驟22中,對於每一待建構部分101,該運算裝置13控制該機械手臂11移動該影像拍攝模組12至四個不同拍攝位置分別拍攝四張相關於該待建構部分101的影像。In step 22 , for each part to be constructed 101 , the computing device 13 controls the mechanical arm 11 to move the image capturing module 12 to four different shooting positions to capture four images related to the part to be constructed 101 .

在步驟23中,對於每一待建構部分101,該運算裝置13根據該待建構部分101所對應之該等影像及該等拍攝位置,校正該待建構部分101於該虛擬空間之位置座標。In step 23, for each to-be-constructed part 101, the computing device 13 corrects the position coordinates of the to-be-constructed part 101 in the virtual space according to the images and the shooting positions corresponding to the to-be-constructed part 101.

值得一提的是,步驟23包含以下子步驟(見圖3)。It is worth mentioning that step 23 includes the following sub-steps (see Figure 3).

在子步驟231中,對於每一待建構部分101,該運算裝置13根據該待建構部分101所對應之該等影像分別獲得該等拍攝位置與該待建構部分101之四個距離。In sub-step 231 , for each to-be-constructed portion 101 , the computing device 13 respectively obtains four distances between the shooting positions and the to-be-constructed portion 101 according to the images corresponding to the to-be-constructed portion 101 .

在子步驟232中,對於每一待建構部分101,該運算裝置13根據該待建構部分101所對應之該等拍攝位置於該世界座標系統之位置座標與該等距離,利用一四點定位法,獲得該待建構部分101於該世界座標系統之位置座標。In sub-step 232, for each part 101 to be constructed, the computing device 13 obtains the position coordinates of the part 101 to be constructed in the world coordinate system by using a four-point positioning method according to the position coordinates of the shooting positions corresponding to the part 101 to be constructed in the world coordinate system and the equidistance.

在子步驟233中,對於每一待建構部分101,該運算裝置13根據該待建構部分101於該世界座標系統之位置座標校正該待建構部分101於該虛擬空間之位置座標。如此一來,即可根據真實環境的變化來即時地調整該等待建構部分101於該虛擬空間之位置座標,以使得該等待建構部分101於該虛擬空間之位置與該等待建構部分101於真實世界之位置相符。In sub-step 233, for each to-be-constructed part 101, the computing device 13 corrects the position coordinate of the to-be-constructed part 101 in the virtual space according to the position coordinate of the to-be-constructed part 101 in the world coordinate system. In this way, the position coordinates of the waiting construction part 101 in the virtual space can be adjusted in real time according to the change of the real environment, so that the position of the waiting construction part 101 in the virtual space matches the position of the waiting construction part 101 in the real world.

在步驟24中,該運算裝置13根據該等待建構部分101於該虛擬空間之校正後的位置座標,控制該機械手臂11移動至該等待建構部分101於該世界座標系統之位置座標,並對該等待建構部分101進行該建造處理。In step 24, the computing device 13 controls the mechanical arm 11 to move to the position coordinates of the waiting construction part 101 in the world coordinate system according to the corrected position coordinates of the waiting construction part 101 in the virtual space, and performs the construction process on the waiting construction part 101.

值得一提的是,步驟24包含以下子步驟(見圖4)。It is worth mentioning that step 24 includes the following sub-steps (see Figure 4).

在子步驟241中,該運算裝置13根據該等待建構部分101於該虛擬空間之校正後的位置座標,獲得一通過該等待建構部分101的工作路徑。值得一提的是,在本實施方式中,所進行之建造處理為焊接,而在焊接過程中會牽涉到在現實世界中因重力而產生的組裝方向與順序考量,較佳的方式是透過由下而上,由內而外的方式來進行焊接,因此該運算裝置13係將該等待建構部分101以由下而上,由內而外的邏輯來對於每一待建構部分101編排出焊接次序,接著利用如,由KUKA公司官方所開發之外掛於Grasshopper的KUKA|PRC機器手臂路徑編成軟體的功能指令來對該機械手臂11進行路徑的設計及規劃,以獲得該工作路徑。該運算裝置13根據該等待建構部分101於該虛擬空間之校正後的位置座標,即時且適應性的演算出機械手臂11的路徑,可更精準地控制該機械手臂11抵達正確的位置進行該建造處理。In sub-step 241 , the computing device 13 obtains a working path through the waiting construction part 101 according to the corrected position coordinates of the waiting construction part 101 in the virtual space. It is worth mentioning that in this embodiment, the construction process is welding, and the welding process will involve the consideration of the assembly direction and order due to gravity in the real world. The better way is to weld from the bottom up and from the inside out. Therefore, the computing device 13 arranges the welding sequence for each part 101 to be constructed using the logic of bottom-up and inside-out. The developed KUKA|PRC robot arm path programming software function command plugged into Grasshopper is used to design and plan the path of the robot arm 11 to obtain the working path. The computing device 13 calculates the path of the robot arm 11 in real time and adaptively according to the corrected position coordinates of the waiting construction part 101 in the virtual space, so as to more precisely control the robot arm 11 to reach the correct position for the construction process.

在子步驟242中,該運算裝置13根據該工作路徑,控制該機械手臂11移動至該等待建構部分101於該世界座標系統之位置座標,並對該等待建構部分101進行如,焊接之建造處理。In sub-step 242, the computing device 13 controls the robot arm 11 to move to the position coordinates of the part 101 waiting for construction in the world coordinate system according to the working path, and performs construction processing such as welding on the part 101 waiting for construction.

綜上所述,本新型營建系統,藉由該運算裝置13控制該機械手臂11移動該影像拍攝模組12至四個不同拍攝位置分別拍攝四張相關於該待建構部分101的影像,並根據該待建構部分101所對應之該等影像及該等拍攝位置,校正該待建構部分101於該虛擬空間之位置座標,且根據該等待建構部分101於該虛擬空間之校正後的位置座標,控制該機械手臂11移動,結合電腦視覺以達成機械手臂11可以根據環境的變化來進行即時調整之目的,從而完成一套能夠自主適應鋼筋造型進行點焊,最終完成自立組構的機械手臂11曲線鋼筋網格構築工法。因此,確實能達成本新型之目的。In summary, the new construction system uses the computing device 13 to control the mechanical arm 11 to move the image capture module 12 to four different shooting positions to capture four images related to the part to be constructed 101 respectively, and to correct the position coordinates of the part to be constructed 101 in the virtual space according to the images corresponding to the part to be constructed 101 and the shooting positions, and to control the robotic arm 11 according to the corrected position coordinates of the part to be constructed 101 in the virtual space Mobile, combined with computer vision to achieve the purpose of real-time adjustment of the robotic arm 11 according to changes in the environment, so as to complete a set of curved steel grid construction methods that can independently adapt to the shape of the steel bar for spot welding, and finally complete the self-supporting structure of the robotic arm 11. Therefore, can really reach the purpose of this novel.

惟以上所述者,僅為本新型之實施例而已,當不能以此限定本新型實施之範圍,凡是依本新型申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。But the above-mentioned ones are only embodiments of the present model, and should not limit the scope of the present model implementation. All simple equivalent changes and modifications made according to the scope of the patent application for the present model and the contents of the patent specification are still within the scope covered by the patent of the present model.

1:營建系統 11:機械手臂 111:焊料輸出模組 112:焊接模組 12:影像拍攝模組 13:運算裝置 100:待建構物件 101:待建構部分 21~24:步驟 231~233:步驟 241~242:步驟1: Construction system 11: Mechanical arm 111:Solder output module 112: Welding module 12: Image shooting module 13: Computing device 100: Objects to be constructed 101: Parts to be constructed 21~24: Steps 231~233: Steps 241~242: Steps

本新型之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,說明實施本新型營建系統之實施例; 圖2是一流程圖,說明一利用機械手臂的營建方法; 圖3是一流程圖,說明一運算裝置如何校正每一待建構部分於一虛擬空間之位置座標; 圖4是一流程圖,說明該運算裝置如何控制一機械手臂移動至每一待建構部分進行一建造處理;及 圖5是一示意圖,繪示本新型營建系統之實施例所適用的一營建環境。 Other features and functions of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: Fig. 1 is a block diagram, illustrates the embodiment that implements the new construction system of the present invention; Fig. 2 is a flow chart illustrating a construction method using a robotic arm; Fig. 3 is a flowchart illustrating how a computing device corrects the position coordinates of each part to be constructed in a virtual space; Fig. 4 is a flowchart illustrating how the computing device controls a mechanical arm to move to each part to be constructed for a construction process; and FIG. 5 is a schematic diagram illustrating a construction environment to which the embodiment of the new construction system is applicable.

1:營建系統 1: Construction system

11:機械手臂 11: Mechanical arm

111:焊料輸出模組 111:Solder output module

112:焊接模組 112: Welding module

12:影像拍攝模組 12: Image shooting module

13:運算裝置 13: Computing device

Claims (5)

一種營建系統,適用於對一待建構物件之多個待建構部分進行一建造處理,並包含: 一機械手臂; 一影像拍攝模組,安裝於該機械手臂;及 一運算裝置,信號連接該機械手臂及該影像拍攝模組; 其中,該運算裝置在一虛擬空間產生一相關於該待建構物件與該機械手臂的三維模型,其中該虛擬空間之座標系統與一世界座標系統相符,對於每一待建構部分,藉由該運算裝置控制該機械手臂移動該影像拍攝模組至四個不同拍攝位置分別拍攝四張相關於該待建構部分的影像,並根據該待建構部分所對應之該等影像及該等拍攝位置,校正該待建構部分於該虛擬空間之位置座標,且根據該等待建構部分於該虛擬空間之校正後的位置座標,控制該機械手臂移動至該等待建構部分於該世界座標系統之位置座標,並對該等待建構部分進行該建造處理。 A construction system, suitable for performing a construction process on a plurality of parts to be constructed of an object to be constructed, and comprising: a mechanical arm; an image capture module installed on the robotic arm; and A computing device, signally connected to the robotic arm and the image capture module; Wherein, the computing device generates a three-dimensional model related to the object to be constructed and the robotic arm in a virtual space, wherein the coordinate system of the virtual space is consistent with a world coordinate system. For each part to be constructed, the computing device controls the robotic arm to move the image shooting module to four different shooting positions to capture four images related to the part to be constructed, and correct the position coordinates of the part to be constructed in the virtual space according to the images and the shooting positions corresponding to the part to be constructed. The corrected position coordinates of the part waiting to be constructed in the virtual space are controlled to move the mechanical arm to the position coordinates of the part waiting to be constructed in the world coordinate system, and the construction process is performed on the part waiting to be constructed. 如請求項1所述的營建系統,其中,對於每一待建構部分,該運算裝置根據該待建構部分所對應之該等影像分別獲得該等拍攝位置與該待建構部分之四個距離,並根據該待建構部分所對應之該等拍攝位置於該世界座標系統之位置座標與該等距離,獲得該待建構部分於該世界座標系統之位置座標,且根據該待建構部分於該世界座標系統之位置座標校正該待建構部分於該虛擬空間之位置座標。The construction system as described in claim 1, wherein, for each part to be constructed, the computing device respectively obtains four distances between the shooting positions and the part to be constructed according to the images corresponding to the part to be constructed, and obtains the position coordinates of the part to be constructed in the world coordinate system according to the position coordinates of the shooting positions corresponding to the part to be constructed in the world coordinate system and the distances, and corrects the position of the part to be constructed in the virtual coordinate system according to the position coordinates of the part to be constructed in the world coordinate system The coordinates of the location in space. 如請求項2所述的營建系統,其中,對於每一待建構部分,該運算裝置係根據該待建構部分所對應之該等拍攝位置於該世界座標系統之位置座標與該等距離,利用一四點定位法,獲得該待建構部分於該世界座標系統之位置座標。The construction system as described in claim 2, wherein, for each part to be constructed, the computing device uses a four-point positioning method to obtain the position coordinates of the part to be constructed in the world coordinate system according to the position coordinates of the shooting positions corresponding to the part to be constructed in the world coordinate system and the distances. 如請求項1所述的營建系統,其中,該運算裝置係根據該等待建構部分於該虛擬空間之校正後的位置座標,獲得一通過該等待建構部分的工作路徑,並根據該工作路徑,控制該機械手臂移動至該等待建構部分於該世界座標系統之位置座標,並對該等待建構部分進行該建造處理。The construction system as described in Claim 1, wherein the computing device obtains a working path through the part waiting to be constructed according to the corrected position coordinates of the part waiting to be constructed in the virtual space, and according to the working path, controls the mechanical arm to move to the position coordinate of the part waiting to be constructed in the world coordinate system, and performs the construction process on the part waiting to be constructed. 如請求項1所述的營建系統,該等待建構部分分別為多個待焊接點,其中,該機械手臂包含一用於輸出焊料的焊料輸出模組及一用於融化焊料的焊接模組,該運算裝置係對該等待建構部分進行焊接之建造處理。In the construction system described in claim 1, the parts waiting to be constructed are respectively a plurality of points to be welded, wherein the robotic arm includes a solder output module for outputting solder and a welding module for melting solder, and the computing device is used for construction processing of welding for the parts waiting to be constructed.
TW112201042U 2023-02-06 2023-02-06 Building system TWM643714U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112201042U TWM643714U (en) 2023-02-06 2023-02-06 Building system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112201042U TWM643714U (en) 2023-02-06 2023-02-06 Building system

Publications (1)

Publication Number Publication Date
TWM643714U true TWM643714U (en) 2023-07-11

Family

ID=88148470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112201042U TWM643714U (en) 2023-02-06 2023-02-06 Building system

Country Status (1)

Country Link
TW (1) TWM643714U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815770B (en) * 2023-02-06 2023-09-11 國立成功大學 Construction method using robotic arm and construction system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815770B (en) * 2023-02-06 2023-09-11 國立成功大學 Construction method using robotic arm and construction system

Similar Documents

Publication Publication Date Title
US11440179B2 (en) System and method for robot teaching based on RGB-D images and teach pendant
CN112122840B (en) Visual positioning welding system and welding method based on robot welding
CN109591011B (en) Automatic tracking method for unilateral suture laser visual path of composite material three-dimensional structural part
JP2019177477A (en) System, method and apparatus for displaying three-dimensional robotic workcell data
CN114912287B (en) Robot autonomous grabbing simulation system and method based on target 6D pose estimation
TWM643714U (en) Building system
CN112238304B (en) Method for automatically welding small-batch customized special-shaped bridge steel templates by mechanical arm based on image visual recognition of welding seams
CN109760059A (en) Mechanical arm fittage planing method and building assembly method based on BIM
CN113664835B (en) Automatic hand-eye calibration method and system for robot
CN110695988A (en) Method and system for cooperative motion of double mechanical arms
CN113379849A (en) Robot autonomous recognition intelligent grabbing method and system based on depth camera
CN114043087A (en) Three-dimensional trajectory laser welding seam tracking attitude planning method
CN114289934A (en) Three-dimensional vision-based automatic welding system and method for large structural part
CN114434059A (en) Automatic welding system and method for large structural part with combined robot and three-dimensional vision
CN110682292A (en) Robot stacking track generation method based on RT Toolbox
CN112958974A (en) Interactive automatic welding system based on three-dimensional vision
CN102990177B (en) Method for improving programming speed and precision of automatic tin soldering robot
CN115091028A (en) Welding method and device based on laser real-time tracking, electronic equipment and medium
TWI815770B (en) Construction method using robotic arm and construction system
Sreenath et al. Monocular tracking of human hand on a smart phone camera using mediapipe and its application in robotics
CN108711174B (en) Approximate parallel vision positioning system for mechanical arm
CN208262843U (en) A kind of desktop grade handling machinery arm
CN107451991A (en) A kind of vertical position welding welding track computational methods and system
JP2010182210A (en) Robot teaching program correction apparatus
CN112454363A (en) Control method of AR auxiliary robot for welding operation