TWM635837U - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWM635837U
TWM635837U TW111210102U TW111210102U TWM635837U TW M635837 U TWM635837 U TW M635837U TW 111210102 U TW111210102 U TW 111210102U TW 111210102 U TW111210102 U TW 111210102U TW M635837 U TWM635837 U TW M635837U
Authority
TW
Taiwan
Prior art keywords
region
effect transistor
field effect
junction field
layer
Prior art date
Application number
TW111210102U
Other languages
Chinese (zh)
Inventor
蕭逸楷
蔣光浩
郭浩中
Original Assignee
鴻海精密工業股份有限公司
鴻揚半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司, 鴻揚半導體股份有限公司 filed Critical 鴻海精密工業股份有限公司
Priority to TW111210102U priority Critical patent/TWM635837U/en
Publication of TWM635837U publication Critical patent/TWM635837U/en

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)

Abstract

A semiconductor device includes a substrate, an epitaxial layer, a well region, a source region, a base region, a first JFET region, a second JFET region, a gate dielectric layer, and a gate layer. The epitaxial layer is at one side of the substrate. The well region is in the epitaxial layer. The source region is in the well region. The base region is in the well region and adjacent the source region. The first JFET region is adjacent the well region. The second JFET region is in the first JFET region. The first JFET region and the second JFET region include a plurality of first semiconductor-type dopants, and a dopant concentration of the second JFET region is higher than a dopant concentration of the first JFET region. The gate dielectric layer is at one side of the epitaxial layer distal to the substrate. The gate layer is at one side of the gate electric layer distal to the epitaxial layer.

Description

半導體裝置Semiconductor device

本揭露的一些實施方式是關於一種半導體裝置。Some embodiments of the present disclosure relate to a semiconductor device.

碳化矽功率電晶體具有高阻隔電壓、低導通電阻、高熱傳導性的特性,使得碳化矽功率電晶體越來越受重視。其中,碳化矽功率電晶體的阻值可由電晶體中的不同元件的阻值組成,例如觸點、通道、閘極、接面場效電晶體區、基板的阻值。其中,接面場效電晶體區的阻值佔了碳化矽功率電晶體中的阻值的一大部分。Silicon carbide power transistors have the characteristics of high blocking voltage, low on-resistance, and high thermal conductivity, making silicon carbide power transistors more and more important. Wherein, the resistance value of the silicon carbide power transistor can be composed of the resistance values of different components in the transistor, such as the resistance values of contacts, channels, gates, junction field effect transistor regions, and substrates. Wherein, the resistance value of the junction field effect transistor region accounts for a large part of the resistance value of the SiC power transistor.

本揭露提供一種半導體裝置,包含基板、磊晶層、井區、源極區、基極區、第一接面場效電晶體區、第二接面場效電晶體區、閘極介電層與閘極層。磊晶層在基板的一側。井區在磊晶層中。源極區在井區中。基極區在井區中,且相鄰源極區。第一接面場效電晶體區相鄰於井區。第二接面場效電晶體區於第一接面場效電晶體區中,第一接面場效電晶體區與第二接面場效電晶體區包含具有第一半導體型的複數個摻雜物,其中第二接面場效電晶體區的摻雜濃度比第一接面場效電晶體區的摻雜濃度還高。閘極介電層在磊晶層遠離基板的一側。閘極層在閘極介電層遠離磊晶層的一側。The disclosure provides a semiconductor device, including a substrate, an epitaxial layer, a well region, a source region, a base region, a first junction field effect transistor region, a second junction field effect transistor region, and a gate dielectric layer with the gate layer. The epitaxial layer is on one side of the substrate. The well region is in the epitaxial layer. The source region is in the well region. The base region is in the well region and is adjacent to the source region. The first junction field effect transistor region is adjacent to the well region. The second junction field effect transistor region is in the first junction field effect transistor region, and the first junction field effect transistor region and the second junction field effect transistor region include a plurality of doped doped particles having the first semiconductor type. impurities, wherein the doping concentration of the second junction field effect transistor region is higher than that of the first junction field effect transistor region. The gate dielectric layer is on the side of the epitaxial layer away from the substrate. The gate layer is on the side of the gate dielectric layer away from the epitaxial layer.

在一些實施方式中,井區包含具有第二半導體型的複數個摻雜物,且第二半導體型不同於第一半導體型。In some embodiments, the well region includes a plurality of dopants having a second semiconductor type, and the second semiconductor type is different from the first semiconductor type.

在一些實施方式中,井區包覆源極區的底部與基極區的底部。In some embodiments, the well region wraps the bottom of the source region and the bottom of the base region.

在一些實施方式中,第一接面場效電晶體區的底部與第二接面場效電晶體區的底部比井區的底部還接近基板。In some embodiments, the bottom of the first junction field effect transistor region and the bottom of the second junction field effect transistor region are closer to the substrate than the bottom of the well region.

在一些實施方式中,半導體裝置更包含第三接面場效電晶體區,相鄰於第二接面場效電晶體區,第三接面場效電晶體區包含具有第一半導體型的該些摻雜物,該第三接面場效電晶體區的摻雜濃度比第二接面場效電晶體區的摻雜濃度還高。In some embodiments, the semiconductor device further includes a third junction field effect transistor region adjacent to the second junction field effect transistor region, and the third junction field effect transistor region includes the junction field effect transistor region having the first semiconductor type. Some dopants, the doping concentration of the third junction field effect transistor region is higher than the doping concentration of the second junction field effect transistor region.

在一些實施方式中,半導體裝置更包含源極觸點,接觸源極區。In some embodiments, the semiconductor device further includes a source contact contacting the source region.

在一些實施方式中,半導體裝置更包含汲極電極,在基板的另一側。In some embodiments, the semiconductor device further includes a drain electrode on the other side of the substrate.

在一些實施方式中,井區的摻雜濃度比基極區的摻雜濃度還低。In some embodiments, the doping concentration of the well region is lower than that of the base region.

在一些實施方式中,磊晶層包含漂移區,且第一接面場效電晶體區的摻雜濃度與第二接面場效電晶體區的摻雜濃度比漂移區的摻雜濃度還高。In some embodiments, the epitaxial layer includes a drift region, and the doping concentration of the first junction field effect transistor region and the doping concentration of the second junction field effect transistor region are higher than the doping concentration of the drift region .

在一些實施方式中,源極區的摻雜濃度高於漂移區的摻雜濃度。In some embodiments, the doping concentration of the source region is higher than that of the drift region.

綜上所述,本揭露的一些實施方式的半導體裝置考包含不同的摻雜濃度的接面場效電晶體區。當接面場效電晶體區的摻雜濃度在靠近井區較低,而在中央處較高,且接面場效電晶體區的濃度高於底下的漂移區的摻雜濃度時,可降低半導體裝置的接面場效電晶體區的阻值。此外,可避免半導體裝置的崩潰電壓下降,而使得半導體裝置無法承受太大的驅動電壓。To sum up, the semiconductor devices according to some embodiments of the present disclosure may include JFET regions with different doping concentrations. When the doping concentration of the junction field effect transistor region is lower near the well region and higher in the center, and the doping concentration of the junction field effect transistor region is higher than that of the underlying drift region, the The resistance value of the junction field effect transistor region of a semiconductor device. In addition, the breakdown voltage drop of the semiconductor device can be avoided, so that the semiconductor device cannot bear too much driving voltage.

本揭露的一些實施方式是關於半導體裝置的結構與其形成方式。本揭露的一些實施方式適用於半導體裝置的接面場效電晶體(junction gate field-effect transistor,JFET)區。可針對半導體裝置中的接面場效電晶體區進行兩步驟的離子植入製程,使得接面場效電晶體區的摻雜濃度提升,而降低半導體元件的接面場效電晶體區的阻值。此外,接面場效電晶體區的外側部分的摻雜濃度較低,因此半導體元件的崩潰電壓(breakdown voltage)不會有較大幅地下降,半導體元件便可承受住一定程度的驅動電壓。Some embodiments of the present disclosure relate to the structure of semiconductor devices and the manner in which they are formed. Some embodiments of the present disclosure are applicable to a junction gate field-effect transistor (JFET) region of a semiconductor device. A two-step ion implantation process can be carried out for the junction field effect transistor region in the semiconductor device, so that the doping concentration of the junction field effect transistor region is increased, and the resistance of the junction field effect transistor region of the semiconductor device is reduced. value. In addition, the doping concentration of the outer portion of the junction field effect transistor region is relatively low, so the breakdown voltage of the semiconductor device will not drop significantly, and the semiconductor device can withstand a certain driving voltage.

第1圖繪示本揭露的一些實施方式的半導體裝置100的橫截面視圖。半導體裝置100包含基板110、磊晶層120、漂移區121、井區126、源極區124、基極區122、第一接面場效電晶體區127、第二接面場效電晶體區128、閘極介電層140與閘極層150。FIG. 1 illustrates a cross-sectional view of a semiconductor device 100 according to some embodiments of the present disclosure. The semiconductor device 100 includes a substrate 110, an epitaxial layer 120, a drift region 121, a well region 126, a source region 124, a base region 122, a first junction field effect transistor region 127, a second junction field effect transistor region 128 . The gate dielectric layer 140 and the gate layer 150 .

磊晶層120在基板110的一側。井區126在磊晶層120中,且在漂移區121上。源極區124在井區126中。基極區122在源極區124中,且相鄰源極區124。第一接面場效電晶體區127相鄰於井區126。第二接面場效電晶體區128於第一接面場效電晶體區127中。基板110、漂移區121、源極區124、第一接面場效電晶體區127與第二接面場效電晶體區128包含具有第一半導體型的複數個摻雜物,其中第二接面場效電晶體區128的摻雜濃度比第一接面場效電晶體區127的摻雜濃度還高,且第一接面場效電晶體區127與第二接面場效電晶體區128的摻雜濃度比漂移區121的摻雜濃度還高。基極區122與井區126包含具有第二半導體型的複數個摻雜物,且第二半導體型不同於第一半導體型。在一些實施方式中,第一半導體型可為N型,且第一半導體型的摻雜物可為磷、砷、氮等。第二半導體型可為P型,且第二半導體型的摻雜物可為硼、鎵、鋁等。閘極介電層140在磊晶層120遠離基板110的一側。閘極層150在閘極介電層140遠離磊晶層120的一側。The epitaxial layer 120 is on one side of the substrate 110 . Well region 126 is in epitaxial layer 120 and on drift region 121 . Source region 124 is in well region 126 . The base region 122 is in the source region 124 and is adjacent to the source region 124 . The first junction field effect transistor region 127 is adjacent to the well region 126 . The second junction field effect transistor region 128 is in the first junction field effect transistor region 127 . The substrate 110, the drift region 121, the source region 124, the first junction field effect transistor region 127 and the second junction field effect transistor region 128 contain a plurality of dopants having the first semiconductor type, wherein the second junction field effect transistor region The doping concentration of the field effect transistor region 128 is higher than that of the first junction field effect transistor region 127, and the first junction field effect transistor region 127 and the second junction field effect transistor region The doping concentration of 128 is higher than that of the drift region 121 . The base region 122 and the well region 126 contain a plurality of dopants having a second semiconductor type, and the second semiconductor type is different from the first semiconductor type. In some embodiments, the first semiconductor type may be N-type, and the dopant of the first semiconductor type may be phosphorus, arsenic, nitrogen, or the like. The second semiconductor type can be P-type, and the dopant of the second semiconductor type can be boron, gallium, aluminum or the like. The gate dielectric layer 140 is on a side of the epitaxial layer 120 away from the substrate 110 . The gate layer 150 is on a side of the gate dielectric layer 140 away from the epitaxial layer 120 .

半導體裝置100更包含介電層160、源極觸點170與汲極電極180。介電層160在磊晶層120上。源極觸點170接觸源極區124。汲極電極180在基板110的另一側,在此的用語「另一側」是相對於磊晶層120而言。亦即,汲極電極180與磊晶層120位於基板110的相對兩側。。當導通半導體裝置100的閘極層150時,電子流沿著箭頭C,從源極觸點170經過源極區124、井區126、第一接面場效電晶體區127、第二接面場效電晶體區128、漂移區121、基板110,並流至汲極電極180。相比於漂移區121,第一接面場效電晶體區127與第二接面場效電晶體區128的摻雜濃度較高,因此第一接面場效電晶體區127與第二接面場效電晶體區128的阻值可降低,進而降低半導體裝置100的阻值。此外,為了避免半導體裝置100 的崩潰電壓下降,而使得半導體裝置100無法承受太大的驅動電壓,第二接面場效電晶體區128的摻雜濃度可設計成比第一接面場效電晶體區127的摻雜濃度還高,亦即靠近井區126的第一接面場效電晶體區127比遠離井區126的第二接面場效電晶體區128的摻雜濃度還低。The semiconductor device 100 further includes a dielectric layer 160 , a source contact 170 and a drain electrode 180 . The dielectric layer 160 is on the epitaxial layer 120 . A source contact 170 contacts the source region 124 . The drain electrode 180 is on the other side of the substrate 110 , and the term “the other side” here is relative to the epitaxial layer 120 . That is, the drain electrode 180 and the epitaxial layer 120 are located on opposite sides of the substrate 110 . . When the gate layer 150 of the semiconductor device 100 is turned on, the electron flow follows the arrow C from the source contact 170 through the source region 124, the well region 126, the first junction field effect transistor region 127, and the second junction The field effect transistor region 128 , the drift region 121 , the substrate 110 , and flow to the drain electrode 180 . Compared with the drift region 121, the doping concentration of the first junction field effect transistor region 127 and the second junction field effect transistor region 128 is higher, so the first junction field effect transistor region 127 and the second junction field effect transistor region 127 The resistance of the field effect transistor region 128 can be reduced, thereby reducing the resistance of the semiconductor device 100 . In addition, in order to prevent the breakdown voltage of the semiconductor device 100 from dropping so that the semiconductor device 100 cannot bear too much driving voltage, the doping concentration of the second junction field effect transistor region 128 can be designed to be higher than that of the first junction field effect transistor region 128 . The doping concentration of the crystal region 127 is still high, that is, the doping concentration of the first junction field effect transistor region 127 close to the well region 126 is lower than that of the second junction field effect transistor region 128 far away from the well region 126 .

第2圖至第19圖繪示本揭露的一些實施方式的半導體裝置100的製造方式的橫截面視圖。參考第2圖,參考第2圖,提供基板110與磊晶層120。基板110為任何適合的基板。在一些實施方式中,基板110可由例如但不限於碳化矽製成。基板110中可摻雜第一半導體型的摻雜劑。舉例而言,基板110可為N型重摻雜基板,例如包含磷、砷、氮等N型摻雜物的重度摻雜區域。接著,可在基板110上形成磊晶層120。在一些實施方式中,磊晶層120可由例如但不限於碳化矽製成。磊晶層120中可摻雜第一半導體型的摻雜劑。舉例而言,磊晶層120可為N型輕摻雜基板,例如包含磷、砷、氮等N型摻雜物的輕度摻雜區域。亦即,磊晶層120的摻雜濃度可比基板110的摻雜濃度還低。2 to 19 illustrate cross-sectional views of the manufacturing method of the semiconductor device 100 according to some embodiments of the present disclosure. Referring to FIG. 2 , referring to FIG. 2 , a substrate 110 and an epitaxial layer 120 are provided. Substrate 110 is any suitable substrate. In some embodiments, the substrate 110 may be made of, for example, but not limited to, silicon carbide. The substrate 110 may be doped with a dopant of the first semiconductor type. For example, the substrate 110 can be an N-type heavily doped substrate, such as a heavily doped region containing N-type dopants such as phosphorus, arsenic, and nitrogen. Next, an epitaxial layer 120 may be formed on the substrate 110 . In some embodiments, the epitaxial layer 120 can be made of, for example, but not limited to, silicon carbide. The epitaxial layer 120 may be doped with a dopant of the first semiconductor type. For example, the epitaxial layer 120 can be an N-type lightly doped substrate, such as a lightly doped region containing N-type dopants such as phosphorus, arsenic, and nitrogen. That is, the doping concentration of the epitaxial layer 120 may be lower than that of the substrate 110 .

參考第3圖,形成基極區122於磊晶層120中。具體而言,可先在磊晶層120上塗佈光阻材料,接著使用不透光的光罩曝光光阻材料,並顯影光阻材料,以形成光阻層PR於磊晶層120上,光阻層PR暴露出部分磊晶層120。接著,以光阻層PR為遮罩,執行第二半導體型離子植入製程,以在磊晶層120中形成基極區122。在一些實施方式中,基極區122可為P型重摻雜區域,例如包含硼、鎵、鋁等P型摻雜物的重度摻雜區域。在形成基極區122之後,磊晶層120可分為被第二半導體型離子的基極區122與未被第二半導體型離子摻雜的漂移區121,因此,漂移區121仍保持為N型輕摻雜區域。在一些實施方式中,漂移區121的摻雜濃度可在1E16個原子/立方公分至1E19個原子/立方公分的範圍之內。接著,參考第4圖,移除光阻層PR。可藉由灰化(ashing)、蝕刻等方式來移除光阻層PR。Referring to FIG. 3 , a base region 122 is formed in the epitaxial layer 120 . Specifically, the photoresist material can be coated on the epitaxial layer 120 first, then the photoresist material is exposed using an opaque mask, and the photoresist material is developed to form the photoresist layer PR on the epitaxial layer 120, The photoresist layer PR exposes part of the epitaxial layer 120 . Next, using the photoresist layer PR as a mask, a second semiconductor-type ion implantation process is performed to form the base region 122 in the epitaxial layer 120 . In some embodiments, the base region 122 may be a P-type heavily doped region, for example, a heavily doped region containing P-type dopants such as boron, gallium, and aluminum. After the base region 122 is formed, the epitaxial layer 120 can be divided into a base region 122 that is doped with ions of the second semiconductor type and a drift region 121 that is not doped with ions of the second semiconductor type. Therefore, the drift region 121 remains N type lightly doped region. In some embodiments, the doping concentration of the drift region 121 may be in the range of 1E16 atoms/cm3 to 1E19 atoms/cm3. Next, referring to FIG. 4, the photoresist layer PR is removed. The photoresist layer PR can be removed by ashing, etching and the like.

參考第5圖,形成犧牲疊層130於磊晶層120上,犧牲疊層130包含第一子層132與在第一子層132上的第二子層134。具體而言,可先在磊晶層120上形成第一子層132,接著在第一子層132上形成第二子層134。第一子層132與第二子層134由不同材料製成,在一些實施方式中,第一子層132由二氧化矽製成,而第二子層134由氮化矽製成。Referring to FIG. 5 , a sacrificial stack 130 is formed on the epitaxial layer 120 . The sacrificial stack 130 includes a first sub-layer 132 and a second sub-layer 134 on the first sub-layer 132 . Specifically, the first sub-layer 132 can be formed on the epitaxial layer 120 first, and then the second sub-layer 134 can be formed on the first sub-layer 132 . The first sub-layer 132 and the second sub-layer 134 are made of different materials. In some embodiments, the first sub-layer 132 is made of silicon dioxide, and the second sub-layer 134 is made of silicon nitride.

參考第6圖,內縮犧牲疊層130的第二子層134的側壁134S。具體而言,可使用對第二子層134有高蝕刻選擇比的濕蝕刻劑。亦即,可選擇容易蝕刻第二子層134而不容易蝕刻第一子層132的濕蝕刻劑,以暴露出下方的第一子層132,且第二子層134於磊晶層120的垂直投影未覆蓋基極區122。第二子層134於磊晶層120的垂直投影與基極區122之間具有距離。在此實施方式中,第一子層132仍在原位且未被蝕刻。當第一子層132為二氧化矽,第二子層134為氮化矽時,濕蝕刻劑可為熱磷酸。Referring to FIG. 6 , the sidewall 134S of the second sub-layer 134 of the sacrificial stack 130 is retracted. Specifically, a wet etchant having a high etch selectivity to the second sublayer 134 may be used. That is, a wet etchant that is easy to etch the second sublayer 134 but not easy to etch the first sublayer 132 can be selected to expose the underlying first sublayer 132 , and the second sublayer 134 is perpendicular to the epitaxial layer 120 The projection does not cover the base region 122 . The second sub-layer 134 has a distance between the vertical projection of the epitaxial layer 120 and the base region 122 . In this embodiment, the first sub-layer 132 is still in place and has not been etched. When the first sub-layer 132 is silicon dioxide and the second sub-layer 134 is silicon nitride, the wet etchant may be hot phosphoric acid.

參考第7圖,以第二子層134作為遮罩,形成相鄰基極區122的源極區124。具體而言,執行第一半導體型離子植入製程,以在磊晶層120中形成源極區124。在一些實施方式中,源極區124可為N型重摻雜區域,例如包含磷、砷、氮等N型摻雜物的重度摻雜區域。摻雜劑可穿過第一子層132植入至磊晶層120中。源極區124形成於基極區122與第二子層134於磊晶層120的垂直投影之間。在一些實施方式中,源極區124的摻雜濃度高於漂移區121的摻雜濃度。在一些實施方式中,在形成源極區124時,可在基極區122上形成硬遮罩層,因此在形成源極區124時不會影響基極區122。或者,可在第3圖中,提升基極區122的摻雜濃度,因此在形成源極區124時,可將基極區122的離子濃度調整至期望的濃度。Referring to FIG. 7 , the source region 124 adjacent to the base region 122 is formed using the second sub-layer 134 as a mask. Specifically, a first semiconductor-type ion implantation process is performed to form the source region 124 in the epitaxial layer 120 . In some embodiments, the source region 124 can be an N-type heavily doped region, for example, a heavily doped region containing N-type dopants such as phosphorus, arsenic, and nitrogen. Dopants may be implanted into the epitaxial layer 120 through the first sub-layer 132 . The source region 124 is formed between the base region 122 and the vertical projection of the second sub-layer 134 on the epitaxial layer 120 . In some embodiments, the doping concentration of the source region 124 is higher than that of the drift region 121 . In some embodiments, a hard mask layer may be formed on the base region 122 when the source region 124 is formed, so that the base region 122 is not affected when the source region 124 is formed. Alternatively, in FIG. 3 , the doping concentration of the base region 122 can be increased, so that the ion concentration of the base region 122 can be adjusted to a desired concentration when the source region 124 is formed.

參考第8圖,再度內縮犧牲疊層130的第二子層134的側壁134S。在一些實施方式中,可使用與第6圖所述相同的濕蝕刻劑來內縮犧牲疊層130的第二子層134的側壁134S使得第二子層134於磊晶層120的垂直投影未覆蓋基極區122與源極區124。第二子層134於磊晶層120的垂直投影與源極區124之間具有距離。在此實施方式中,第一子層132仍在原位且未被蝕刻。在一些實施方式中,內縮後的第二子層134的長度L1可在0.8微米至1.2微米的範圍之內。Referring to FIG. 8, the sidewall 134S of the second sub-layer 134 of the sacrificial stack 130 is retracted again. In some embodiments, the same wet etchant as described in FIG. Covers the base region 122 and the source region 124 . The second sub-layer 134 has a distance between the vertical projection of the epitaxial layer 120 and the source region 124 . In this embodiment, the first sub-layer 132 is still in place and has not been etched. In some embodiments, the length L1 of the retracted second sub-layer 134 may be in the range of 0.8 microns to 1.2 microns.

參考第9圖,以再度內縮後的第二子層134作為遮罩,形成包覆基極區122與源極區124的井區126。具體而言,可對磊晶層120執行第二半導體型離子植入製程,以形成井區126於磊晶層120中。摻雜劑可穿過第一子層132植入至磊晶層120中。井區126形成於源極區124與第二子層134於磊晶層120的垂直投影之間,且進一步往下延伸至基極區122與源極區124底下。井區126包覆源極區124的底部124B與基極區122的底部122B。井區126的邊界還實質對齊第二子層134的側壁134S。在一些實施方式中,井區126可為P型輕摻雜區域,例如包含硼、鎵、鋁等P型摻雜物的輕度摻雜區域,且井區126的摻雜濃度比基極區122的摻雜濃度還低。因此,在形成井區126時,並不會實質影響基極區122與源極區124的摻雜濃度。Referring to FIG. 9 , the well region 126 covering the base region 122 and the source region 124 is formed by using the retracted second sub-layer 134 as a mask. Specifically, a second semiconductor-type ion implantation process may be performed on the epitaxial layer 120 to form a well region 126 in the epitaxial layer 120 . Dopants may be implanted into the epitaxial layer 120 through the first sub-layer 132 . The well region 126 is formed between the source region 124 and the vertical projection of the second sub-layer 134 on the epitaxial layer 120 , and further extends down to the bottom of the base region 122 and the source region 124 . The well region 126 covers the bottom 124B of the source region 124 and the bottom 122B of the base region 122 . The boundary of the well region 126 is also substantially aligned with the sidewall 134S of the second sub-layer 134 . In some embodiments, the well region 126 can be a P-type lightly doped region, such as a lightly doped region containing P-type dopants such as boron, gallium, aluminum, etc., and the doping concentration of the well region 126 is higher than that of the base region. The doping concentration of 122 is still low. Therefore, the doping concentration of the base region 122 and the source region 124 will not be substantially affected when the well region 126 is formed.

參考第10圖,沉積第三子層136於犧牲疊層130的第一子層132上,並圍繞第二子層134。具體而言,可在第一子層132與第二子層134形成材料與第一子層132相同的材料層。接著,移除在第二子層134上方的材料層,以形成仍覆蓋第一子層132,但暴露出第二子層134的第三子層136。如此一來,第三子層136圍繞第二子層134。Referring to FIG. 10 , a third sub-layer 136 is deposited on the first sub-layer 132 of the sacrificial stack 130 and surrounds the second sub-layer 134 . Specifically, a material layer having the same material as that of the first sub-layer 132 may be formed on the first sub-layer 132 and the second sub-layer 134 . Next, the layer of material over the second sub-layer 134 is removed to form a third sub-layer 136 that still covers the first sub-layer 132 but exposes the second sub-layer 134 . In this way, the third sub-layer 136 surrounds the second sub-layer 134 .

參考第11圖與第12圖,移除第二子層134,並以第三子層136為遮罩,形成相鄰井區126的第一接面場效電晶體區127。由於第二子層134的材料與第一子層132、第三子層136不同,因此可挑選適合的濕蝕刻劑移除第二子層134。在一些實施方式中,可使用與第6圖所述相同的濕蝕刻劑來移除第二子層134。由於井區126的位置是由第二子層134定義出,因此移除第二子層134後,可暴露出磊晶層120在相鄰的井區126之間的漂移區121。Referring to FIG. 11 and FIG. 12 , the second sublayer 134 is removed, and the third sublayer 136 is used as a mask to form the first junction field effect transistor region 127 adjacent to the well region 126 . Since the material of the second sub-layer 134 is different from that of the first sub-layer 132 and the third sub-layer 136 , an appropriate wet etchant can be selected to remove the second sub-layer 134 . In some embodiments, the second sub-layer 134 may be removed using the same wet etchant as described in FIG. 6 . Since the positions of the well regions 126 are defined by the second sub-layer 134 , after the second sub-layer 134 is removed, the drift region 121 of the epitaxial layer 120 between adjacent well regions 126 can be exposed.

接著,執行第一半導體型離子植入製程,以在相鄰的井區126之間形成第一接面場效電晶體區127。在一些實施方式中,第一接面場效電晶體區127可為N型重摻雜區域,例如包含磷、砷、氮等N型摻雜物的重度摻雜區域。第一接面場效電晶體區127的摻雜濃度比漂移區121的摻雜濃度還高。在一些實施方式中,第一接面場效電晶體區127的摻雜濃度可在3E11個原子/立方公分至5E13個原子/立方公分的範圍之內。可控制第一接面場效電晶體區127的深度,使得第一接面場效電晶體區127的底部127B比井區126的底部126B還低。Next, a first semiconductor-type ion implantation process is performed to form a first junction field effect transistor region 127 between adjacent well regions 126 . In some embodiments, the first junction field effect transistor region 127 can be an N-type heavily doped region, for example, a heavily doped region containing N-type dopants such as phosphorus, arsenic, nitrogen, and the like. The doping concentration of the first junction field effect transistor region 127 is higher than that of the drift region 121 . In some embodiments, the doping concentration of the first junction field effect transistor region 127 may be in the range of 3E11 atoms/cm3 to 5E13 atoms/cm3. The depth of the first junction field effect transistor region 127 can be controlled such that the bottom 127B of the first junction field effect transistor region 127 is lower than the bottom 126B of the well region 126 .

參考第13圖,形成間隔物138於犧牲疊層130的第三子層136的側壁136S。具體而言,可先在犧牲疊層130上形成共形於第一子層132與第三子層136的介電材料層,介電材料層沿著第一子層132與第三子層136的上表面與第三子層136的側壁136S形成。接著,移除在第一子層132與第三子層136的上表面上的介電材料層,以形成留在第三子層136的側壁136S的間隔物138,且間隔物138於磊晶層120的垂直投影覆蓋住一部分的第一接面場效電晶體區127。間隔物138可由任何適合的介電材料製成,例如氧化矽、氮化矽、類似物或其組合。在一些實施方式中,間隔物138的長度L2可在50奈米至200奈米的範圍之內。Referring to FIG. 13 , spacers 138 are formed on sidewalls 136S of the third sub-layer 136 of the sacrificial stack 130 . Specifically, a dielectric material layer conformal to the first sub-layer 132 and the third sub-layer 136 may be formed on the sacrificial stack 130 first, and the dielectric material layer is formed along the first sub-layer 132 and the third sub-layer 136 The upper surface of and the sidewall 136S of the third sublayer 136 are formed. Next, the dielectric material layer on the upper surfaces of the first sub-layer 132 and the third sub-layer 136 is removed to form spacers 138 left on the sidewalls 136S of the third sub-layer 136, and the spacers 138 are epitaxially formed. The vertical projection of the layer 120 covers a portion of the first junction field effect transistor region 127 . Spacers 138 may be made of any suitable dielectric material, such as silicon oxide, silicon nitride, the like, or combinations thereof. In some embodiments, the length L2 of the spacer 138 may be in the range of 50 nm to 200 nm.

參考第14圖,以間隔物138為遮罩,形成在第一接面場效電晶體區127中的第二接面場效電晶體區128。具體而言,執行第一半導體型離子植入製程,以在第一接面場效電晶體區127中形成第二接面場效電晶體區128。在一些實施方式中,第二接面場效電晶體區128可為N型重摻雜區域,例如包含磷、砷、氮等N型摻雜物的重度摻雜區域。第二接面場效電晶體區128的摻雜濃度比第一接面場效電晶體區127的摻雜濃度還高。第一接面場效電晶體區127的摻雜濃度可在1E11個原子/立方公分至5E13個原子/立方公分的範圍之內。由於間隔物138於磊晶層120的垂直投影覆蓋第一接面場效電晶體區127的外圍部分,因此第二接面場效電晶體區128可被第一接面場效電晶體區127包圍。第一接面場效電晶體區127可將井區126與第二接面場效電晶體區128分隔開。可控制第二接面場效電晶體區128的深度,使得第二接面場效電晶體區128的底部128B比井區126的底部126B還低。在一些實施方式中,可藉由控制第8圖的第二子層134的長度L1與第13圖中的間隔物138的長度L2,來控制整體的接面場效電晶體區(包含第一接面場效電晶體區127與第二接面場效電晶體區128)的寬度W1與第一接面場效電晶體區127的寬度W2,且整體的接面場效電晶體區(包含第一接面場效電晶體區127與第二接面場效電晶體區128)的寬度W1與第一接面場效電晶體區127的寬度W2分別與第8圖的第二子層134的長度L1與第13圖中的間隔物138的長度L2相同。Referring to FIG. 14, the second junction field effect transistor region 128 is formed in the first junction field effect transistor region 127 by using the spacer 138 as a mask. Specifically, a first semiconductor type ion implantation process is performed to form the second junction field effect transistor region 128 in the first junction field effect transistor region 127 . In some embodiments, the second junction field effect transistor region 128 can be an N-type heavily doped region, for example, a heavily doped region containing N-type dopants such as phosphorus, arsenic, nitrogen, and the like. The doping concentration of the second junction field effect transistor region 128 is higher than that of the first junction field effect transistor region 127 . The doping concentration of the first junction field effect transistor region 127 may be in the range of 1E11 atoms/cm3 to 5E13 atoms/cm3. Since the vertical projection of the spacer 138 on the epitaxial layer 120 covers the peripheral portion of the first junction field effect transistor region 127, the second junction field effect transistor region 128 can be surrounded by the first junction field effect transistor region 127. surrounded. The first junction field effect transistor region 127 can separate the well region 126 from the second junction field effect transistor region 128 . The depth of the second junction field effect transistor region 128 can be controlled such that the bottom 128B of the second junction field effect transistor region 128 is lower than the bottom 126B of the well region 126 . In some embodiments, by controlling the length L1 of the second sublayer 134 in FIG. 8 and the length L2 of the spacer 138 in FIG. 13, the overall junction field effect transistor region (including the first The width W1 of the junction field effect transistor region 127 and the second junction field effect transistor region 128) and the width W2 of the first junction field effect transistor region 127, and the entire junction field effect transistor region (including The width W1 of the first junction field effect transistor region 127 and the second junction field effect transistor region 128) and the width W2 of the first junction field effect transistor region 127 are respectively the same as the second sublayer 134 of FIG. 8 The length L1 of the spacer 138 is the same as the length L2 of the spacer 138 in FIG. 13 .

相比於漂移區121,第一接面場效電晶體區127與第二接面場效電晶體區128的摻雜濃度較高,因此第一接面場效電晶體區127與第二接面場效電晶體區128的阻值可降低,進而降低半導體裝置100的阻值。此外,第二接面場效電晶體區128的摻雜濃度可比第一接面場效電晶體區127的摻雜濃度還高,因此可避免半導體裝置100 的崩潰電壓下降,而使得半導體裝置100無法承受太大的驅動電壓。此外,在一些實施方式中,第一接面場效電晶體區127的底部127B與第二接面場效電晶體區128的底部128B比井區126的底部126B還低,且往126的底部126B下方擴張,因此第一接面場效電晶體區127與第二接面場效電晶體區128也可用於擴大電子流的流動範圍。Compared with the drift region 121, the doping concentration of the first junction field effect transistor region 127 and the second junction field effect transistor region 128 is higher, so the first junction field effect transistor region 127 and the second junction field effect transistor region 127 The resistance of the field effect transistor region 128 can be reduced, thereby reducing the resistance of the semiconductor device 100 . In addition, the doping concentration of the second junction field effect transistor region 128 can be higher than the doping concentration of the first junction field effect transistor region 127, so the breakdown voltage drop of the semiconductor device 100 can be avoided, and the semiconductor device 100 can Can not withstand too much driving voltage. In addition, in some embodiments, the bottom 127B of the first junction field effect transistor region 127 and the bottom 128B of the second junction field effect transistor region 128 are lower than the bottom 126B of the well region 126 and reach the bottom of the well region 126 The bottom of 126B expands, so the first junction field effect transistor region 127 and the second junction field effect transistor region 128 can also be used to expand the flow range of the electron current.

接著,參考第15圖,移除犧牲疊層130與間隔物138。在一些實施方式中,在移除犧牲疊層130與間隔物138之前或之後,針對第一接面場效電晶體區127與第二接面場效電晶體區128執行退火製程。在一些實施方式中,退火製程的溫度在1400至1800的範圍之內。因此,可活化第一接面場效電晶體區127與第二接面場效電晶體區128中的離子,並修補因離子植入所造成的晶格破壞。Next, referring to FIG. 15, the sacrificial stack 130 and the spacer 138 are removed. In some embodiments, an annealing process is performed on the first junction field effect transistor region 127 and the second junction field effect transistor region 128 before or after removing the sacrificial stack 130 and the spacer 138 . In some embodiments, the temperature of the annealing process is in the range of 1400°C to 1800°C. Therefore, the ions in the first junction field effect transistor region 127 and the second junction field effect transistor region 128 can be activated, and the lattice damage caused by ion implantation can be repaired.

接著,參考第16圖,形成介電層142於磊晶層120上,並形成導電層152於介電層142上。在一些實施方式中,介電層142可包含氧化矽、氮化矽、氮氧化矽、多晶矽、其組合或類似者。在一些實施方式中,導電層152可包含多晶矽、金屬、金屬化合物、其組合或類似者。Next, referring to FIG. 16 , a dielectric layer 142 is formed on the epitaxial layer 120 , and a conductive layer 152 is formed on the dielectric layer 142 . In some embodiments, the dielectric layer 142 may include silicon oxide, silicon nitride, silicon oxynitride, polysilicon, combinations thereof, or the like. In some embodiments, the conductive layer 152 may include polysilicon, metal, metal compounds, combinations thereof, or the like.

接著,參考第17圖,圖案化介電層142與導電層152以形成閘極介電層140與閘極層150於磊晶層120上。可先圖案化導電層152以形成閘極層150。接著,以閘極層150為遮罩,圖案化介電層142以形成閘極介電層140。因此,閘極介電層140與閘極層150的側壁可互相對齊。閘極介電層140接觸源極區124,且閘極介電層140覆蓋在磊晶層120表面的井區126。亦即,閘極介電層140可從一個源極區124延伸至另一個源極區124。Next, referring to FIG. 17 , the dielectric layer 142 and the conductive layer 152 are patterned to form the gate dielectric layer 140 and the gate layer 150 on the epitaxial layer 120 . The conductive layer 152 may be patterned first to form the gate layer 150 . Next, using the gate layer 150 as a mask, the dielectric layer 142 is patterned to form the gate dielectric layer 140 . Therefore, the sidewalls of the gate dielectric layer 140 and the gate layer 150 can be aligned with each other. The gate dielectric layer 140 contacts the source region 124 , and the gate dielectric layer 140 covers the well region 126 on the surface of the epitaxial layer 120 . That is, the gate dielectric layer 140 may extend from one source region 124 to the other source region 124 .

接著,參考第18圖,可在閘極介電層140與閘極層150上形成介電層160。接著,在介電層160中形成源極觸點170。具體而言,可先在閘極介電層140與閘極層150上形成介電層160,使得介電層160覆蓋住閘極介電層140、閘極層150與磊晶層120。接著,在介電層160中形成開口,並在開口中形成源極觸點170。源極觸點170接觸基極區122與源極區124。參考第19圖,可在基板110下形成汲極電極180。汲極電極180可在基板110下方並接觸基板110。Next, referring to FIG. 18 , a dielectric layer 160 may be formed on the gate dielectric layer 140 and the gate layer 150 . Next, a source contact 170 is formed in the dielectric layer 160 . Specifically, the dielectric layer 160 can be formed on the gate dielectric layer 140 and the gate layer 150 first, so that the dielectric layer 160 covers the gate dielectric layer 140 , the gate layer 150 and the epitaxial layer 120 . Next, an opening is formed in the dielectric layer 160 and a source contact 170 is formed in the opening. A source contact 170 contacts the base region 122 and the source region 124 . Referring to FIG. 19 , a drain electrode 180 may be formed under the substrate 110 . The drain electrode 180 may be under the substrate 110 and contact the substrate 110 .

第20圖繪示在本揭露的另一些實施方式中的半導體裝置100的橫截面視圖。在一些實施方式中,可在半導體裝置100中形成更多個接面場效電晶體區,使得接面場效電晶體區的電阻可更有效地降低,且同時維持住半導體裝置100的崩潰電壓。在一些實施方式中,半導體裝置100更包含第三接面場效電晶體區129,第三接面場效電晶體區129相鄰於第二接面場效電晶體區128。第三接面場效電晶體區129包含具有第一半導體型的摻雜物,且第三接面場效電晶體區129的摻雜濃度比第二接面場效電晶體區128的摻雜濃度還高。在另一些實施方式中,半導體裝置100可包含更多接面場效電晶體區,且總體而言,接面場效電晶體區的摻雜濃度從井區126邊緣往接面場效電晶體區的中央而提升。FIG. 20 illustrates a cross-sectional view of a semiconductor device 100 in other embodiments of the present disclosure. In some embodiments, more junction field effect transistor regions can be formed in the semiconductor device 100, so that the resistance of the junction field effect transistor region can be reduced more effectively, while maintaining the breakdown voltage of the semiconductor device 100 . In some embodiments, the semiconductor device 100 further includes a third junction field effect transistor region 129 , and the third junction field effect transistor region 129 is adjacent to the second junction field effect transistor region 128 . The third junction field effect transistor region 129 includes a dopant having the first semiconductor type, and the doping concentration of the third junction field effect transistor region 129 is higher than that of the second junction field effect transistor region 128 The concentration is still high. In other embodiments, the semiconductor device 100 may include more junction field effect transistor regions, and in general, the doping concentration of the junction field effect transistor region is from the edge of the well region 126 to the junction field effect transistor region. The center of the district is promoted.

第三接面場效電晶體區129的形成可在第14圖後接著進行。在執行完第14圖的製程後,可形成額外的間隔物於間隔物138的側壁上。接著,以額外的間隔物為遮罩,形成在第二接面場效電晶體區128中的第三接面場效電晶體區129。亦即,可多次進行使用間隔物來形成不同接面場效電晶體區的製程,以形成具有不同的摻雜濃度的接面場效電晶體區。The formation of the third junction field effect transistor region 129 can be performed after FIG. 14 . After performing the process of FIG. 14 , additional spacers may be formed on the sidewalls of the spacers 138 . Next, the third junction field effect transistor region 129 is formed in the second junction field effect transistor region 128 by using the additional spacer as a mask. That is, the process of forming different junction field effect transistor regions using spacers may be performed multiple times to form junction field effect transistor regions with different doping concentrations.

綜上所述,本揭露的一些實施方式的半導體裝置考包含不同的摻雜濃度的接面場效電晶體區。當接面場效電晶體區的摻雜濃度在靠近井區較低,而在中央處較高,且接面場效電晶體區的濃度高於底下的漂移區的摻雜濃度時,可降低半導體裝置的接面場效電晶體區的的阻值。此外,可避免半導體裝置的崩潰電壓下降,而使得半導體裝置無法承受太大的驅動電壓。To sum up, the semiconductor devices according to some embodiments of the present disclosure may include JFET regions with different doping concentrations. When the doping concentration of the junction field effect transistor region is lower near the well region and higher in the center, and the doping concentration of the junction field effect transistor region is higher than that of the underlying drift region, the The resistance value of the junction field effect transistor region of a semiconductor device. In addition, the breakdown voltage drop of the semiconductor device can be avoided, so that the semiconductor device cannot bear too much driving voltage.

100:半導體裝置 110:基板 120:磊晶層 121:漂移區 122:基極區 122B:底部 124:源極區 124B:底部 126:井區 126B:底部 127:第一接面場效電晶體區 127B:底部 128:第二接面場效電晶體區 128B:底部 129:第三接面場效電晶體區 130:犧牲疊層 132:第一子層 134:第二子層 134S:側壁 136:第三子層 136S:側壁 138:間隔物 140:閘極介電層 142:介電層 150:閘極層 152:導電層 160:介電層 170:源極觸點 180:汲極電極 C:箭頭 L1:長度 L2:長度 PR:光阻層 W1:寬度 W2:寬度 100: Semiconductor device 110: Substrate 120: epitaxial layer 121: Drift zone 122: base area 122B: Bottom 124: source area 124B: Bottom 126: well area 126B: Bottom 127: first junction field effect transistor region 127B: Bottom 128: second junction field effect transistor region 128B: bottom 129: The third junction field effect transistor area 130:Sacrificial stack 132: The first sublayer 134: second sublayer 134S: side wall 136: The third sublayer 136S: side wall 138: spacer 140: gate dielectric layer 142: dielectric layer 150: gate layer 152: Conductive layer 160: dielectric layer 170: source contact 180: Drain electrode C: arrow L1: length L2: length PR: photoresist layer W1: width W2: width

第1圖繪示本揭露的一些實施方式的半導體元件的橫截面視圖。 第2圖至第19圖繪示本揭露的一些實施方式的半導體裝置的製造方式的橫截面視圖。 第20圖繪示本揭露的另一些實施方式的半導體元件的橫截面視圖。 FIG. 1 shows a cross-sectional view of a semiconductor device according to some embodiments of the present disclosure. 2 to 19 illustrate cross-sectional views of manufacturing methods of semiconductor devices according to some embodiments of the present disclosure. FIG. 20 shows a cross-sectional view of semiconductor devices according to other embodiments of the present disclosure.

100:半導體裝置 100: Semiconductor device

110:基板 110: Substrate

120:磊晶層 120: epitaxial layer

121:漂移區 121: Drift zone

122:基極區 122: base area

124:源極區 124: source area

126:井區 126: well area

127:第一接面場效電晶體區 127: first junction field effect transistor area

128:第二接面場效電晶體區 128: second junction field effect transistor region

140:閘極介電層 140: gate dielectric layer

150:閘極層 150: gate layer

160:介電層 160: dielectric layer

170:源極觸點 170: source contact

180:汲極電極 180: Drain electrode

C:箭頭 C: arrow

Claims (10)

一種半導體裝置,包含: 一基板; 一磊晶層,在該基板的一側; 一井區,在該磊晶層中; 一源極區,在該井區中; 一基極區,在該井區中,且相鄰該源極區; 一第一接面場效電晶體區,相鄰於該井區; 一第二接面場效電晶體區,於該第一接面場效電晶體區中,該第一接面場效電晶體區與該第二接面場效電晶體區包含具有一第一半導體型的複數個摻雜物,其中該第二接面場效電晶體區的一摻雜濃度比該第一接面場效電晶體區的一摻雜濃度還高; 一閘極介電層,在該磊晶層遠離該基板的一側;以及 一閘極層,在該閘極介電層遠離該磊晶層的一側。 A semiconductor device comprising: a substrate; an epitaxial layer on one side of the substrate; a well region in the epitaxial layer; a source region in the well region; a base region in the well region and adjacent to the source region; a first junction field effect transistor region, adjacent to the well region; A second junction field effect transistor region, in the first junction field effect transistor region, the first junction field effect transistor region and the second junction field effect transistor region include a first a plurality of dopants of semiconductor type, wherein a doping concentration of the second junction field effect transistor region is higher than a doping concentration of the first junction field effect transistor region; a gate dielectric layer on the side of the epitaxial layer away from the substrate; and A gate layer is on the side of the gate dielectric layer away from the epitaxial layer. 如請求項1所述之半導體裝置,其中該井區包含具有一第二半導體型的複數個摻雜物,且該第二半導體型不同於該第一半導體型。The semiconductor device as claimed in claim 1, wherein the well region includes a plurality of dopants having a second semiconductor type, and the second semiconductor type is different from the first semiconductor type. 如請求項1至請求項2任一項所述之半導體裝置,其中該井區包覆該源極區的一底部與該基極區的一底部。The semiconductor device according to any one of claims 1 to 2, wherein the well region covers a bottom of the source region and a bottom of the base region. 如請求項1至請求項2任一項所述之半導體裝置,其中該第一接面場效電晶體區的一底部與該第二接面場效電晶體區的一底部比該井區的一底部還接近該基板。The semiconductor device according to any one of claim 1 to claim 2, wherein a bottom of the first junction field effect transistor region and a bottom of the second junction field effect transistor region are more than that of the well region A bottom is also proximate to the substrate. 如請求項1至請求項2任一項所述之半導體裝置,更包含一第三接面場效電晶體區,相鄰於該第二接面場效電晶體區,該第三接面場效電晶體區包含具有該第一半導體型的該些摻雜物,其中該第三接面場效電晶體區的一摻雜濃度比該第二接面場效電晶體區的該摻雜濃度還高。The semiconductor device according to any one of claim 1 to claim 2, further comprising a third junction field effect transistor region adjacent to the second junction field effect transistor region, the third junction field effect transistor region The junction field effect transistor region includes the dopants having the first semiconductor type, wherein a doping concentration of the third junction field effect transistor region is higher than the doping concentration of the second junction field effect transistor region Still high. 如請求項1至請求項2任一項所述之半導體裝置,更包含一源極觸點,接觸該源極區。The semiconductor device according to any one of claim 1 to claim 2, further comprising a source contact contacting the source region. 如請求項1至請求項2任一項所述之半導體裝置,更包含一汲極電極,在該基板的另一側。The semiconductor device according to any one of claim 1 to claim 2, further comprising a drain electrode on the other side of the substrate. 如請求項1至請求項2任一項所述之半導體裝置,其中該井區的一摻雜濃度比該基極區的一摻雜濃度還低。The semiconductor device according to any one of claim 1 to claim 2, wherein a doping concentration of the well region is lower than a doping concentration of the base region. 如請求項1至請求項2任一項所述之半導體裝置,其中該磊晶層包含一漂移區,且該第一接面場效電晶體區的該摻雜濃度與該第二接面場效電晶體區的該摻雜濃度比該漂移區的一摻雜濃度還高。The semiconductor device according to any one of claim 1 to claim 2, wherein the epitaxial layer includes a drift region, and the doping concentration of the first junction field effect transistor region is the same as that of the second junction field The doping concentration of the effective transistor region is higher than a doping concentration of the drift region. 如請求項9所述之半導體裝置,其中該源極區的一摻雜濃度高於該漂移區的該摻雜濃度。The semiconductor device as claimed in claim 9, wherein a doping concentration of the source region is higher than the doping concentration of the drift region.
TW111210102U 2022-09-16 2022-09-16 Semiconductor device TWM635837U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111210102U TWM635837U (en) 2022-09-16 2022-09-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111210102U TWM635837U (en) 2022-09-16 2022-09-16 Semiconductor device

Publications (1)

Publication Number Publication Date
TWM635837U true TWM635837U (en) 2022-12-21

Family

ID=85786951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111210102U TWM635837U (en) 2022-09-16 2022-09-16 Semiconductor device

Country Status (1)

Country Link
TW (1) TWM635837U (en)

Similar Documents

Publication Publication Date Title
US10741453B2 (en) FinFET device
US10199494B2 (en) Laterally diffused metal-oxide-semiconductor devices and fabrication methods thereof
CN104701168B (en) The forming method of fin formula field effect transistor
JP2008547225A (en) Structure and method for forming a laterally extending dielectric layer in a trench gate FET
KR100639971B1 (en) Ultra thin body SOI MOSFET having recessed source/drain structure and method of fabricating the same
US20160276476A1 (en) Ldmos device and fabrication method thereof
JP4490094B2 (en) Method of manufacturing trench metal oxide semiconductor field effect transistor device
CN112825327A (en) Semiconductor structure and forming method thereof
TWI759878B (en) Semiconductor device and manufacturing method thereof
CN111048420A (en) Method for manufacturing lateral double-diffused transistor
US8928082B2 (en) JLT (junction-less transistor) device and method for fabricating the same
KR100840661B1 (en) Semiconductor Device and Manufacturing Method Thereof
CN108666221B (en) Semiconductor structure and forming method thereof
CN113809145B (en) Narrow mesa insulated gate bipolar transistor device and method of forming
US11658239B2 (en) Semiconductor device and fabrication method thereof
KR100525615B1 (en) Field Effect Transistor with high breakdown voltage and Method of forming the same
TWM635837U (en) Semiconductor device
US11205721B2 (en) Semiconductor device with isolation layer and fabrication method thereof
US20240097019A1 (en) Semiconductor device and manufacturing method thereof
TW202414532A (en) Semiconductor device and manufacturing method thereof
US11742207B2 (en) Semiconductor device and manufacturing method thereof
CN117766582A (en) Semiconductor device and method for manufacturing the same
CN113451132B (en) Method for forming semiconductor structure
TWI790476B (en) Integrated circuit die and method of manufacturing the same
US7169655B2 (en) Field effect transistors and methods for manufacturing field effect transistors