TWM630714U - Ozone sensing element - Google Patents

Ozone sensing element Download PDF

Info

Publication number
TWM630714U
TWM630714U TW111202906U TW111202906U TWM630714U TW M630714 U TWM630714 U TW M630714U TW 111202906 U TW111202906 U TW 111202906U TW 111202906 U TW111202906 U TW 111202906U TW M630714 U TWM630714 U TW M630714U
Authority
TW
Taiwan
Prior art keywords
ozone
electrode
sensing element
detection
titanium dioxide
Prior art date
Application number
TW111202906U
Other languages
Chinese (zh)
Inventor
李珖儀
吳俊翰
Original Assignee
亮昇環境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亮昇環境科技有限公司 filed Critical 亮昇環境科技有限公司
Priority to TW111202906U priority Critical patent/TWM630714U/en
Publication of TWM630714U publication Critical patent/TWM630714U/en

Links

Images

Abstract

本創作提供一種臭氧感測元件,其包含:一基板以及一反應層;基板具有一表面;反應層疊設於表面上,反應層包含一無機金屬氧化物,無機金屬氧化物包括二氧化鈦以及氧化銦,其中,所述二氧化鈦與所述氧化銦之重量比例為1:3至1:6;藉此,提供使用者在室溫下快速且準確地取得環境中的臭氧濃度。 The present invention provides an ozone sensing device, which includes: a substrate and a reaction layer; the substrate has a surface; the reaction layer is disposed on the surface, the reaction layer includes an inorganic metal oxide, and the inorganic metal oxide includes titanium dioxide and indium oxide, Wherein, the weight ratio of the titanium dioxide to the indium oxide is 1:3 to 1:6; thereby, the user can quickly and accurately obtain the ozone concentration in the environment at room temperature.

Description

臭氧感測元件 Ozone sensing element

本創作係關於一種氣體感測相關裝置,尤指一種臭氧感測元件。 This creation relates to a gas sensing related device, especially an ozone sensing element.

一般臭氧感測器分為半導體式、電化學式以及熱導式,其中,半導體式之感測器由於體積小且成本低而更適用於民用氣體檢測。半導體式感測器的感測原理為:將金屬氧化物半導體加溫後,利用材料表面的缺陷讓環境中的氣體吸附上材料表面後,使材料的表面電阻產生變化,藉由變化的比值換算得到待測氣體濃度。 Generally, ozone sensors are classified into semiconductor type, electrochemical type and thermal conductivity type. Among them, the semiconductor type sensor is more suitable for civil gas detection due to its small size and low cost. The sensing principle of the semiconductor sensor is: after the metal oxide semiconductor is heated, the gas in the environment is adsorbed on the surface of the material by the defects on the surface of the material, and the surface resistance of the material changes, which is converted by the ratio of the change. Get the gas concentration to be measured.

然而,現有的半導體式臭氧感測器,感測元件的靈敏度極差,且訊號響應與回復的時間較長,感測所需的時間長達數十分鐘,由於環境中的臭氧氣體是時刻在變化,現有的半導體式臭氧感測器所感測的臭氧濃度難以具有代表性,無法即時對有害氣體進行預警。 However, in the existing semiconductor ozone sensor, the sensitivity of the sensing element is extremely poor, and the signal response and recovery time is long, and the time required for sensing is as long as tens of minutes, because the ozone gas in the environment is always in Changes, the ozone concentration sensed by the existing semiconductor ozone sensor is difficult to be representative, and it is impossible to give an early warning of harmful gases in real time.

此外,半導體式臭氧感測器在感測過程之中需要對感測元件進行加溫,而感測溫度通常高於250℃甚至高達400℃,除了在長時間進行高溫檢測而有操作風險外,此種感測元件在封裝的過程對外層封裝材料也具有高耐熱要求,更在無形中提高了封裝成本。 In addition, the semiconductor ozone sensor needs to heat the sensing element during the sensing process, and the sensing temperature is usually higher than 250°C or even as high as 400°C. The sensing element also has high heat resistance requirements for the outer layer packaging material during the packaging process, which increases the packaging cost invisibly.

本創作主要目的在於提供一種臭氧感測元件,在室溫下即可快速取得高準確度的臭氧濃度檢測結果。 The main purpose of this creation is to provide an ozone sensing element, which can quickly obtain high-accuracy ozone concentration detection results at room temperature.

為達上述目的,本創作之一項實施例提供一種臭氧感測元件,其包含:一基板以及一反應層;基板具有一表面;反應層疊設於表面上,反應層包含一無機金屬氧化物,無機金屬氧化物包括二氧化鈦以及氧化銦,其中,所述二氧化鈦與所述氧化銦之重量比例為1:3至1:6。 In order to achieve the above object, an embodiment of the present invention provides an ozone sensing device, which includes: a substrate and a reaction layer; the substrate has a surface; the reaction layer is disposed on the surface, and the reaction layer includes an inorganic metal oxide, The inorganic metal oxide includes titanium dioxide and indium oxide, wherein the weight ratio of the titanium dioxide and the indium oxide is 1:3 to 1:6.

於本創作另一實施例中,無機金屬氧化物之所述二氧化鈦與所述氧化銦之重量比例為1:4.5至1:5.5。 In another embodiment of the present invention, the weight ratio of the titanium dioxide to the indium oxide of the inorganic metal oxide is 1:4.5 to 1:5.5.

於本創作另一實施例中,反應層更包含一塗覆劑。 In another embodiment of the present invention, the reaction layer further includes a coating agent.

於本創作另一實施例中,塗覆劑為聚鄰苯二甲醯胺、鈦酸四丁酯、聚乙烯醇、辛酸亞錫、乙基纖維素、Triton X-100、四異丙醇鈦、乙醇、去離子水、異丙醇、氯化錫、氯化亞錫或其中之一或其組合。 In another embodiment of the present invention, the coating agent is polyphthalamide, tetrabutyl titanate, polyvinyl alcohol, stannous octoate, ethyl cellulose, Triton X-100, titanium tetraisopropoxide , ethanol, deionized water, isopropanol, tin chloride, stannous chloride or one or a combination thereof.

於本創作另一實施例中,反應層之厚度為25±5μm,基板之厚度為0.1cm。 In another embodiment of the present invention, the thickness of the reaction layer is 25±5 μm, and the thickness of the substrate is 0.1 cm.

於本創作另一實施例中,基板之材料為氧化鋁、ITO玻璃或FTO玻璃。 In another embodiment of the present invention, the material of the substrate is alumina, ITO glass or FTO glass.

於本創作另一實施例中,更具有一電極層,其設於基板上,電極層包含一第一電極以及一第二電極,第一電極及第二電極分別具有一檢測部以及一連接部。 In another embodiment of the present invention, there is an electrode layer disposed on the substrate, the electrode layer includes a first electrode and a second electrode, and the first electrode and the second electrode respectively have a detection part and a connection part .

於本創作另一實施例中,第一電極與第二電極之檢測部概呈梳狀且互相交錯。 In another embodiment of the present invention, the detection portions of the first electrode and the second electrode are generally comb-shaped and interlaced.

於本創作另一實施例中,第一電極及第二電極之檢測部之材料為 金。 In another embodiment of the present invention, the materials of the detection parts of the first electrode and the second electrode are gold.

於本創作另一實施例中,第一電極及第二電極之連接部之材料為鉑。 In another embodiment of the present invention, the material of the connecting portion of the first electrode and the second electrode is platinum.

藉此,本創作之臭氧感測元件,提供使用者在不需要對檢測晶片加溫的情況下進行臭氧的檢測,除了節省高耐熱需求的晶片封裝成本外,對臭氧具有極高的檢測靈敏度,能夠快速且準確地取得環境中的臭氧濃度。 Therefore, the ozone sensing device of the present invention provides users with ozone detection without heating the detection chip. In addition to saving the cost of chip packaging that requires high heat resistance, it has extremely high detection sensitivity for ozone. The ozone concentration in the environment can be obtained quickly and accurately.

100:臭氧感測元件 100: Ozone sensing element

10:基板 10: Substrate

20:反應層 20: Reactive Layer

21:無機金屬氧化物 21: Inorganic metal oxides

22:塗覆劑 22: Coating agent

30:電極層 30: Electrode layer

31:第一電極 31: The first electrode

32:第二電極 32: Second electrode

T:檢測部 T: Detection Department

C:連接部 C: connecting part

S:檢測曲線 S: detection curve

S’:濃度曲線 S': Concentration curve

P:濃度訊號 P: concentration signal

圖1係本創作臭氧感測元件之外觀示意圖。 FIG. 1 is a schematic diagram of the appearance of the ozone sensing element of the present invention.

圖2係本創作臭氧感測元件之結構分解示意圖。 FIG. 2 is a schematic exploded view of the structure of the ozone sensing element of the present invention.

圖3a係本創作實施例之電阻訊號示意圖(一),用於表示二氧化鈦與氧化銦之重量比例為1:1之無機金屬氧化物的臭氧檢測結果。 FIG. 3a is a schematic diagram (1) of the resistance signal of the present invention, which is used to represent the ozone detection result of the inorganic metal oxide whose weight ratio of titanium dioxide and indium oxide is 1:1.

圖3b係本創作實施例與市售之半導體式臭氧感測器比較圖(一)。 FIG. 3b is a comparison diagram (1) of the present inventive example and a commercially available semiconductor-type ozone sensor.

圖4a係本創作實施例之電阻訊號示意圖(二),用於表示二氧化鈦與氧化銦之重量比例為1:2之無機金屬氧化物的臭氧檢測結果。 FIG. 4a is a schematic diagram (2) of the resistance signal of the present invention, which is used to represent the ozone detection result of the inorganic metal oxide whose weight ratio of titanium dioxide and indium oxide is 1:2.

圖4b係本創作實施例與市售之半導體式臭氧感測器比較圖(二)。 FIG. 4b is a comparison diagram (2) of the present inventive example and a commercially available semiconductor-type ozone sensor.

圖5a係本創作實施例之電阻訊號示意圖(三),用於表示二氧化鈦與氧化銦之重量比例為1:3之無機金屬氧化物的臭氧檢測結果。 FIG. 5a is a schematic diagram (3) of the resistance signal of the present invention, which is used to represent the ozone detection result of the inorganic metal oxide whose weight ratio of titanium dioxide and indium oxide is 1:3.

圖5b係本創作實施例與市售之半導體式臭氧感測器比較圖(三)。 FIG. 5b is a comparison diagram (3) of the present inventive example and a commercially available semiconductor-type ozone sensor.

圖6a係本創作實施例之電阻訊號示意圖(四),用於表示二氧化鈦與氧化銦之重量比例為1:4之無機金屬氧化物的臭氧檢測結果。 FIG. 6a is a schematic diagram (4) of the resistance signal of the present invention, which is used to represent the ozone detection result of the inorganic metal oxide whose weight ratio of titanium dioxide and indium oxide is 1:4.

圖6b係本創作實施例與市售之半導體式臭氧感測器比較圖(四)。 FIG. 6b is a comparison diagram (4) of the present inventive example and a commercially available semiconductor-type ozone sensor.

圖7a係本創作實施例之電阻訊號示意圖(五),用於表示二氧化鈦與氧化銦之重量比例為1:5之無機金屬氧化物的臭氧檢測結果。 FIG. 7a is a schematic diagram (5) of the resistance signal of the present invention, which is used to represent the ozone detection result of the inorganic metal oxide whose weight ratio of titanium dioxide and indium oxide is 1:5.

圖7b係本創作實施例與市售之半導體式臭氧感測器比較圖(五)。 FIG. 7b is a comparison diagram (5) of the present inventive example and a commercially available semiconductor-type ozone sensor.

圖8a係本創作實施例之電阻訊號示意圖(六),用於表示二氧化鈦與氧化銦之重量比例為1:6之無機金屬氧化物的臭氧檢測結果。 FIG. 8a is a schematic diagram (6) of the resistance signal of the present invention, which is used to represent the ozone detection result of the inorganic metal oxide whose weight ratio of titanium dioxide and indium oxide is 1:6.

圖8b係本創作實施例與市售之半導體式臭氧感測器比較圖(六)。 FIG. 8b is a comparison diagram (6) of the present inventive example and a commercially available semiconductor-type ozone sensor.

圖9a係本創作實施例之電阻訊號示意圖(七),用於表示二氧化鈦與氧化銦之重量比例為2:1之無機金屬氧化物的臭氧檢測結果。 FIG. 9a is a schematic diagram (7) of the resistance signal of the present invention, which is used to represent the ozone detection result of the inorganic metal oxide whose weight ratio of titanium dioxide and indium oxide is 2:1.

圖9b係本創作實施例與市售之半導體式臭氧感測器比較圖(七)。 FIG. 9b is a comparison diagram (7) of the present inventive example and a commercially available semiconductor-type ozone sensor.

為便於說明本創作於上述新型內容一欄中所表示的中心思想,茲以具體實施例表達。實施例中各種不同物件係按適於說明之比例、尺寸、變形量或位移量而描繪,而非按實際元件的比例予以繪製,合先敘明。 In order to facilitate the description of the central idea expressed in the column of the above-mentioned novel content of the present creation, specific embodiments are hereby expressed. Various objects in the embodiments are drawn according to proportions, sizes, deformations or displacements suitable for description, rather than the proportions of actual elements, which will be described first.

請參閱圖1至圖9b所示,本創作提供一種臭氧感測元件100,圖1係本創作臭氧感測元件100外觀示意圖;圖2係臭氧感測元件100之結構分解示意圖;圖3a至圖9b為本創作臭氧感測元件100以不同重量比例之二氧化鈦與氧化銦進行臭氧檢測之電阻訊號示意圖,以及臭氧感測元件100與市售之半導體式臭氧感測器比較圖。 Please refer to FIG. 1 to FIG. 9b, the present invention provides an ozone sensing device 100. FIG. 1 is a schematic view of the appearance of the ozone sensing device 100 of the present invention; FIG. 2 is a schematic exploded view of the structure of the ozone sensing device 100; 9b is a schematic diagram of the resistance signal of the ozone sensing element 100 for ozone detection with different weight ratios of titanium dioxide and indium oxide, and a comparison diagram of the ozone sensing element 100 and a commercially available semiconductor type ozone sensor.

於本實施例中,臭氧感測元件100能夠配合檢測裝置,透過照光的方法,量測臭氧感測元件100表面的電阻變化,以檢測環境中的臭氧(O3)濃度; 於本實施例中,所述檢測裝置為PR10數據擷取系統。 In this embodiment, the ozone sensing element 100 can cooperate with the detection device to measure the resistance change on the surface of the ozone sensing element 100 by means of illumination, so as to detect the concentration of ozone (O 3 ) in the environment; in this embodiment , the detection device is a PR10 data acquisition system.

臭氧感測元件100包含一基板10以及一反應層20,基板10具有一表面,反應層20疊設於基板10之表面上。 The ozone sensing device 100 includes a substrate 10 and a reaction layer 20 , the substrate 10 has a surface, and the reaction layer 20 is stacked on the surface of the substrate 10 .

於本實施例中,基板10之材料為氧化鋁(Al2O3)、ITO玻璃或FTO玻璃;於本實施例中,基板10概呈矩形,基板10之長度為1cm,寬度為0.5cm,基板10之厚度為0.1cm。 In this embodiment, the material of the substrate 10 is aluminum oxide (Al 2 O 3 ), ITO glass or FTO glass; The thickness of the substrate 10 is 0.1 cm.

反應層20包含一無機金屬氧化物21以及一塗覆劑22,其中,反應層20概呈正方形,反應層20之長度與寬度為0.5cm,反應層20之厚度為25±5μm。 The reaction layer 20 includes an inorganic metal oxide 21 and a coating agent 22 , wherein the reaction layer 20 is approximately square, the length and width of the reaction layer 20 are 0.5 cm, and the thickness of the reaction layer 20 is 25±5 μm.

於本實施例中,進行臭氧檢測時,利用光譜範圍385至425奈米的UV-Visible LED照射反應層20,而給予無機金屬氧化物21材料能量,以使無機金屬氧化物21之材料的電子與電洞分離,並搭配檢測裝置對反應層20施加2V的工作電壓,即可在不需對反應層20加熱的情況下,在室溫下量測反應層20的表面電阻變化,並進一步對電阻訊號進行微分處理,而取得臭氧的濃部變化。 In this embodiment, when ozone detection is performed, the reaction layer 20 is irradiated by UV-Visible LEDs with a spectral range of 385 to 425 nm, and energy is given to the material of the inorganic metal oxide 21, so that the electrons of the material of the inorganic metal oxide 21 are irradiated. It is separated from the hole, and a working voltage of 2V is applied to the reaction layer 20 with a detection device, so that the surface resistance change of the reaction layer 20 can be measured at room temperature without heating the reaction layer 20, and further The resistance signal is differentiated to obtain the concentration change of ozone.

無機金屬氧化物21包括二氧化鈦(TiO2)以及氧化銦(In2O3);於本實施例中,二氧化鈦與氧化銦之重量比例介於1:3至1:6,其中,又以二氧化鈦與氧化銦之重量比例為1:5為最佳比例。 The inorganic metal oxide 21 includes titanium dioxide (TiO 2 ) and indium oxide (In 2 O 3 ). In this embodiment, the weight ratio of titanium dioxide and indium oxide is between 1:3 and 1:6. The weight ratio of indium oxide is 1:5 is the best ratio.

塗覆劑22用以將二氧化鈦與氧化銦緊密黏合;於本實施例中,塗覆劑22二聚鄰苯二甲醯胺(PPA,Polyphthalamide)、鈦酸四丁酯(C16H36O4Ti)、聚乙烯醇((C2H4O)x)、辛酸亞錫(C16H30O4Sn)、乙基纖維素((C12H22O5)n)、Triton X-100(C14H22O(C2H4O)n(n=9-10))、四異丙醇鈦(Ti{OCH(CH3)2}4)、乙醇(C2H5OH)、去離子水(Deionized Water)、異丙醇(C3H8O)、氯化錫(SnCl4)、氯化亞錫(SnCl2)或其中之一種或其組合。 The coating agent 22 is used to tightly bond the titanium dioxide and the indium oxide; in this embodiment, the coating agent 22 is dimerized phthalamide (PPA, Polyphthalamide), tetrabutyl titanate (C 16 H 36 O 4 ). Ti), polyvinyl alcohol ((C 2 H 4 O)x), stannous octoate (C 16 H 30 O 4 Sn), ethyl cellulose ((C 12 H 22 O 5 )n), Triton X-100 (C14H 22 O(C 2 H 4 O) n ( n = 9-10 )), titanium tetraisopropoxide (Ti{OCH(CH 3 ) 2 } 4 ), ethanol (C 2 H 5 OH), deionized Water (Deionized Water), isopropanol (C 3 H 8 O), tin chloride (SnCl 4 ), stannous chloride (SnCl 2 ) or one or a combination thereof.

如圖1至圖2所示,於本實施例中,臭氧感測元件100更包括一電極層30,其中,電極層30設於基板10並位於基板10與反應層20之間,反應層20設於電極層30上;基板10能夠插設於檢測裝置之插槽,以使臭氧感測元件100與檢測裝置電性連接,電極層30透過網印的方式形成於基板10上,以連接反應層20與檢測裝置之內部檢測電路。 As shown in FIGS. 1 to 2 , in this embodiment, the ozone sensing element 100 further includes an electrode layer 30 , wherein the electrode layer 30 is disposed on the substrate 10 and is located between the substrate 10 and the reaction layer 20 , and the reaction layer 20 The electrode layer 30 is disposed on the electrode layer 30; the substrate 10 can be inserted into the slot of the detection device, so that the ozone sensing element 100 is electrically connected with the detection device, and the electrode layer 30 is formed on the substrate 10 by means of screen printing for connection reaction Layer 20 and the internal detection circuit of the detection device.

電極層30包含一第一電極31以及一第二電極32,其中,第一電極31及第二電極32分別具有一檢測部T以及一連接部C,其中,第一電極31及第二電極32之檢測部T概呈梳狀且互相交錯(如圖2所示),檢測部T之一端連結至反應層20,另一端連接至連接部C,當基板10插設於檢測裝置之插槽時,臭氧感測元件100可透過連接部C連接至檢測裝置內部檢測電路,而形成一檢測迴路;於本實施例中,反應層20設於第一電極31及第二電極32之檢測部T。 The electrode layer 30 includes a first electrode 31 and a second electrode 32 , wherein the first electrode 31 and the second electrode 32 respectively have a detection part T and a connection part C, wherein the first electrode 31 and the second electrode 32 The detection part T is generally comb-shaped and interlaced (as shown in FIG. 2 ). One end of the detection part T is connected to the reaction layer 20 and the other end is connected to the connection part C. When the substrate 10 is inserted into the slot of the detection device , the ozone sensing element 100 can be connected to the internal detection circuit of the detection device through the connection part C to form a detection loop;

於本實施例中,第一電極31及第二電極32之檢測部T之材料為金(Au);第一電極31及第二電極32之連接部C之材料為鉑(Pt);其中,本實施例採用金作為檢測部T之材料能夠有效提升臭氧感測元件100的導電度,以加強檢測訊號傳遞。 In this embodiment, the material of the detection portion T of the first electrode 31 and the second electrode 32 is gold (Au); the material of the connection portion C of the first electrode 31 and the second electrode 32 is platinum (Pt); wherein, Using gold as the material of the detection portion T in this embodiment can effectively improve the conductivity of the ozone sensing element 100 to enhance the transmission of detection signals.

進一步說明,無機金屬氧化物21之二氧化鈦與氧化銦的重量比例會對臭氧的檢測產生不同的影響,於本實施例中,進一步以不同二氧化鈦與氧化銦的重量比例的無機金屬氧化物21進行臭氧檢測而取得電阻變化,並進一步將訊號處理後的濃度檢測結果與市售之半導體式臭氧感測器(2B Technologies,Model 202)進行比較,實驗數據如圖3a至圖9b所示:如圖3a至3b所示,圖3a為二氧化鈦與氧化銦之重量比例為1:1之無機金屬氧化物21的電阻訊號示意圖;圖3b為二氧化鈦與氧化銦之重量比例為 1:1之無機金屬氧化物21與市售之半導體式臭氧感測器比較圖;於檢測過程中,每間隔500秒對檢測環境通入一次臭氧,其中,在圖3a能夠觀察到臭氧感測元件100之一檢測曲線S,檢測裝置每一秒對臭氧感測元件100取樣一次而形成所述檢測曲線S,接著將所述檢測曲線S進行微分處理,而將檢測曲線S轉換為圖3b之濃度曲線S’,進而與市售之半導體式臭氧感測器之一濃度訊號P進行比較。 It is further explained that the weight ratio of titanium dioxide and indium oxide in the inorganic metal oxide 21 will have different effects on the detection of ozone. The resistance change is obtained by detection, and the concentration detection result after signal processing is further compared with the commercially available semiconductor ozone sensor (2B Technologies, Model 202). The experimental data are shown in Figure 3a to Figure 9b: Figure 3a As shown in 3b, FIG. 3a is a schematic diagram of the resistance signal of the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:1; FIG. 3b is a diagram showing the weight ratio of titanium dioxide and indium oxide as A comparison diagram of 1:1 inorganic metal oxide 21 and a commercially available semiconductor ozone sensor; during the detection process, ozone was injected into the detection environment every 500 seconds, and the ozone sensing can be observed in Figure 3a A detection curve S of the element 100, the detection device samples the ozone sensing element 100 once every second to form the detection curve S, and then performs differential processing on the detection curve S, and converts the detection curve S to the one shown in FIG. 3b. The concentration curve S' is then compared with a concentration signal P of a commercially available semiconductor ozone sensor.

由圖3b之比較結果可以觀察到,二氧化鈦與氧化銦之重量比例為1:1之無機金屬氧化物21所取得之濃度曲線S’呈雜訊,且對於臭氧的通入並無響應,相較於市售之半導體式臭氧感測器之濃度訊號P未表現出較佳的檢測效果。 It can be observed from the comparison results in Fig. 3b that the concentration curve S' obtained by the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:1 is noisy and has no response to the introduction of ozone. The concentration signal P of the commercially available semiconductor ozone sensor does not show a better detection effect.

如圖4a至4b所示,圖4a為二氧化鈦與氧化銦之重量比例為1:2之無機金屬氧化物21的電阻訊號示意圖;圖4b為二氧化鈦與氧化銦之重量比例為1:2之無機金屬氧化物21與市售之半導體式臭氧感測器比較圖;於檢測過程中,每間隔500秒對檢測環境通入一次臭氧,其中,在圖4a能夠觀察到臭氧感測元件100之一檢測曲線S,檢測裝置每一秒對臭氧感測元件100取樣一次而形成所述檢測曲線S,接著將所述檢測曲線S進行微分處理,而將檢測曲線S轉換為圖4b之濃度曲線S’,進而與市售之半導體式臭氧感測器之一濃度訊號P進行比較。 As shown in FIGS. 4a to 4b, FIG. 4a is a schematic diagram of the resistance signal of the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:2; FIG. 4b is an inorganic metal whose weight ratio of titanium dioxide and indium oxide is 1:2. A comparison diagram of oxide 21 and a commercially available semiconductor-type ozone sensor; during the detection process, ozone is injected into the detection environment every 500 seconds, and a detection curve of the ozone sensing element 100 can be observed in FIG. 4a S, the detection device samples the ozone sensing element 100 once every second to form the detection curve S, and then performs differential processing on the detection curve S to convert the detection curve S into the concentration curve S' of FIG. 4b, and then Compare with a concentration signal P of a commercially available semiconductor-type ozone sensor.

由圖4b之比較結果可以觀察到,二氧化鈦與氧化銦之重量比例為1:2之無機金屬氧化物21所取得之濃度曲線S’同樣呈雜訊,雖然對於臭氧的通入有些微響應,但相較於市售之半導體式臭氧感測器之濃度訊號P也未表現出較佳的檢測效果。 From the comparison results in Figure 4b, it can be observed that the concentration curve S' obtained by the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:2 is also noisy. Compared with the concentration signal P of the commercially available semiconductor ozone sensor, it does not show a better detection effect.

如圖5a至5b所示,圖5a為二氧化鈦與氧化銦之重量比例為1:3之無機金屬氧化物21的電阻訊號示意圖;圖5b為二氧化鈦與氧化銦之重量比例為1:3之無機金屬氧化物21與市售之半導體式臭氧感測器比較圖;於檢測過程中, 每間隔500秒對檢測環境通入一次臭氧,其中,在圖5a能夠觀察到臭氧感測元件100之一檢測曲線S,檢測裝置每一秒對臭氧感測元件100取樣一次而形成所述檢測曲線S,接著將所述檢測曲線S進行微分處理,而將檢測曲線S轉換為圖5b之濃度曲線S’,進而與市售之半導體式臭氧感測器之一濃度訊號P進行比較。 As shown in FIGS. 5a to 5b, FIG. 5a is a schematic diagram of the resistance signal of the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:3; FIG. 5b is an inorganic metal whose weight ratio of titanium dioxide and indium oxide is 1:3. Comparison diagram of oxide 21 and a commercially available semiconductor ozone sensor; during the detection process, Ozone is injected into the detection environment every 500 seconds, wherein a detection curve S of the ozone sensing element 100 can be observed in FIG. 5a, and the detection device samples the ozone sensing element 100 once every second to form the detection curve S, the detection curve S is then differentiated, and the detection curve S is converted into the concentration curve S' of FIG. 5b, and then compared with a concentration signal P of a commercially available semiconductor ozone sensor.

由圖5b之比較結果可以觀察到,二氧化鈦與氧化銦之重量比例為1:3之無機金屬氧化物21所取得之濃度曲線S’,對於臭氧的通入相較於市售之半導體式臭氧感測器之濃度訊號P表現出較快的響應。 It can be observed from the comparison results in Fig. 5b that the concentration curve S' obtained by the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:3 is more sensitive to the introduction of ozone than that of the commercially available semiconductor-type ozone. The concentration signal P of the detector showed a faster response.

如圖6a至6b所示,圖6a為二氧化鈦與氧化銦之重量比例為1:4之無機金屬氧化物21的電阻訊號示意圖;圖6b為二氧化鈦與氧化銦之重量比例為1:4之無機金屬氧化物21與市售之半導體式臭氧感測器比較圖;於檢測過程中,每間隔500秒對檢測環境通入一次臭氧,其中,在圖6a能夠觀察到臭氧感測元件100之一檢測曲線S,檢測裝置每一秒對臭氧感測元件100取樣一次而形成所述檢測曲線S,接著將所述檢測曲線S進行微分處理,而將檢測曲線S轉換為圖6b之濃度曲線S’,進而與市售之半導體式臭氧感測器之一濃度訊號P進行比較。 As shown in FIGS. 6a to 6b, FIG. 6a is a schematic diagram of the resistance signal of the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:4; FIG. 6b is an inorganic metal whose weight ratio of titanium dioxide and indium oxide is 1:4. A comparison diagram of oxide 21 and a commercially available semiconductor ozone sensor; during the detection process, ozone is injected into the detection environment every 500 seconds, and a detection curve of the ozone sensing element 100 can be observed in FIG. 6a S, the detection device samples the ozone sensing element 100 once per second to form the detection curve S, and then performs differential processing on the detection curve S to convert the detection curve S into the concentration curve S' of FIG. 6b, and then Compare with a concentration signal P of a commercially available semiconductor-type ozone sensor.

由圖6b之比較結果可以觀察到,二氧化鈦與氧化銦之重量比例為1:4之無機金屬氧化物21所取得之濃度曲線S’,對於臭氧的通入相較於市售之半導體式臭氧感測器之濃度訊號P有表現出極快速的響應以及檢測靈敏度。 It can be observed from the comparison results in Fig. 6b that the concentration curve S' obtained by the inorganic metal oxide 21 with the weight ratio of titanium dioxide and indium oxide 1:4 is more sensitive to the introduction of ozone than the commercially available semiconductor-type ozone. The concentration signal P of the detector has a very fast response and detection sensitivity.

如圖7a至7b所示,圖7a為二氧化鈦與氧化銦之重量比例為1:5之無機金屬氧化物21的電阻訊號示意圖;圖7b為二氧化鈦與氧化銦之重量比例為1:5之無機金屬氧化物21與市售之半導體式臭氧感測器比較圖;於檢測過程中,每間隔500秒對檢測環境通入一次臭氧,其中,在圖7a能夠觀察到臭氧感測元件100之一檢測曲線S,檢測裝置每一秒對臭氧感測元件100取樣一次而形成所述檢 測曲線S,接著將所述檢測曲線S進行微分處理,而將檢測曲線S轉換為圖7b之濃度曲線S’,進而與市售之半導體式臭氧感測器之一濃度訊號P進行比較。 As shown in FIGS. 7a to 7b, FIG. 7a is a schematic diagram of the resistance signal of the inorganic metal oxide 21 with the weight ratio of titanium dioxide and indium oxide 1:5; FIG. 7b is the inorganic metal with the weight ratio of titanium dioxide and indium oxide 1:5 A comparison diagram of oxide 21 and a commercially available semiconductor ozone sensor; during the detection process, ozone is injected into the detection environment every 500 seconds, and a detection curve of the ozone sensor element 100 can be observed in FIG. 7a S, the detection device samples the ozone sensing element 100 once every second to form the detection Then, the detection curve S is subjected to differential processing, and the detection curve S is converted into the concentration curve S' of Fig. 7b, and then compared with a concentration signal P of a commercially available semiconductor ozone sensor.

由圖7b之比較結果可以觀察到,二氧化鈦與氧化銦之重量比例為1:5之無機金屬氧化物21所取得之濃度曲線S’,對於臭氧的通入相較於市售之半導體式臭氧感測器之濃度訊號P有表現出極快速的響應,且有最佳的檢測靈敏度。 From the comparison results in Figure 7b, it can be observed that the concentration curve S' obtained by the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:5 is more sensitive to the introduction of ozone than the commercially available semiconductor-type ozone. The concentration signal P of the detector has a very fast response and has the best detection sensitivity.

如圖8a至8b所示,圖8a為二氧化鈦與氧化銦之重量比例為1:6之無機金屬氧化物21的電阻訊號示意圖;圖8b為二氧化鈦與氧化銦之重量比例為1:6之無機金屬氧化物21與市售之半導體式臭氧感測器比較圖;於檢測過程中,每間隔500秒對檢測環境通入一次臭氧,其中,在圖8a能夠觀察到臭氧感測元件100之一檢測曲線S,檢測裝置每一秒對臭氧感測元件100取樣一次而形成所述檢測曲線S,接著將所述檢測曲線S進行微分處理,而將檢測曲線S轉換為圖8b之濃度曲線S’,進而與市售之半導體式臭氧感測器之一濃度訊號P進行比較。 8a to 8b, FIG. 8a is a schematic diagram of the resistance signal of the inorganic metal oxide 21 with the weight ratio of titanium dioxide and indium oxide 1:6; FIG. 8b is the inorganic metal with the weight ratio of titanium dioxide and indium oxide 1:6 A comparison diagram of oxide 21 and a commercially available semiconductor ozone sensor; during the detection process, ozone is injected into the detection environment every 500 seconds, and a detection curve of the ozone sensing element 100 can be observed in FIG. 8a S, the detection device samples the ozone sensing element 100 once every second to form the detection curve S, and then performs differential processing on the detection curve S to convert the detection curve S into the concentration curve S' of FIG. 8b, and then Compare with a concentration signal P of a commercially available semiconductor-type ozone sensor.

由圖8b之比較結果可以觀察到,二氧化鈦與氧化銦之重量比例為1:6之無機金屬氧化物21所取得之濃度曲線S’,對於臭氧的通入相較於市售之半導體式臭氧感測器之濃度訊號P有表現出極快速的響應以及檢測靈敏度。 It can be observed from the comparison results in Fig. 8b that the concentration curve S' obtained by the inorganic metal oxide 21 whose weight ratio of titanium dioxide and indium oxide is 1:6 is more sensitive to the introduction of ozone than that of the commercially available semiconductor-type ozone. The concentration signal P of the detector has a very fast response and detection sensitivity.

如圖9a至9b所示,圖9a為二氧化鈦與氧化銦之重量比例為2:1之無機金屬氧化物21的電阻訊號示意圖;圖9b為二氧化鈦與氧化銦之重量比例為2:1之無機金屬氧化物21與市售之半導體式臭氧感測器比較圖;於檢測過程中,每間隔500秒對檢測環境通入一次臭氧,其中,在圖9a能夠觀察到臭氧感測元件100之一檢測曲線S,檢測裝置每一秒對臭氧感測元件100取樣一次而形成所述檢測曲線S,接著將所述檢測曲線S進行微分處理,而將檢測曲線S轉換為圖9b之濃 度曲線S’,進而與市售之半導體式臭氧感測器之一濃度訊號P進行比較。 As shown in Figures 9a to 9b, Figure 9a is a schematic diagram of the resistance signal of the inorganic metal oxide 21 with a weight ratio of titanium dioxide to indium oxide 2:1; Figure 9b is an inorganic metal with a weight ratio of titanium dioxide to indium oxide 2:1 A comparison diagram of oxide 21 and a commercially available semiconductor ozone sensor; during the detection process, ozone is injected into the detection environment every 500 seconds, and a detection curve of the ozone sensing element 100 can be observed in FIG. 9a S, the detection device samples the ozone sensing element 100 once every second to form the detection curve S, and then performs differential processing on the detection curve S to convert the detection curve S into the concentration shown in FIG. 9b The degree curve S' is then compared with a concentration signal P of a commercially available semiconductor ozone sensor.

由圖9b之比較結果可以觀察到,二氧化鈦與氧化銦之重量比例為2:1之無機金屬氧化物21所取得之濃度曲線S’同樣呈雜訊,雖然對於臭氧的通入有些微響應,但相較於市售之半導體式臭氧感測器之濃度訊號P也未表現出較佳的檢測效果。 From the comparison results in Figure 9b, it can be observed that the concentration curve S' obtained by the inorganic metal oxide 21 with a weight ratio of titanium dioxide and indium oxide 2:1 is also noisy, although it has a slight response to the introduction of ozone, but Compared with the concentration signal P of the commercially available semiconductor ozone sensor, it does not show a better detection effect.

由圖3a至圖9b之檢測結果能夠觀察到二氧化鈦與氧化銦之重量比例為1:3至1:6之無機金屬氧化物21所取得之濃度曲線S’,相較於市售之半導體式臭氧感測器之濃度訊號P具有較快的檢測響應時間,且表現出較佳的靈敏度,其中,又以二氧化鈦與氧化銦之重量比例為1:5之無機金屬氧化物21具有最佳的臭氧檢測效果。 From the test results of FIGS. 3 a to 9 b , it can be observed that the concentration curve S′ obtained by the inorganic metal oxide 21 with the weight ratio of titanium dioxide and indium oxide being 1:3 to 1:6 is compared with the commercially available semiconducting ozone. The concentration signal P of the sensor has a faster detection response time and better sensitivity, and the inorganic metal oxide 21 with the weight ratio of titanium dioxide and indium oxide being 1:5 has the best ozone detection Effect.

綜合上述,本創作之臭氧感測元件100提供使用者在室溫下進行臭氧偵測,而不需要在高溫環境操作,除了對臭氧感測元件100可以降低材料的封裝成本之外,也能夠節省整體檢測的耗能。此外,透過二氧化鈦與氧化銦的重量比例調配,能夠對環境中的臭氧快速響應並取得準確的臭氧濃度。 In summary, the ozone sensing device 100 of the present invention provides users with ozone detection at room temperature without the need to operate in a high temperature environment. In addition to reducing the packaging cost of materials for the ozone sensing device 100, it can also save The energy consumption of the overall detection. In addition, by adjusting the weight ratio of titanium dioxide and indium oxide, it can quickly respond to ozone in the environment and obtain an accurate ozone concentration.

以上所舉實施例僅用以說明本創作而已,非用以限制本創作之範圍。舉凡不違本創作精神所從事的種種修改或變化,俱屬本創作意欲保護之範疇。 The above-mentioned embodiments are only used to illustrate the present creation, and are not intended to limit the scope of the present creation. All modifications or changes that do not violate the spirit of this creation belong to the scope of this creation's intention to protect.

100:臭氧感測元件 100: Ozone sensing element

10:基板 10: Substrate

20:反應層 20: Reactive Layer

21:無機金屬氧化物 21: Inorganic metal oxides

22:塗覆劑 22: Coating agent

30:電極層 30: Electrode layer

31:第一電極 31: The first electrode

32:第二電極 32: Second electrode

T:檢測部 T: Detection Department

C:連接部 C: connecting part

Claims (10)

一種臭氧感測元件,其包含:一基板,其具有一表面;以及一反應層,其疊設於該表面上,該反應層包含一無機金屬氧化物,該無機金屬氧化物包括二氧化鈦以及氧化銦,其中,所述二氧化鈦與所述氧化銦之重量比例為1:3至1:6。 An ozone sensing element, comprising: a substrate having a surface; and a reaction layer stacked on the surface, the reaction layer including an inorganic metal oxide, the inorganic metal oxide including titanium dioxide and indium oxide , wherein the weight ratio of the titanium dioxide to the indium oxide is 1:3 to 1:6. 如請求項1所述之臭氧感測元件,其中,該無機金屬氧化物之所述二氧化鈦與所述氧化銦之重量比例為1:4.5至1:5.5。 The ozone sensing element according to claim 1, wherein the weight ratio of the titanium dioxide to the indium oxide in the inorganic metal oxide is 1:4.5 to 1:5.5. 如請求項1所述之臭氧感測元件,其中,該反應層更包含一塗覆劑。 The ozone sensing element according to claim 1, wherein the reaction layer further comprises a coating agent. 如請求項3所述之臭氧感測元件,其中,該塗覆劑為聚鄰苯二甲醯胺、鈦酸四丁酯、聚乙烯醇、辛酸亞錫、乙基纖維素、Triton X-100、四異丙醇鈦、乙醇、去離子水、異丙醇、氯化錫、氯化亞錫或其中之一或其組合。 The ozone sensing element according to claim 3, wherein the coating agent is polyphthalamide, tetrabutyl titanate, polyvinyl alcohol, stannous octoate, ethyl cellulose, Triton X-100 , titanium tetraisopropoxide, ethanol, deionized water, isopropanol, tin chloride, stannous chloride or one or a combination thereof. 如請求項1所述之臭氧感測元件,其中,該反應層之厚度為25±5μm,該基板之厚度為0.1cm。 The ozone sensing element according to claim 1, wherein the thickness of the reaction layer is 25±5 μm, and the thickness of the substrate is 0.1 cm. 如請求項1或5所述之臭氧感測元件,其中,該基板之材料為氧化鋁、ITO玻璃或FTO玻璃。 The ozone sensing element according to claim 1 or 5, wherein the material of the substrate is alumina, ITO glass or FTO glass. 如請求項1所述之臭氧感測元件,更具有一電極層,其設於該基板上,該電極層包含一第一電極以及一第二電極,該第一電極及該第二電極分別具有一檢測部以及一連接部。 The ozone sensing element as claimed in claim 1, further comprising an electrode layer disposed on the substrate, the electrode layer comprising a first electrode and a second electrode, the first electrode and the second electrode respectively have a detection part and a connection part. 如請求項7所述之臭氧感測元件,其中,該第一電極與該第二電極之檢測部概呈梳狀且互相交錯。 The ozone sensing element according to claim 7, wherein the detection portions of the first electrode and the second electrode are generally comb-shaped and interlaced. 如請求項7所述之臭氧感測元件,其中,該第一電極及該第二電極之檢測部之材料為金。 The ozone sensing element according to claim 7, wherein the material of the detection portion of the first electrode and the second electrode is gold. 如請求項7所述之臭氧感測元件,其中,該第一電極及該第二電極之連接部之材料為鉑。 The ozone sensing element according to claim 7, wherein the material of the connecting portion of the first electrode and the second electrode is platinum.
TW111202906U 2022-03-23 2022-03-23 Ozone sensing element TWM630714U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111202906U TWM630714U (en) 2022-03-23 2022-03-23 Ozone sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111202906U TWM630714U (en) 2022-03-23 2022-03-23 Ozone sensing element

Publications (1)

Publication Number Publication Date
TWM630714U true TWM630714U (en) 2022-08-11

Family

ID=83783038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111202906U TWM630714U (en) 2022-03-23 2022-03-23 Ozone sensing element

Country Status (1)

Country Link
TW (1) TWM630714U (en)

Similar Documents

Publication Publication Date Title
Nassar et al. Paper skin multisensory platform for simultaneous environmental monitoring
EP3402393B1 (en) Paper based electronics platform
Fleischer et al. Selectivity in high-temperature operated semiconductor gas-sensors
Ahmad et al. Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell
CN106716152A (en) Thin-film resistive-based sensor
CN108414603A (en) A kind of humidity sensor and preparation method thereof based on electric double layer thin film transistor (TFT)
CN1327215C (en) Relative humidity sensor compatible of CMOS process
Xu et al. Capacitive humidity sensing properties of hydrothermally-etched silicon nano-porous pillar array
Li et al. Nanostructural ZnO based coplanar gas sensor arrays from the injection of metal chloride solutions: Device processing, gas-sensing properties and selectivity in liquors applications
TW201805622A (en) Miniature gas sensor and manufacturing method thereof finishing a suspended gas sensing structure on a silicon substrate
Leo et al. Sprayed SnO2 thin films for NO2 sensors
JP2002328109A (en) Element for detecting hydrogen gas, and method of manufacturing the same
CN107064242A (en) Molybdenum disulfide dopen Nano silver particles are combined humidity sensor and preparation method thereof
CN111157039B (en) Multifunctional gas sensor capable of detecting humidity, temperature and flow simultaneously and preparation method thereof
TWI816337B (en) Ozone sensing component
TWM630714U (en) Ozone sensing element
Azmer et al. VOPcPhO: P3HT composite micro-structures with nano-porous surface morphology
TWI706571B (en) Miniature gas sensor structure
Lee et al. Low power thick film CO gas sensors
Zhang et al. A flexible calligraphy-integrated in situ humidity sensor
JP2010038692A (en) Gas detecting element
CN205785343U (en) The silica-based gas sensitization chip of integrated Temperature Humidity Sensor
Lim et al. Heating power-controlled micro-gas sensor array
Lackner et al. CMOS integrated nanocrystalline SnO2 gas sensors for CO detection
Bakar et al. Effect of different deposition techniques of PCDTBT: PC71BM composite on the performance of capacitive-type humidity sensors