TWM642478U - Solar photovoltaic assembly - Google Patents
Solar photovoltaic assembly Download PDFInfo
- Publication number
- TWM642478U TWM642478U TW112201103U TW112201103U TWM642478U TW M642478 U TWM642478 U TW M642478U TW 112201103 U TW112201103 U TW 112201103U TW 112201103 U TW112201103 U TW 112201103U TW M642478 U TWM642478 U TW M642478U
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- transmitting
- photovoltaic assembly
- solar photovoltaic
- assembly structure
- Prior art date
Links
Images
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本案提供一種太陽能光電組裝結構。太陽能光電組裝結構包括透光面板、封裝材料層、背板、複數個太陽能電池模組以及透光散射模組。透光面板、封裝材料層以及背板沿第一方向依序堆疊設置。複數個太陽能電池模組排列設置於封裝材料層內,且面向該第一方向形成一吸收區域組配吸收光線轉換電能,其中封裝材料層包括一透光區域,於第一方向的視向上不受複數個太陽能電池模組干涉,允許一穿透光線由透光面板經透光區域進入背板。透光散射模組設置於背板,於空間上相對於透光區域,且組配散射通過的穿透光線。This case provides a solar photovoltaic assembly structure. The solar photovoltaic assembly structure includes a light-transmitting panel, a packaging material layer, a backplane, a plurality of solar cell modules and a light-transmitting scattering module. The light-transmitting panel, the encapsulation material layer and the backplane are sequentially stacked along the first direction. A plurality of solar battery modules are arranged in the encapsulation material layer and face the first direction to form an absorbing area to absorb light and convert electric energy. A plurality of solar cell modules interfere to allow a penetrating light to enter the back panel through the light-transmitting area from the light-transmitting panel. The light-transmitting scattering module is arranged on the backplane, spatially relative to the light-transmitting area, and is configured to scatter the passing light.
Description
本案係關於一種太陽能光電技術應用領域,尤指一種適用於農電共生、漁電共生場域的太陽能光電組裝結構。This case relates to a field of application of solar photovoltaic technology, especially a solar photovoltaic assembly structure suitable for the fields of agricultural electricity symbiosis and fishery electricity symbiosis.
太陽能光電技術是當前各國開發綠色能源的主要發展方向之一。通過太陽能光電模組(photovoltaic module)的光生伏打效應即可將太陽能轉化為直流電能。傳統太陽能光電模組可分為單面入光以及雙面入光結構。在農電共生、漁電共生類型的系統案場設計,為了讓農作物或養殖生物獲得均勻的照光,單面入光模組可藉由模組拉大安裝間距使光線穿透至下方,或是採用雙面入光模組,利用電池排列間隙大小設計透光比例,但這些方式均會增加更多的土地成本,並使模組效率下降。Solar photovoltaic technology is one of the main development directions for developing green energy in various countries. The solar energy can be converted into DC power through the photovoltaic effect of the solar photovoltaic module (photovoltaic module). Traditional solar photovoltaic modules can be divided into single-side light-incidence and double-side light-incidence structures. In the field design of agricultural electricity symbiosis and fishery electricity symbiosis type system, in order to allow the crops or cultured organisms to obtain uniform illumination, the single-sided incident light module can make the light penetrate to the bottom by widening the installation distance of the module, or Double-sided light-incident modules are used, and the light transmission ratio is designed by using the size of the battery arrangement gap, but these methods will increase more land costs and reduce the efficiency of the modules.
有鑑於此,實有必要提供一種太陽能光電組裝結構,利用有限的電池間隙設計,使通過電池間隙之光線在模組下方形成均勻散射的光線分佈,幫助光電板下方的動植物維持成長,以解決習知技術之缺失。In view of this, it is necessary to provide a solar photovoltaic assembly structure, which utilizes the limited cell gap design, so that the light passing through the cell gap forms a uniformly scattered light distribution under the module, and helps the animals and plants under the photovoltaic panel to maintain growth, so as to solve the problem of traditional solar cells. lack of knowledge.
本案的目的在於提供一種適用於農電共生、漁電共生場域的太陽能光電組裝結構,利用有限的電池間隙設計,使通過電池間隙之光線在模組下方形成均勻散射的光線分佈,幫助光電板下方的動植物維持成長。The purpose of this case is to provide a solar photovoltaic assembly structure suitable for the fields of agricultural electricity symbiosis and fishery electricity symbiosis. By using the limited battery gap design, the light passing through the battery gap forms a uniformly scattered light distribution under the module, which helps photovoltaic panels The flora and fauna below continue to grow.
本案的另一目的在於提供一種太陽能光電組裝結構。對應太陽能電池模組的電池間隙設計光學散射結構,即可增加穿透模組之光線散射路徑,使光電系統下方可獲得均勻的光線分佈。其中例如光學擴散片(如PET/PC/PMMA 等)、光學擴散板、擴散膜塗佈、光學散射透鏡等散射器可增設於太陽能電模組背板的內側或外側。此外,太陽能電池模組亦可結合粗糙化玻璃、粗糙化透明背板架構組裝結構,達成均勻穿透光線之目的。由於光線通過太陽能電池模組後更於太陽能電池模組下方進行散射,使太陽能電池模組下方可獲得均勻的光照度。另一方面,太陽能光電組裝結構中排列太陽能電池模組形成的透光區域具有穿透率20%至80%,結合散射器或粗糙化背板形成的透光散射模組更可配合農電共生、漁電共生場域應用,依法規定義綠電設施占用比率調變不同穿透率形成最佳化的系統排佈。以露天營農地面型案場規範之透光率需大於60%(即設施遮蔽率需小於40%)為例,當本案太陽能光電組裝結構中排列太陽能電池模組形成的穿透率為40%時,再搭配組裝結構間模組透光間隙排佈安裝,湊成整體案場透光比例大於60%即可符合法規需求。針對農電共生或漁電共生場域,太陽能光電組裝結構中排列太陽能電池模組形成的透光穿透率以40%~80%較佳。針對建物屋頂場域,太陽能光電組裝結構中排列太陽能電池模組形成的透光穿透率則以30%~80%較佳。同尺寸的太陽能光電組裝結構,通過減少電池串列數或減少各電池串列的電池數排佈,使電池間隙形成的透光區寬度隨電池占用面積比例放大或縮小排佈,達成增加透光面積設計的目的,實現多元的應用,提昇產品的競爭力。Another object of this case is to provide a solar photovoltaic assembly structure. The optical scattering structure is designed corresponding to the cell gap of the solar cell module, which can increase the light scattering path penetrating the module, so that uniform light distribution can be obtained under the photoelectric system. Among them, diffusers such as optical diffusers (such as PET/PC/PMMA, etc.), optical diffusers, diffuser coatings, and optical diffuser lenses can be added on the inside or outside of the solar module backplane. In addition, the solar cell module can also be assembled with roughened glass and roughened transparent backplane structure to achieve the purpose of uniform light penetration. Since the light is scattered under the solar battery module after passing through the solar battery module, uniform illuminance can be obtained under the solar battery module. On the other hand, the light-transmitting area formed by arranging solar cell modules in the solar photovoltaic assembly structure has a transmittance of 20% to 80%, and the light-transmitting scattering module formed by combining a diffuser or a roughened backplane is more suitable for agricultural power symbiosis , Fishing and electricity symbiosis field application, define the occupancy ratio of green power facilities according to laws and regulations and adjust different penetration rates to form an optimized system arrangement. Taking the light transmittance of the open-air agricultural ground type project site as an example, the light transmittance must be greater than 60% (that is, the shade rate of the facility must be less than 40%). When it is combined with the arrangement and installation of the light-transmitting gaps between the modules between the assembly structures, the light-transmitting ratio of the overall case is greater than 60%, which can meet the regulatory requirements. For the field of agricultural electricity symbiosis or fishery electricity symbiosis, the light transmission rate formed by arranging solar cell modules in the solar photovoltaic assembly structure is better at 40% to 80%. For the building roof field, the light transmission rate formed by arranging solar cell modules in the solar photovoltaic assembly structure is better at 30% to 80%. For solar photovoltaic assembly structures of the same size, by reducing the number of battery strings or reducing the number of cells arranged in each battery string, the width of the light-transmitting area formed by the battery gap can be enlarged or reduced according to the proportion of the occupied area of the battery, so as to increase the light transmission. The purpose of area design is to realize multiple applications and enhance product competitiveness.
本案再一目的在於提供一種太陽能光電組裝結構。對應透光區域設計光學散射結構可預置於背板表面或一體成型,不影響太陽能電池模組排列於透光面板以及背板之間的封裝製程,亦可於完成封裝製程後增設於背板的下表面,有效簡化透光散射模組的增設,並增加製程的調變性,進而實現均勻化透光的多元應用,並提昇產品的競爭力。Another object of the present case is to provide a solar photovoltaic assembly structure. Corresponding to the light-transmitting area design, the optical scattering structure can be pre-placed on the surface of the backplane or integrally formed, without affecting the packaging process of solar cell modules arranged between the light-transmitting panel and the backplane, and can also be added on the backplane after the packaging process is completed The lower surface effectively simplifies the addition of light-transmitting and scattering modules, and increases the modulation of the process, thereby realizing multiple applications of uniform light transmission and enhancing product competitiveness.
為達前述目的,本案提供一種太陽能光電組裝結構,包括透光面板、封裝材料層、背板、複數個太陽能電池模組以及透光散射模組。透光面板、封裝材料層以及背板沿第一方向依序堆疊設置。複數個太陽能電池模組排列設置於封裝材料層內,且面向該第一方向形成一吸收區域組配吸收光線轉換電能,其中封裝材料層包括一透光區域,於第一方向的視向上不受複數個太陽能電池模組干涉,允許一穿透光線由透光面板經透光區域進入背板。透光散射模組設置於背板,於空間上相對於透光區域,且組配散射通過的穿透光線。To achieve the aforementioned purpose, this case provides a solar photovoltaic assembly structure, including a light-transmitting panel, a packaging material layer, a backplane, a plurality of solar cell modules, and a light-transmitting scattering module. The light-transmitting panel, the encapsulation material layer and the backplane are sequentially stacked along the first direction. A plurality of solar battery modules are arranged in the encapsulation material layer and face the first direction to form an absorbing area to absorb light and convert electric energy. A plurality of solar cell modules interfere to allow a penetrating light to enter the back panel through the light-transmitting area from the light-transmitting panel. The light-transmitting scattering module is arranged on the backplane, spatially relative to the light-transmitting area, and is configured to scatter the passing light.
於一實施例中,吸收區域於第一方向的視向上具有一第一水平投影面積,透光區域於第一方向的視向上具有一第二水平投影面積,第二水平投影面積相對第一水平投影面積與第二水平投影面積之和的範圍介於20%至80%。In one embodiment, the absorbing region has a first horizontal projected area in the viewing direction of the first direction, the light-transmitting region has a second horizontal projected area in the viewing direction of the first direction, and the second horizontal projected area is relative to the first horizontal projected area. The sum of the projected area and the second horizontal projected area ranges from 20% to 80%.
於一實施例中,第二水平投影面積相對第一水平投影面積與第二水平投影面積之和的範圍介於40%至80%,且太陽能光電組裝結構組配應用於一農電共生或漁電共生場域。In one embodiment, the range of the second horizontal projected area relative to the sum of the first horizontal projected area and the second horizontal projected area is between 40% and 80%, and the solar photoelectric assembly structure is used for a symbiosis of agricultural electricity or fishery Electrosymbiosis field.
於一實施例中,第二水平投影面積相對第一水平投影面積與第二水平投影面積之和的範圍介於30%至80%,且太陽能光電組裝結構組配應用於一建物屋頂場域。In one embodiment, the range of the second horizontal projected area relative to the sum of the first horizontal projected area and the second horizontal projected area is 30% to 80%, and the solar photovoltaic assembly structure is applied to a building roof field.
於一實施例中,透光散射模組於第一方向的視向上具有一第三水平投影面積,第三水平投影面積大於第二水平投影面積。In one embodiment, the light transmission and scattering module has a third horizontal projection area in the viewing direction of the first direction, and the third horizontal projection area is larger than the second horizontal projection area.
於一實施例中,透光散射模組包括一散射器,設置於封裝材料層以及背板之間。In one embodiment, the light-transmitting scattering module includes a diffuser disposed between the packaging material layer and the backplane.
於一實施例中,散射器為一光學擴散片、一光學擴散板、一擴散膜塗佈層或一光學散射透鏡。In one embodiment, the diffuser is an optical diffusion sheet, an optical diffusion plate, a diffusion film coating layer or an optical diffusion lens.
於一實施例中,透光散射模組設置於背板內。In one embodiment, the light-transmissive scattering module is disposed in the backplane.
於一實施例中,背板為一粗糙化玻璃或一粗糙化透明背板。In one embodiment, the backplane is a roughened glass or a roughened transparent backplane.
於一實施例中,封裝材料層為聚乙烯醇縮丁醛(polyvinyl butyral,PVB)、乙烯乙酸乙烯酯(ethylene vinyl acetate,EVA)、可發性聚乙烯(expandable poly ethylene,EPE)或聚烯烴彈性體(polyolefin elastomer,POE)所構成。In one embodiment, the packaging material layer is polyvinyl butyral (polyvinyl butyral, PVB), ethylene vinyl acetate (ethylene vinyl acetate, EVA), expandable polyethylene (expandable polyethylene, EPE) or polyolefin It is composed of polyolefin elastomer (POE).
於一實施例中,透光區域以及透光散射模組於第一方向的視向上重疊設置。In one embodiment, the light-transmitting area and the light-transmitting scattering module are overlapped in the viewing direction of the first direction.
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上係當作說明之用,而非用於限制本案。例如,若是本揭露以下的內容叙述了將一第一特徵設置於一第二特徵之上或上方,即表示其包含了所設置的上述第一特徵與上述第二特徵是直接接觸的實施例,亦包含了尚可將附加的特徵設置於上述第一特徵與上述第二特徵之間,而使上述第一特徵與上述第二特徵可能未直接接觸的實施例。另外,本揭露中不同實施例可能使用重複的參考符號及/或標記。這些重複系爲了簡化與清晰的目的,並非用以限定各個實施例及/或所述外觀結構之間的關係。再者,爲了方便描述圖式中一組件或特徵部件與另一(複數)組件或(複數)特徵部件的關係,可使用空間相關用語,例如“上”、“下”、“內”、“外”及類似的用語等。除了圖式所繪示的方位之外,空間相關用語用以涵蓋使用或操作中的裝置的不同方位。所述裝置也可被另外定位(例如,旋轉90度或者位於其他方位),並對應地解讀所使用的空間相關用語的描述。此外,當將一組件稱爲“連接到”或“耦合到”另一組件時,其可直接連接至或耦合至另一組件,或者可存在介入組件。 儘管本揭露的廣義範圍的數值範圍及參數爲近似值,但盡可能精確地在具體實例中陳述數值。另外,可理解的是,雖然「第一」、「第二」等用詞可被用於申請專利範圍中以描述不同的組件,但這些組件並不應被這些用語所限制,在實施例中相應描述的這些組件是以不同的組件符號來表示。這些用語是爲了分別不同組件。例如:第一組件可被稱爲第二組件,相似地,第二組件也可被稱爲第一組件而不會脫離實施例的範圍。如此所使用的用語「及/或」包含了一或多個相關列出的項目的任何或全部組合。除在操作/工作實例中以外,或除非明確規定,否則本文中所揭露的所有數值範圍、量、值及百分比(例如角度、時間持續、溫度、操作條件、量比及其類似者的那些百分比等)應被理解爲在所有實施例中由用語”大約”或”實質上”來修飾。相應地,除非相反地指示,否則本揭露及隨附申請專利範圍中陳述的數值參數爲可視需要變化的近似值。例如,每一數值參數應至少根據所述的有效數字的數字且借由應用普通捨入原則來解釋。範圍可在本文中表達爲從一個端點到另一端點或在兩個端點之間。本文中所揭露的所有範圍包括端點,除非另有規定。Some typical embodiments embodying the features and advantages of the present application will be described in detail in the description in the following paragraphs. It should be understood that this case can have various changes in different aspects without departing from the scope of this case, and the descriptions and drawings therein are used as illustrations in nature rather than limiting this case. For example, if the following content of the present disclosure describes that a first feature is disposed on or above a second feature, it means that it includes an embodiment in which the above-mentioned first feature and the above-mentioned second feature are in direct contact, Embodiments in which additional features may be disposed between the above-mentioned first feature and the above-mentioned second feature, so that the above-mentioned first feature and the above-mentioned second feature may not be in direct contact are also included. In addition, different embodiments in the present disclosure may use repeated reference symbols and/or symbols. These repetitions are for the purpose of simplification and clarity, and are not intended to limit the relationship between various embodiments and/or the described appearance structures. Furthermore, in order to describe the relationship between one component or characteristic part and another (plural) component or (plural) characteristic part conveniently in the drawings, space-related terms may be used, such as "upper", "lower", "inner", " outside" and similar expressions. Spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise positioned (eg, rotated 90 degrees or at other orientations) and the description of the spatially relative terminology used be interpreted accordingly. Also, when a component is referred to as being "connected" or "coupled" to another component, it can be directly connected or coupled to the other component or intervening components may be present. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. In addition, it can be understood that although terms such as “first” and “second” may be used in the claims to describe different components, these components should not be limited by these terms. In the embodiment Those components described accordingly are denoted by different component symbols. These terms are used to distinguish between different components. For example, a first component may be called a second component, and similarly, a second component may also be called a first component without departing from the scope of the embodiments. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Except in operating/working examples, or unless expressly stated otherwise, all numerical ranges, amounts, values and percentages disclosed herein (such as those of angles, time durations, temperatures, operating conditions, ratios of quantities, and the like) etc.) should be understood to be modified by the term "about" or "substantially" in all embodiments. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this disclosure and in the appended claims are approximations that may vary if desired. For example, each numerical parameter should at least be construed in light of the number of stated significant digits and by applying ordinary rounding principles. Ranges can be expressed herein as from one endpoint to the other or as between two endpoints. All ranges disclosed herein include endpoints unless otherwise specified.
第1圖係揭示本案第一實施例之太陽能光電組裝結構的結構示意圖。於本實施例中,太陽能光電組裝結構1包括透光面板10、封裝材料層20、背板40、複數個太陽能電池模組30以及透光散射模組50。透光面板10、封裝材料層20以及背板40沿例如Z軸的第一方向依序堆疊設置。其中透光面板10以及背板40例如透明的片狀或板狀構,封裝材料層20具有透光性或散射特性,亦具黏合性,設置於透光面板10以及背板40之間,使透光面板10、封裝材料層20以及背板40由上至下形成垂直堆疊結構。於本實施例中,封裝材料層20例如由聚乙烯醇縮丁醛(polyvinyl butyral,PVB)、乙烯乙酸乙烯酯(ethylene vinyl acetate,EVA)、可發性聚乙烯(expandable poly ethylene,EPE)或聚烯烴彈性體(polyolefin elastomer,POE)所構成,但本案並不受限於此。另外,複數個太陽能電池模組30排列設置於封裝材料層20內,封裝設置於透光面板10以及背板40之間。於其他實施例中,複數個太陽能電池模組30可例如預製於透光面板10後再以封裝材料層20以及背板40進行封裝。當然,複數個太陽能電池模組30通過封裝材料層20封裝設置於透光面板10以及背板40之封裝方式非限制本案之必要技術特徵,於此便不再贅述。於本實施例中,複個太陽能電池模組30排列設置於封裝材料層20內,且面向第一方向(即Z軸方向)形成一吸收區域31(例如第2A圖至第2D圖所示網格區域),組配吸收例如太陽光線S1,並將其轉換為電能。於本實施例中,當複數個太陽能電池模組30排列設置於封裝材料層20內時,封裝材料層20更形成一透光區域21,於第一方向(即Z軸方向)的視向上不受複數個太陽能電池模組30干涉,允許例如太陽照射的一穿透光線S2由透光面板10經透光區域21進入背板40。於本實施例中,透光散射模組50設置於背板40與封裝材料層20相接處,於空間上相對於透光區域21,且組配散射通過的穿透光線S2,形成均勻的散射光線S3供予下方場域,例如幫助下方的動植物維持成長,實現太陽能光電組裝結構1的多元應用。Fig. 1 is a structural schematic diagram showing the solar photovoltaic assembly structure of the first embodiment of the present case. In this embodiment, the solar
需說明的是,於本實施例中,複數個太陽能電池模組30排列設置於封裝材料層20內形成透光區域21的型式可視實際應用需求調變。同尺寸的太陽能光電組裝結構1中,透過減少太陽能電池模組30的排列佈局,即增加透光區域21的透光面積。換言之,相較於習知太陽能光電組裝結構,本案陽能光電組裝結構1更減少太陽能電池模組30的串列數或減少各太陽能電池模組30串列中之數量,以增加透光區域21的透光面積。第2A圖至第2D圖係揭示太陽能電池模組排列設置於封裝材料層的不同實施態樣。於一示範例中,陽能光電組裝結構1的複數個太陽能電池模組30可省略鄰設於兩側長邊的電池串列布設,實現複數個太陽能電池模組30於最外側長邊縮排並作為主要的透光區域21,如第2A圖所示。於另一示範例中,陽能光電組裝結構1的減少太陽能電池模組30的串列數量時,可使沿長邊方向排列的各串太陽能電池模組30維持串列間的距離,實現複數個太陽能電池模組30於長邊縮排並使各串列間的平均間隔作為主要的透光區域21,如第2B圖所示。於再一示範例中,陽能光電組裝結構1的複數個太陽能電池模組30可省略鄰設於兩側短邊的電池布設,減少每一串列中太陽能電池模組30的數量,實現複數個太陽能電池模組30於最外側短邊縮排並作為主要的透光區域21,如第2C圖所示。於又一示範例中,陽能光電組裝結構1的減少每串列太陽能電池模組30的數量時,可調變各串太陽能電池模組30中的間隔距離,實現複數個太陽能電池模組30於短邊縮排並使透光區域21平均分布,如第2D圖所示。當然,複數個太陽能電池模組30於例如XY平面上的排列方式並不受限於前述實施態樣,且透光區域21的寬度、尺寸、面積大小均可通過調整太陽能電池模組30的佔用面積比例放大或縮小,達成增加透光面積設計的目的。It should be noted that, in this embodiment, a plurality of
參考第1圖、第2A圖至第2D圖。於本實施例中,複數個太陽能電池模組30的吸收區域31於第一方向(即Z軸/垂直方向)的視向上具有一第一水平投影面積A1,透光區域21於第一方向的視向上具有一第二水平投影面積A2,第二水平投影面積A2相對第一水平投影面積A1與第二水平投影面積A2之和的範圍介於20%至80%。即
。於一實施例中,當太陽能光電組裝結構1應用於一農電共生或漁電共生場域時,由於法規限制露天營農地面型案場規範之透光率需大於60%(即設施遮蔽率需小於40%)以上,因此太陽能光電組裝結構1可控制第二水平投影面積A2相對第一水平投影面積A1與第二水平投影面積A2之和的範圍介於40%至80%,即
,搭配組裝結構間模組透光間隙排佈安裝,湊成整體案場透光比例大於60%即可符合法規需求。藉此,太陽能光電組裝結構1即可組配應用於農電共生或漁電共生場域,通過複數個太陽能電池模組30間透光區域21的穿透光線S2,受透光散射模組50的作用即可產生均勻的散射光線S3,幫助太陽能光電組裝結構1下方的動植物維持成長。於另一實施例中,當太陽能光電組裝結構1應用於一建物屋頂場域時,第二水平投影面積A2相對第一水平投影面積A1與第二水平投影面積A2之和的範圍介於30%至80%,即
,則通過複數個太陽能電池模組30間透光區域21的穿透光線S2,受透光散射模組50的作用即可產生均勻的散射光線S3,提供太陽能光電組裝結構1下方的足夠照明。當然,本案並不以此為限。
Refer to Figure 1, Figure 2A to Figure 2D. In this embodiment, the
於本實施例中,透光散射模組50例如包括一散射器,設置於封裝材料層20以及背板40之間。散射器可例如是一光學擴散片、一光學擴散板、一擴散膜塗佈層或一光學散射透鏡,於空間上相對於透光區域21,分布設置於設置於封裝材料層20以及背板40之間。光學擴散片例如但不限於如聚對苯二甲酸乙二酯(polyethylene terephthalate, PET)、聚碳酸酯(polycarbonate,PC)或聚甲基丙烯酸甲酯(poly methyl methacrylate,PMMA)所構成。於本實施例中,透光區域21以及透光散射模組50於第一方向(即Z軸方向)的視向上重疊設置。其中透光散射模組50於第一方向的視向上具有一第三水平投影面積A3,第三水平投影面積A3更大於第二水平投影面積A2。藉此,通過透光區域21的穿透光線S2,可確保進入背板40前均受透光散射模組50的作用而產生均勻的散射光線S3。當然,透光散射模組50對應透光區域21的排列設置亦可視際應用需求調變。In this embodiment, the light transmission and
第3圖係揭示本案第二實施例之太陽能光電組裝結構的結構示意圖。於本實施例中,太陽能光電組裝結構1a與第1圖、第2A圖至第2D圖所示之太陽能光電組裝結構1相似,且相同的元件標號代表相同的元件、結構與功能,於此不再贅述。於本實施例中,透光散射模組50a例如是擴散膜塗佈層,可先塗佈於背板40的上表面。爾後,複數個太陽能電池模組30通過封裝材料層20封裝排列於透光面板10以及背板40之間,即可實現太陽能光電組裝結構1a於第一方向(即Z軸方向)的垂直堆疊。於本實施例中,透光散射模組50a於第一方向(即Z軸方向)的第三水平投影面積A3等於第一水平投影面積A1與第二水平投影面積A2之和,遠大於第二水平投影面積A2。因此,通過透光區域21的穿透光線S2均可再經由透光散射模組50a的作用而產生均勻的散射光線S3,實現太陽能光電組裝結構1a的多元應用。當然,本案並不以此為限。Fig. 3 is a structural schematic diagram showing the solar photovoltaic assembly structure of the second embodiment of the present invention. In this embodiment, the solar
第4圖係揭示本案第三實施例之太陽能光電組裝結構的結構示意圖。於本實施例中,太陽能光電組裝結構1b與第1圖、第2A圖至第2D圖所示之太陽能光電組裝結構1相似,且相同的元件標號代表相同的元件、結構與功能,於此不再贅述。於本實施例中,透光散射模組50例如是光學擴散片、光學擴散板、擴散膜塗佈層或光學散射透鏡,設置於背板40的上表面。其中複數個太陽能電池模組30可通過封裝材料層20封裝排列於透光面板10以及背板40之間後,再於背板40的下表面43設置透光散射模組50,即可實現太陽能光電組裝結構1b於第一方向(即Z軸方向)的垂直堆疊。於本實施例中,透光散射模組50於第一方向(即Z軸方向)的第三水平投影面積A3大於第二水平投影面積A2。因此,通過透光區域21的穿透光線S2即可再經由透光散射模組50的作用而產生均勻的散射光線S3。另一方面,由於透光散射模組50設置於背板40的下表面43,因此可於複數個太陽能電池模組30通過封裝材料層20封裝排列於透光面板10以及背板40之間後,再簡易的將光學擴散片、光學擴散板、光學散射透鏡或擴散膜塗佈層貼附或塗佈於背板40的下表面43而架構透光散射模組50。換言之,透光散射模組50的設置不影響太陽能電池模組30的封裝製程,且便於實現及調變。Fig. 4 is a structural schematic diagram showing the solar photovoltaic assembly structure of the third embodiment of the present case. In this embodiment, the solar
第5圖係揭示本案第四實施例之太陽能光電組裝結構的結構示意圖。於本實施例中,太陽能光電組裝結構1c與第4圖所示之太陽能光電組裝結構1b相似,且相同的元件標號代表相同的元件、結構與功能,於此不再贅述。於本實施例中,透光散射模組50a例如是擴散膜塗佈層,塗佈於背板40的下表面。複數個太陽能電池模組30可通過封裝材料層20封裝排列於透光面板10以及背板40之間後,再於背板40的下表面43設置透光散射模組50a,即可實現太陽能光電組裝結構1c於第一方向(即Z軸方向)的垂直堆疊。於本實施例中,透光散射模組50a於第一方向(即Z軸方向)的第三水平投影面積A3等於第一水平投影面積A1與第二水平投影面積A2之和,遠大於第二水平投影面積A2。因此,通過透光區域21的穿透光線S2均可再經由透光散射模組50a的作用而產生均勻的散射光線S3。另一方面,由於透光散射模組50a設置於背板40的下表面43,因此可於複數個太陽能電池模組30通過封裝材料層20封裝排列於透光面板10以及背板40之間後,再簡易的將光學擴散片、光學擴散板或擴散膜塗佈層貼附或塗佈於背板40的下表面43而架構透光散射模組50a。換言之,透光散射模組50a的設置不影響太陽能電池模組30的封裝製程,且便於實現增設及調變組裝製程。當然,本案並不以此為限。Fig. 5 is a structural schematic diagram showing the solar photovoltaic assembly structure of the fourth embodiment of the present case. In this embodiment, the solar
第6圖係揭示本案第五實施例之太陽能光電組裝結構的結構示意圖。於本實施例中,太陽能光電組裝結構1d與第1圖、第2A圖至第2D圖所示之太陽能光電組裝結構1相似,且相同的元件標號代表相同的元件、結構與功能,於此不再贅述。於本實施例中,透光散射模組例如設置於背板40a內的微結構41。於一實施例中,透光散射模組更例如設置於背板40a上表面42或下表面43的粗糙化結構。換言之,背板40a可例如是一粗糙化玻璃或一粗糙化透明背板。複數個太陽能電池模組30通過封裝材料層20封裝排列於透光面板10以及背板40a之間,即可實現太陽能光電組裝結構1d於第一方向(即Z軸方向)的垂直堆疊。由於透光散射模組與背板40a一體成型,毋需再新增組裝步驟即可完成太陽能光電組裝結構1d,有效省略組裝程序。另一方面,於第一方向(即Z軸/垂直方向)的視向上,無論吸收區域31的第一水平投影面積A1以及透光區域21的第二水平投影面積A2比例為何,通過透光區域21的穿透光線S2均可再經由透光散射模組50a的作用而產生均勻的散射光線S3,幫助太陽能光電組裝結構1d下方的動植物維持成長,或提供下方的足夠照明。Fig. 6 is a structural schematic diagram showing the solar photovoltaic assembly structure of the fifth embodiment of the present case. In this embodiment, the solar
綜上所述,本案提供一種適用於農電共生、漁電共生場域的太陽能光電組裝結構,利用有限的電池間隙設計,使通過電池間隙之光線在模組下方形成均勻散射的光線分佈,幫助光電板下方的動植物維持成長。對應太陽能電池模組的電池間隙設計光學散射結構,即可增加穿透模組之光線散射路徑,使光電系統下方可獲得均勻的光線分佈。其中例如光學擴散片(如PET/PC/PMMA 等)、光學擴散板、擴散膜塗佈、光學散射透鏡等散射器可增設於太陽能電模組背板的內側或外側。此外,太陽能電池模組亦可結合粗糙化玻璃、粗糙化透明背板架構組裝結構,達成均勻穿透光線之目的。由於光線通過太陽能電池模組後更於太陽能電池模組下方進行散射,使太陽能電池模組下方可獲得均勻的光照度。另一方面,太陽能光電組裝結構中排列太陽能電池模組形成的透光區域具有穿透率20%至80%,結合散射器或粗糙化背板形成的透光散射模組更可配合農電共生、漁電共生場域應用,依法規定義綠電設施占用比率調變不同穿透率形成最佳化的系統排佈。以露天營農地面型案場規範之透光率需大於60%(即設施遮蔽率需小於40%)為例,當本案太陽能光電組裝結構中排列太陽能電池模組形成的穿透率為40%時,搭配組裝結構間模組透光間隙排佈安裝,湊成整體案場透光比例大於60%即可符合法規需求。針對農電共生或漁電共生場域,太陽能光電組裝結構中排列太陽能電池模組形成的透光穿透率以40%~80%較佳。針對建物屋頂場域,太陽能光電組裝結構中排列太陽能電池模組形成的透光穿透率則以30%~80%較佳。同尺寸的太陽能光電組裝結構,通過減少電池串列數或減少各電池串列的電池數排佈,使電池間隙形成的透光區寬度隨電池占用面積比例放大或縮小排佈,達成增加透光面積設計的目的。對應透光區域設計光學散射結構可預置於背板表面或一體成型,不影響太陽能電池模組排列於透光面板以及背板之間的封裝製程,亦可於完成封裝製程後增設於背板的下表面,有效簡化透光散射模組的增設,並增加製程的調變性,進而實現均勻化透光的多元應用,並提昇產品的競爭力。To sum up, this case provides a solar photovoltaic assembly structure suitable for the field of agricultural electricity symbiosis and fishery electricity symbiosis. The limited battery gap design is used to make the light passing through the battery gap form a uniformly scattered light distribution under the module, which helps The flora and fauna under the photovoltaic panels maintain their growth. The optical scattering structure is designed corresponding to the cell gap of the solar cell module, which can increase the light scattering path penetrating the module, so that uniform light distribution can be obtained under the photoelectric system. Among them, diffusers such as optical diffusers (such as PET/PC/PMMA, etc.), optical diffusers, diffuser coatings, and optical diffuser lenses can be added on the inside or outside of the solar module backplane. In addition, the solar cell module can also be assembled with roughened glass and roughened transparent backplane structure to achieve the purpose of uniform light penetration. Since the light is scattered under the solar battery module after passing through the solar battery module, uniform illuminance can be obtained under the solar battery module. On the other hand, the light-transmitting area formed by arranging solar cell modules in the solar photovoltaic assembly structure has a transmittance of 20% to 80%, and the light-transmitting scattering module formed by combining a diffuser or a roughened backplane is more suitable for agricultural power symbiosis , Fishing and electricity symbiosis field application, define the occupancy ratio of green power facilities according to laws and regulations and adjust different penetration rates to form an optimized system arrangement. Taking the light transmittance of the open-air agricultural ground type project site as an example, the light transmittance must be greater than 60% (that is, the shade rate of the facility must be less than 40%). At the same time, it is arranged and installed with the light-transmitting gaps of the modules between the assembly structures, and the light-transmitting ratio of the overall case is greater than 60%, which can meet the regulatory requirements. For the field of agricultural electricity symbiosis or fishery electricity symbiosis, the light transmission rate formed by arranging solar cell modules in the solar photovoltaic assembly structure is better at 40% to 80%. For the building roof field, the light transmission rate formed by arranging solar cell modules in the solar photovoltaic assembly structure is better at 30% to 80%. For solar photovoltaic assembly structures of the same size, by reducing the number of battery strings or reducing the number of cells arranged in each battery string, the width of the light-transmitting area formed by the battery gap can be enlarged or reduced according to the proportion of the occupied area of the battery, so as to increase the light transmission. purpose of area design. Corresponding to the light-transmitting area design, the optical scattering structure can be pre-placed on the surface of the backplane or integrally formed, without affecting the packaging process of solar cell modules arranged between the light-transmitting panel and the backplane, and can also be added on the backplane after the packaging process is completed The lower surface effectively simplifies the addition of light-transmitting and scattering modules, and increases the modulation of the process, thereby realizing multiple applications of uniform light transmission and enhancing product competitiveness.
本案得由熟習此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。This case can be modified in various ways by people who are familiar with this technology, but it does not deviate from the intended protection of the scope of the attached patent application.
1、1a、1b、1c、1d:太陽能光電組裝結構
10:透光面板
20:封裝材料層
21:透光區域
30:太陽能電池模組
31:吸收區域
40、40a:背板
41:微結構
42:上表面
43:下表面
50、50a:透光散射模組
A1:第一水平投影面積
A2:第二水平投影面積
A3:第三水平投影面積
S1:太陽光線
S2:穿透光線
S3:散射光線
X、Y、Z:軸1, 1a, 1b, 1c, 1d: solar photovoltaic assembly structure
10: Translucent panel
20: Packaging material layer
21: Translucent area
30:Solar battery module
31:
第1圖係揭示本案第一實施例之太陽能光電組裝結構的結構示意圖。 第2A圖至第2D圖係揭示太陽能電池模組排列設置於封裝材料層的不同實施態樣。 第3圖係揭示本案第二實施例之太陽能光電組裝結構的結構示意圖。 第4圖係揭示本案第三實施例之太陽能光電組裝結構的結構示意圖。 第5圖係揭示本案第四實施例之太陽能光電組裝結構的結構示意圖。 第6圖係揭示本案第五實施例之太陽能光電組裝結構的結構示意圖。 Fig. 1 is a structural schematic diagram showing the solar photovoltaic assembly structure of the first embodiment of the present case. FIG. 2A to FIG. 2D disclose different implementations in which the solar cell modules are arranged in an array on the encapsulation material layer. Fig. 3 is a structural schematic diagram showing the solar photovoltaic assembly structure of the second embodiment of the present invention. Fig. 4 is a structural schematic diagram showing the solar photovoltaic assembly structure of the third embodiment of the present case. Fig. 5 is a structural schematic diagram showing the solar photovoltaic assembly structure of the fourth embodiment of the present case. Fig. 6 is a structural schematic diagram showing the solar photovoltaic assembly structure of the fifth embodiment of the present case.
1:太陽能光電組裝結構 1: Solar photovoltaic assembly structure
10:透光面板 10: Translucent panel
20:封裝材料層 20: Packaging material layer
21:透光區域 21: Translucent area
30:太陽能電池模組 30:Solar battery module
31:吸收區域 31: Absorption area
40:背板 40: Backplane
50:透光散射模組 50: Light transmission and scattering module
A1:第一水平投影面積 A1: The first horizontal projected area
A2:第二水平投影面積 A2: second horizontal projected area
A3:第三水平投影面積 A3: Third horizontal projected area
S1:太陽光線 S1: sun rays
S2:穿透光線 S2: Penetrating light
S3:散射光線 S3: scattered light
X、Y、Z:軸 X, Y, Z: axes
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112201103U TWM642478U (en) | 2023-02-08 | 2023-02-08 | Solar photovoltaic assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112201103U TWM642478U (en) | 2023-02-08 | 2023-02-08 | Solar photovoltaic assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM642478U true TWM642478U (en) | 2023-06-11 |
Family
ID=87804835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112201103U TWM642478U (en) | 2023-02-08 | 2023-02-08 | Solar photovoltaic assembly |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM642478U (en) |
-
2023
- 2023-02-08 TW TW112201103U patent/TWM642478U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140150843A1 (en) | Shingle-like photovoltaic modules | |
KR101808117B1 (en) | Solar Energy Generation Greenhouse Using Solar Cell | |
CN212323009U (en) | Colored photovoltaic module and photovoltaic system | |
TWI485870B (en) | Solar module with average light | |
JP3218202U (en) | Solar power module | |
CN114294610A (en) | Natural light homogenization lighting device and method based on positive combination of double lenses | |
US6542303B1 (en) | Light distribution controlling apparatus, luminous flux density controlling apparatus and partitioning method | |
CN111987975A (en) | High-efficiency solar module assembly | |
KR102590394B1 (en) | Light permeable photovoltaic module | |
CN203646192U (en) | High-efficiency photovoltaic greenhouse | |
TWM642478U (en) | Solar photovoltaic assembly | |
CN216597610U (en) | High resistant photovoltaic sunshading board of waiting | |
JP2011003561A (en) | Solar power generator, solar panel and solar power generation module each used for manufacturing the same | |
JP2019165568A (en) | Glass building material | |
WO2012161271A1 (en) | Photovoltaic power generation module, photovoltaic power generation system, and daylighting facility | |
CN209982428U (en) | Novel solar photovoltaic panel with multi-surface refraction | |
CN208208771U (en) | High light transmission lies prostrate component and high light transmission building | |
CN113078874A (en) | Power generation optimization method considering clean energy | |
KR101970778B1 (en) | Solar blind | |
CN111697099B (en) | Solar module for building | |
CN113782622A (en) | Thin-film solar cell panel and manufacturing method thereof | |
US20240006547A1 (en) | Light controlling photovoltaic module and method | |
JP6933596B2 (en) | Solar power system | |
TW202130888A (en) | Photoelectric farm shed for agriculture and fishery | |
CN206693520U (en) | A kind of dynamic solar protection devices for integrating photovoltaic panel |