TWM641534U - 基於自然語言處理的智能行銷系統 - Google Patents

基於自然語言處理的智能行銷系統 Download PDF

Info

Publication number
TWM641534U
TWM641534U TW112201144U TW112201144U TWM641534U TW M641534 U TWM641534 U TW M641534U TW 112201144 U TW112201144 U TW 112201144U TW 112201144 U TW112201144 U TW 112201144U TW M641534 U TWM641534 U TW M641534U
Authority
TW
Taiwan
Prior art keywords
marketing
customer
server
event
events
Prior art date
Application number
TW112201144U
Other languages
English (en)
Inventor
劉韋杰
謝忠欽
Original Assignee
第一商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一商業銀行股份有限公司 filed Critical 第一商業銀行股份有限公司
Priority to TW112201144U priority Critical patent/TWM641534U/zh
Publication of TWM641534U publication Critical patent/TWM641534U/zh

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Machine Translation (AREA)

Abstract

一種智能行銷系統包含:處理伺服器,其利用自然語言處理技術將來自數位客群互動平台有關客戶回覆之文字資訊進行斷詞處理以獲得有關該客戶的詞彙且利用該情緒分數查找表獲得有關於該詞彙的情緒分數;及行銷伺服器,其在確定出來該情緒分數不小於零時利用預建的行銷事件偏好機率估測模型且根據該客戶的基本資料、從標籤資料庫獲得有關於特定事件的標籤資料、該情緒分數以及有關於多個行銷事件的屬性資料獲得估測結果。該估測結果包含多個分別對應於該等行銷事件的偏好機率,並且根據該估測結果,產生對應於該客戶的個人化行銷推薦資訊。

Description

基於自然語言處理的智能行銷系統
本新型是有關於產品行銷,特別是指一種基於自然語言處理的智能行銷系統。
目前企業機構通常可對客戶提供一數位客服平台以進行數位客服。經由進一步分析數位客服所獲得的服務資訊,例如客戶語音信息或客戶文字信息,可確定客戶在使用服務時的情緒狀態,並進一步根據確定的情緒狀態獲得相關數位客服的服務品質評價結果。然而,如此的服務品質評價結果僅能作為企業機構如何提升數位客服品質的參考。
因此,如何能發想出一種利用數位客服平台獲得的評論資訊來提供個人化行銷服務資訊的智能行銷方式已成為相關技術領域所欲解決的議題之一。
因此,本新型的目的,即在提供一種基於自然語言處理的智能行銷系統,其能克服現有技術至少一個缺點。
於是,本新型所提供的一種基於自然語言處理的智能行銷系統包含一處理伺服器、及一行銷伺服器。
該處理伺服器用於連接一數位客群互動平台,並儲存有一有關於多個參考詞彙的情緒分數查找表。
該行銷伺服器連接該處理伺服器,並儲存有一預先建立且有關於多個行銷事件的行銷事件偏好機率估測模型、及一標籤資料庫。該標籤資料庫包含多個分別代表多個事件的標籤及其對應的標籤內容和對應的標籤代表值,該等事件包含該等行銷事件。
當該處理伺服器接收到來自該數位客群互動平台且有關一客戶針對一與該等事件其中至少一個特定事件有關的特定物件的互動回覆的文字資訊時,該處理伺服器利用自然語言處理技術,將該文字資訊進行斷詞處理以獲得有關該客戶的一個或多個詞彙,且利用該情緒分數查找表,獲得一有關於該(等)詞彙的情緒分數,並至少將該情緒分數傳送至該行銷伺服器。
該行銷伺服器在確定出來自該處理伺服器的該情緒分數不小於零時,利用該行銷事件偏好機率估測模型,至少根據有關於該客戶的基本資料、從該標籤資料庫獲得有關於該至少一個特定事件的標籤資料、該情緒分數以及有關於該等行銷事件的屬性資料,獲得一估測結果,該估測結果包含多個分別對應於該等行銷事件的偏好機率,並且根據該估測結果,產生對應於該客戶的個人化行銷推薦資訊。
在一些實施例中,該行銷伺服器還用於連接該數位客群互動平台,並將該個人化行銷推薦資訊即時地傳送至該數位客群互動平台,以供其即時地提供給該客戶。
在一些實施例中,該行銷伺服器還預先儲存了該屬性資料。該行銷事件偏好機率估測模型是一層級貝氏邏輯模型,該層級貝氏邏輯模型包含一偏好結構層級及一偏好機率層級。該行銷伺服器先在該偏好結構層級中利用馬可夫鏈蒙地卡羅(MCMC)演算法對該基本資料、該標籤資料和該情緒分數進行迭代演算以估算出有關於該客戶的多個分別對應於多個事件屬性的模型偏好參數,然後在該偏好機率層級中根據該等模型偏好參數和該屬性資料計算出該估測結果。
在一些實施例中,該特定物件包含由該數位客群互動平台所提供的一特定文章。
在一些實施例中,該等行銷事件其中每一者為一行銷服務或一行銷商品。
在一些實施例中,該行銷伺服器還儲存有與該客戶有關的歷史行銷事件資料,並且該行銷伺服器還根據該歷史行銷事件資料來調整或再訓練該行銷事件偏好機率估測模型。
在一些實施例中,該行銷伺服器還儲存有與該等行銷事件有關的行銷資訊,並且該行銷伺服器從該行銷資訊獲得有關於該等行銷事件中與該估測結果中具有相對較高的至少一個偏好機率對應的至少一個目標行銷事件的目標行銷資訊作為該個人化行銷推薦資訊。
本新型的功效在於:透過分析在該數位客群互動平台上企業方與客戶方互動的過程中所產生的互動資訊,可獲得客戶對於商品或服務的評價;特別是,利用預建的行銷事件偏好機率估測模型且根據互動資訊所含的客戶留言或評論內容所獲得的情緒分數、客戶的基本資料和特定行銷事件的標籤資料而獲得估測結果,根據該估測結果產生對應於客戶的個人化行銷推薦資訊,並將根據該估測結果產生客戶的個人化行銷推薦資訊經由數位客群互動平台即時地提供給客戶,藉此達成個人化行銷的目的,進而提升數位化行銷推薦商品或服務的成功率。
在本新型被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。
參閱圖1,示例性地繪示出本新型實施例的一種智能行銷系統100可應用於例如但不限於銀行的企業機構。在本實施例中,該智能行銷系統100可與該銀行企業機構所提供的一數位客群互動平台200和一客服伺服器400一起使用。該數位客群互動平台200可提供與該銀行企業機構當前行銷之金融商品和金融服務有關的各種物件,例如,報導文章、商品資訊和服務資訊,以供連線客戶(其可以是該銀行企業機構所擁有的客戶,亦可以是並非該銀行企業機構所擁有的客戶)的瀏覽與查詢,並且可收集或紀錄來自該連線客戶所使用的用戶裝置(如智慧型手機、平板電腦、個人電腦等)的數位瀏覽軌跡(如瀏覽的文章、商品廣告、服務廣告等)及互動訊息(如連線客戶的留言內容)。該客戶伺服器400係用於執行線上客服的即時回應處理。該智能行銷系統100包含一處理伺服器1及一行銷伺服器2,其可構成一電腦系統。
該處理伺服器1可經由一通訊網路(圖未示)連接該數位客群互動平台200和該客服伺服器400,並儲存有一有關於多個參考詞彙的情緒分數查找表,其可視實際情況來增修。以下表1可示例性地說明該情緒分數查找表所包含的內容,但不在此限。 表1
參考詞彙 情緒分數
成功 1
陷入 0
獲利 1
成為 2
超過 0
提防 -1
反彈 -2
獲利 -1
優於 0
激勵 1
問題 0
衝擊 -1
縮減 -2
明顯 0
該客服伺服器400可經由該通訊網路連接該數位客群互動平台200,並連接該處理伺服器1。在本實施例中,該行銷伺服器2儲存有一預先建立且有關於例如該銀行企業機構當前的多個行銷事件的行銷事件偏好機率估測模型、一標籤資料庫、屬性資料及一行銷資訊資料庫。在本實施例中,每個行銷事件例如可以是一金融商品(例如,美金定存、基金、信貸、保險等)或一金融服務(例如,行動支付的使用、個人基本資料的更新、信用卡刷卡分期的申請等)。
該標籤資料庫包含多個分別代表多個事件的標籤及其相關的標籤內容。值得注意的是,該等事件包含當前的該等行銷事件。更明確地,每個行銷事件可以一對應標籤來代表,並且該標籤資料庫,對於每個標籤,還包含依照相關的標籤內容所預先定義的對應的標籤代表值。此外,在本實施例中,該數位客群互動平台200所提供的每個物件可以與一個或多個事件有關(也就是說,可與一個或多個標籤有關)。
該屬性資料例如包含與該等行銷事件有關的多個事件屬性及其對應的屬性內容和對應的屬性代表值。舉一簡單示例,對於該等行行銷事件有關的如「事件類別」、「行銷類別」、「專案類別」等事件屬性的屬性資料可如下表2所示。 表2
事件屬性 屬性內容 屬性代表值
事件類別 信用卡_促刷 1
信用卡_辦卡 0
Figure 02_image001
Figure 02_image001
行銷類別 例行性行銷 1
非例行性行銷 0
專案類別 商品_排除黑名單 1
通知_不排除黑名單 0
該行銷事件偏好機率估測模型例如是一層級貝氏邏輯模型(Hierarchical Bayesian Model),其包含一偏好結構層級及一偏好機率層級。在該偏好結構層級中,該行銷伺服器2例如利用馬可夫鏈蒙地卡羅(Markov Chain Monte Carlo, 簡稱MCMC)演算法對輸入資料進行多次迭代演算以估算出分別對應於多個事件屬性的多個模型偏好參數。在本實施例中,該輸入資料可包含有關於客戶的基本資料(例如但不限於性別、年齡、婚姻狀態、學歷等)、一個或多個標籤、及情緒分數(將於下文中詳細說明)。更具體地,在該偏好結構層級中的演算模型例如可以下式1來表示:
Figure 02_image003
式1 其中
Figure 02_image005
為客戶 i之第 k個變數,其例如可為客戶 i之人口統計變量(demographics,例如包含但不限於性別、年齡、婚姻狀態、學歷等)、與平台/文章/行銷事件有關的標籤、情緒分數等其中一者;
Figure 02_image007
代表迴歸係數;
Figure 02_image009
代表殘差值;及
Figure 02_image011
,
Figure 02_image013
,…代表有關於客戶 i的多個分別對應於多個事件屬性的模型偏好參數。在該偏好機率層級中,該行銷伺服器2根據在該偏好結構層級所估算出的多個模型偏好參數和該屬性資料計算出有關於該輸入資料的估測結果。更具體地,在該偏好機率層級中的演算模型例如可以下式2來表示:
Figure 02_image015
式2 其中
Figure 02_image017
代表客戶 i對於J個行銷事件中的第j個行銷事件的偏好機率;及
Figure 02_image019
為擬推薦客戶 i之第j個行銷事件之屬性資料。
該行銷資訊資料庫儲存有與該等行銷事件有關的行銷資訊。
如圖1所示,當一客戶500透過一連接該數位客群互動平台200的用戶裝置300(例如智慧型手機)瀏覽了該數位客群互動平台200所提供的一特定物件後所輸入的互動回覆之文字資訊時,其中該特定物件可以是一篇報導文章或是一金融商品/服務的文宣廣告並與一個或多個特定事件(其可為當前的行銷事件,或非當前的行銷事件)有關,在此情況下,該數位客群互動平台200例如會將有關該客戶500的基本資料、該文字資訊以及指示出該(等)特定事件的物件資料傳送至該處理伺服器1。在本實施例中,該客戶500例如為但不限於該銀行企業機構的一新客戶,而在其他實施例中,該客戶也可為該銀行企業機構的一舊客戶。
以下,將參閱圖1及圖2來示例地詳細說明當該處理伺服器1接收到來自該數位客群互動平台200的該基本資料、該文字資訊和該物件資料時,該智能行銷系統100如何執行對於該客戶500的一智能行銷程序。該智能行銷程序包含以下步驟S21~S28。
首先,在步驟S21中,該處理伺服器1利用已知的自然語言處理技術,將接收到的該文字資訊進行斷詞處理,以獲得有關該客戶500的一個或多個詞彙。
然後,在步驟S22中,該處理伺服器1利用其儲存的該情緒分數查找表,查找出該(等)詞彙其中每一者的對應情緒分數,並將查找出的所有對應情緒分數的總和作為代表該客戶500的當前情緒反應的情緒分數。
之後,在步驟S23中,該處理伺服器1確定該情緒分數是否不小於零。若確定結果為肯定時,流程將進行步驟S24,否則,流程將進行步驟S28。
當該處理預伺服器1確定出該情緒分數不小於零時,在步驟S24中,該處理伺服器1將該基本資料、該物件資料及該情緒分數傳送至該行銷伺服器2。
當該行銷伺服器2接收到該基本資料、該物件資料及該情緒分數後,在步驟S25中,該行銷伺服器2利用該行銷事件偏好機率估測模型,可根據該基本資料、從該標籤資料庫獲得與該物件資料有關的標籤資料以及該情緒分數,獲得對應於該客戶500的一估測結果。該估測結果包含多個分別對應於該等行銷事件的偏好機率。更具體地,該行銷伺服器2先在該偏好結構層級中利用馬可夫鏈蒙地卡羅(MCMC)演算法對該基本資料、該標籤資料、該情緒分數以及有關於該等行銷事件的屬性資料進行迭代演算以估算出有關於該客戶的多個分別對應於多個事件屬性的模型偏好參數,然後在該偏好機率層級中根據該等模型偏好參數和該屬性資料計算出該估測結果。
以下,以一簡單示例來詳細地說明該行銷伺服器2在步驟S25如何利用該行銷事件偏好機率估測模型來獲得該估測結果。在此示例中,該銀行企業機構當前推出了例如3(J=3)個行銷事件(其分別為例行性信用卡辦卡通知M1、例行性信用卡促刷通知M2及非例行性信用卡商品促刷M3);具有例如3個分別對應於3個事件屬性的模型偏好參數
Figure 02_image011
Figure 02_image021
Figure 02_image023
;及在該偏好結構層級的演算模型中例如具有7個變數,其分別為「性別」、「學歷1」、「學歷2」、「文章標籤1」、「文章標籤2」、「文章標籤3」及「情緒分數」。於是,上述式1可表示成以下式3:
Figure 02_image025
式3 其中與「性別」、「學歷1」、「學歷2」等變數有關的代表值可事先定義如下表3,而與「文章標籤1」、「文章標籤2」、「文章標籤3」等變數有關的標籤代表值可事先定義如下表4:   表3
變數 內容 代表值
性別 男性 1
女性 0
學歷1 具有學士學歷 1
不具有學士學歷 0
學歷2 具有碩士學歷 1
不具有碩士學歷 0
表4
變數 標籤內容 標籤代表值
文章標籤1 有基金單筆標籤 1
無基金單筆標籤 0
文章標籤2 有保險標籤 1
無保險標籤 0
文章標籤3 有投資理財標籤 1
無投資理財標籤 0
此外,該客戶500例如為一具有碩士學歷的女性,並所瀏覽一特定物件為例如一有關於例如「保險」和「投資理財」等特定事件的報導文章且該處理伺服器1根據該客戶500的文字資訊所獲得的情緒分數為1。於是,該行銷伺服器2將自表3獲得對應於該客戶500的學歷和性別的代表值資料、自表4獲得對應於「保險」和「投資理財」標籤的標籤代表值資料,以及該情緒分數輸入到如上述式3的演算模型,並且經過例如600次的迭代演算後所估算出的三個模型偏好參數
Figure 02_image011
Figure 02_image021
Figure 02_image023
如以下式4所示: [
Figure 02_image011
,
Figure 02_image021
,
Figure 02_image023
] = [0.22, 0.85, 1.52]                            式4 另一方面,由於該等行銷事件M1,M2,M3具有3個事件屬性,因此上述式2可表示成以下式5:
Figure 02_image017
Figure 02_image027
式5 於是,根據上述表2可獲得有關於該等行銷事件M1,M2,M3的屬性代表值作為該屬性資料如以下表5所示:   表5
行銷事件 屬性內容 (事件類別,行銷類別,專案類別) 屬性資料(屬性代表值)
M1 (信用卡_辦卡,例行性行銷,通知) (0,1,0)
M2 (信用卡_促刷,例行性行銷,通知) (1,1,0)
M3 (信用卡_促刷,非例行性行銷,商品) (1,0,1)
接著,該行銷伺服器2將上述式4的模型偏好參數
Figure 02_image011
Figure 02_image021
Figure 02_image023
以及上述表5所示的屬性資料代入上述式5後可獲得對應於每個行銷事件M1/M2/M3的
Figure 02_image029
以及偏好機率(即,
Figure 02_image031
如下表6所示:   表6
行銷事件
Figure 02_image029
偏好機率(
Figure 02_image033
M1 13.33 0.09
M2 36.23 0.24
M3 98.49 0.67
之後,在步驟S26中,該行銷伺服器根據該估測結果產生該客戶500的個人化行銷推薦資訊。更具體地,在本實施例中,該行銷伺服器2會選出該估測結果所含的最高偏好機率所對應的行銷事件作為要推薦給該客戶500的目標行銷事件,並且從該行銷資訊資料庫中獲取有關該目標行銷事件的目標行銷資訊作為該個人化行銷推薦資訊。
接著,在步驟S27中,該行銷伺服器2將該個人化行銷推薦資訊即時地傳送至該數位客群互動平台200,以供其即時地提供給該客戶500,藉此達成特別是對於新客戶的個人化行銷的目的。
另一方面,當該處理伺服器1在步驟S23確定出該情緒分數小於0時,此意味該客戶500對於該數位客戶互動平台所提供之相關訊息可能處於負面評價的狀況,在步驟S28中,該處理伺服器1將該客戶500的負面評價通知該客服伺服器400,以利其作後續的反應處理。
至此,對於該客戶500所執行的該智能行銷程序完成。另需說明的是,在其他實施例中,若該客戶為該銀行企業機構的舊客戶並且該行銷伺服器2還儲存有與該客戶有關的歷史行銷事件資料時,該行銷伺服器2還可根據該歷史行銷事件資料來調整或再訓練該行銷事件機率估測模型。
綜上所述,透過分析在該數位客群互動平台200上企業方與客戶方互動的過程中所產生的互動資訊,可獲得客戶對於商品或服務的評價;特別是,利用預建的行銷事件偏好機率估測模型且根據互動資訊所含的客戶留言或評論內容所獲得的情緒分數、客戶的基本資料和特定行銷事件的標籤資料而獲得估測結果,且根據該估測結果產生對應於客戶的個人化行銷推薦資訊,並將根據該估測結果產生客戶的個人化行銷推薦資訊經由該數位客群互動平台200即時地提供給客戶。尤其,不論客戶方是舊客戶或新客戶,該智能行銷系統100均能達成個人化行銷的目的,進而提升數位化行銷推薦商品或服務的成功率。因此,本新型基於自然語言處理的智能行銷系統100確實能達成本新型的目的。
惟以上所述者,僅為本新型的實施例而已,當不能以此限定本新型實施的範圍,凡是依本新型申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本新型專利涵蓋的範圍內。
100:智能行銷系統 1:處理伺服器 2:行銷伺服器 200:數位客群互動平台 300:用戶裝置 400:客服伺服器 500:客戶 S21~S28:步驟
本新型的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,示例性地繪示出本新型實施例的一種智能行銷系統,以及連接該智能行銷系統的一數位客群互動平台和一客服伺服器;及 圖2是一流程圖,示例性地說明該實施例如何執行一智能行銷程序。
100:智能行銷系統
1:處理伺服器
2:行銷伺服器
200:數位客群互動平台
300:用戶裝置
400:客服伺服器
500:客戶

Claims (7)

  1. 一種基於自然語言處理的智能行銷系統,包含: 一處理伺服器,用於連接一數位客群互動平台,並儲存有一有關於多個參考詞彙的情緒分數查找表;及 一行銷伺服器,連接該處理伺服器,並儲存有一預先建立且有關於多個行銷事件的行銷事件偏好機率估測模型、及一標籤資料庫,該標籤資料庫包含多個分別代表多個事件的標籤及其對應的標籤內容和對應的標籤代表值,該等事件包含該等行銷事件; 其中,當該處理伺服器接收到來自該數位客群互動平台且有關一客戶針對一與該等事件其中至少一個特定事件有關的特定物件的互動回覆的文字資訊時,該處理伺服器利用自然語言處理技術,將該文字資訊進行斷詞處理以獲得有關該客戶的一個或多個詞彙,且利用該情緒分數查找表,獲得一有關於該(等)詞彙的情緒分數,並至少將該情緒分數傳送至該行銷伺服器;及 其中,該行銷伺服器在確定出來自該處理伺服器的該情緒分數不小於零時,利用該行銷事件偏好機率估測模型,至少根據有關於該客戶的基本資料、從該標籤資料庫獲得與該至少一個特定事件有關的標籤資料、該情緒分數以及有關於該等行銷事件的屬性資料,獲得一估測結果,該估測結果包含多個分別對應於該等行銷事件的偏好機率,並且根據該估測結果,產生對應於該客戶的個人化行銷推薦資訊。
  2. 如請求項1所述的基於自然語言處理的智能行銷系統,其中,該行銷伺服器還用於連接該數位客群互動平台,並將該個人化行銷推薦資訊即時地傳送至該數位客群互動平台,以供其即時地提供給該客戶。
  3. 如請求項1所述的基於自然語言處理的智能行銷系統,其中: 該行銷伺服器還預先儲存了該屬性資料; 該行銷事件偏好機率估測模型是一層級貝氏邏輯模型,該層級貝氏邏輯模型包含一偏好結構層級及一偏好機率層級;及該行銷伺服器先在該偏好結構層級中利用馬可夫鏈蒙地卡羅(MCMC)演算法對該基本資料、該標籤資料和該情緒分數進行迭代演算以估算出有關於該客戶的多個分別對應於多個事件屬性的模型偏好參數,然後在該偏好機率層級中根據該等模型偏好參數和該屬性資料計算出該估測結果。
  4. 如請求項1所述的基於自然語言處理的智能行銷系統,其中,該特定物件包含由該數位客群互動平台所提供的一特定文章。
  5. 如請求項1所述的基於自然語言處理的智能行銷系統,其中,該等行銷事件其中每一者為一行銷服務或一行銷商品。
  6. 如請求項1所述的基於自然語言處理的智能行銷系統,其中: 該行銷伺服器還儲存有與該客戶有關的歷史行銷事件資料;及 該行銷伺服器還根據該歷史行銷事件資料來調整或再訓練該行銷事件偏好機率估測模型。
  7. 如請求項1所述的基於自然語言處理的智能行銷系統,其中: 該行銷伺服器還儲存有與該等行銷事件有關的行銷資訊;及 該行銷伺服器從該行銷資訊獲得有關於該等行銷事件中與該估測結果中具有相對較高的至少一個偏好機率對應的至少一個目標行銷事件的目標行銷資訊作為該個人化行銷推薦資訊。
TW112201144U 2023-02-09 2023-02-09 基於自然語言處理的智能行銷系統 TWM641534U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112201144U TWM641534U (zh) 2023-02-09 2023-02-09 基於自然語言處理的智能行銷系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112201144U TWM641534U (zh) 2023-02-09 2023-02-09 基於自然語言處理的智能行銷系統

Publications (1)

Publication Number Publication Date
TWM641534U true TWM641534U (zh) 2023-05-21

Family

ID=87383272

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112201144U TWM641534U (zh) 2023-02-09 2023-02-09 基於自然語言處理的智能行銷系統

Country Status (1)

Country Link
TW (1) TWM641534U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI855532B (zh) * 2023-02-09 2024-09-11 第一商業銀行股份有限公司 基於自然語言處理的智能行銷方法及系統

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI855532B (zh) * 2023-02-09 2024-09-11 第一商業銀行股份有限公司 基於自然語言處理的智能行銷方法及系統

Similar Documents

Publication Publication Date Title
CN110222272B (zh) 一种潜在客户挖掘与推荐方法
Jakic et al. The impact of language style accommodation during social media interactions on brand trust
Chong et al. Predicting consumer product demands via Big Data: the roles of online promotional marketing and online reviews
US20200074312A1 (en) System and method for call centre management
Hung et al. An integrative approach to understanding customer satisfaction with e-service of online stores
US10733619B1 (en) Semantic processing of customer communications
JP6848883B2 (ja) 情報処理装置、情報処理方法、およびプログラム
US11144964B2 (en) System for assisting in marketing
US20120150626A1 (en) System and Method for Automated Recommendation of Advertisement Targeting Attributes
Even et al. Value-driven data quality assessment.
CN117057873A (zh) 商品描述内容生成方法及其装置、设备、介质
Abdullah et al. Predicting determinants of use mobile commerce through modelling non-linear relationships
CN106920109A (zh) 用于电子商务虚假交易的识别方法、系统及电子商务系统
JP6709775B2 (ja) 算出装置、算出方法及び算出プログラム
US20250265560A1 (en) Method for Online Ordering Using Conversational Interface
TWM641534U (zh) 基於自然語言處理的智能行銷系統
US20130262355A1 (en) Tools and methods for determining semantic relationship indexes
Kim et al. A Structural Topic Model for Exploring User Satisfaction with Mobile Payments.
Huang Using artificial neural networks to predict restaurant industry service recovery
US20240338710A1 (en) Real-time assistance for a customer at a point of decision through hardware and software smart indicators deterministically generated through artificial intelligence
TWI855532B (zh) 基於自然語言處理的智能行銷方法及系統
US11494792B2 (en) Predictive decision making based on influence identifiers and learned associations
CN118644266A (zh) 客户营销传播方法、装置、介质和设备
Khan et al. Elevating Consumer Purchase Intentions in Pakistan: The Power of Digital Marketing
Bankole et al. Cell phone banking: Revisiting predictors of adoption in South Africa