TWM630144U - 體組成分析儀之資料整合系統 - Google Patents

體組成分析儀之資料整合系統 Download PDF

Info

Publication number
TWM630144U
TWM630144U TW111201250U TW111201250U TWM630144U TW M630144 U TWM630144 U TW M630144U TW 111201250 U TW111201250 U TW 111201250U TW 111201250 U TW111201250 U TW 111201250U TW M630144 U TWM630144 U TW M630144U
Authority
TW
Taiwan
Prior art keywords
data
body composition
analyzer
precision
composition analyzer
Prior art date
Application number
TW111201250U
Other languages
English (en)
Inventor
謝坤昌
蔡至清
林信達
Original Assignee
興友科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興友科技股份有限公司 filed Critical 興友科技股份有限公司
Priority to TW111201250U priority Critical patent/TWM630144U/zh
Publication of TWM630144U publication Critical patent/TWM630144U/zh

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一種體組成分析儀之資料整合系統,其包含:高精度體組成分析儀、低精度體組成分析儀及運算裝置,由運算裝置計算高精度體組成分析儀、低精度體組成分析儀之間的偏差值,並以偏差值對低精度體組成分析儀的數據進行修正,得到較準確的體組成數據。

Description

體組成分析儀之資料整合系統
本創作係與體組成分析技術有關,特別是指一種體組成分析儀之資料整合系統。
隨著生活水準的提高,人們對於維持身體健康的需求也日漸提昇。健康與否與個人的身體組成成份習習相關,正常且均衡的身體組成成份是維持健康的基本條件之一。體組成測量的方式有許多種,較常用的方法有影像法與生物阻抗分析(Bioelectrical impedance analysis; BIA)。影像法常用的有電腦斷層掃描(Computed Tomography; CT)、核磁共振攝影(Magnetic Resonance Imaging; MRI)與雙能量X光吸光式吸收儀(Dual-energy X-ray absorptiometry, DXA)。因為DXA穩定性與準確性高,又比CT與MRI成本更低,已成為體組成量測的黃金標準。BIA技術因為使用上的方便、快速、成本低、安全非侵入性與可接受的準確性等特點,已成為目前最廣泛使用的方法之一,且BIA身體組成分析產品已普及化,市場持續快速發展中。BIA身體組成分析除了體重之外,一般還提供去脂肪體重、體脂肪重、體脂肪率、肌肉量、身體總水量等重要的參數。
市面上的體組成分析產品可大略分為高階專業型與家用型兩種。高階專業機通常使用多頻率的交流電,目前產品最常見為三到六頻,並使用八個極板與多頻多肢段的量測技術,可得到全身或不同肢段的阻抗值與相位角。最後將測得的各肢段阻抗值,加上使用者人個資訊例如身高、年齡、體重、性別、人種與運動習慣等參數,代入估測方程式,可以得到多達數十種以上的人體組成參數。上述估測方程式的正確性會使用DXA或CT的檢驗結果加以驗證。許多研究顯示,相較於DXA所得的結果,各式廠牌的專業機型產品對於一般使用者在體脂率與肌肉量的估測值上,儘管有所偏差,仍然具有非常高的相關性,有些產品甚至高達0.97至0.98,只有極瘦、極度肥胖者或有疾病等較特殊的族群才會有較大的誤差。因此專業機型得到的結果極為接近醫療等級的水準,參考價值相對高。然而專業機型為求測量的高精準度,不但造價昂貴,且體積大,重量較重搬運不易,通常只在醫療院所與健身產業中使用。
反之家用型的體組成分析儀主要目的是利於日常生活中的使用,因此在設計上偏向輕薄。早期的產品以四極板的設計為多數,應用單頻50kHz的交流電,進行腳對腳的阻抗值量測,也就是只以雙腿為主的阻抗值推估全身的體組成。然而腿部肌內佔比相當高,而且所佔體重比例最大的軀幹並不在測量的範圍內,如此的測量估測結果的精準度與高階專業機必然有一定的落差。在大部分的報告中,家用機型低估脂肪量,高估肌肉量,只有少部分測試報告指出家用機型高估脂肪量,這可能是對於不同測試族群所造成。一般而言,家用機與專業機的主要差別在於估測值偏誤較大,且因為使用設計上,阻抗量測值的標準差較大。即使家用機型的結果有一定的偏差,準確度也不如專業機型,但多年的研究結果顯示,不管在體脂肪或肌肉量估測的結果,家用機型在整體趨勢的呈現上仍然與專業機的結果有高度相關,因此使用家用機進行追蹤體組成參數還是有一定的參考價值。目前也有部份家用機型使用八極板,雙頻的量測技術,使得結果更貼進高階專業機的結果,但這些機型價格較高,介於家用機型與專業機型之間,普及率不如較低階的家用機型。
身體組成的定期監測對於維持健康相當重要,通常建議每天或每週測量一次,並加以記錄,但對一般使用者來說,除非有特殊的醫療行為的需求,否則僅會每隔數個月甚至一年才會做一次較精密的量測,其他時間只使用家用機進行監測。然而因為家用機型的準確度不如專業機型,使用者實際上並沒有辦法能夠準確地掌握個人體組成變化。
本創作之主要目的乃在於提供一種體組成分析儀之資料整合系統,相較於先前技術,能整合高階專業型體組成分析儀與家用型體組成測分析儀所測量到的體組成資料,令受測者在接受一次高階專業型體組成分析儀的測量後,就能以家用型體組成測分析儀測量到趨近於以高階專業型體組成分析儀測量到的體組成資料,藉此達到能準確且容易地掌握個人體組成變化的效果。
為了達成上述之目的,本創作提供之一種體組成分析儀之資料整合系統,其包含:一高精度體組成分析儀,測得一受測者之第一體組成數據;一低精度體組成分析儀,測得該受測者之第二體組成數據;以及一運算裝置,電性連接該高精度體組成分析儀及該低精度體組成分析儀,並接收該第一、第二體組成數據,該運算裝置包含一資料庫及一運算單元,該運算裝置將該第一、第二體組成數據儲存於該資料庫,並由該運算單元以該第一體組成數據做為一標準值,再計算該第一體組成數據與該第二體組成數據之間的一偏差值,並以該偏差值對該第一或第二體組成數據進行修正,得到一修正後的第二體組成數據。
藉此,本創作提供之一種體組成分析儀之資料整合系統,藉由整合第一體組成數據與第二體組成數據之間之偏差值,並以偏差值對第二體組成數據進行修正之技術特徵,能令受測者在接受一次高精度體組成分析儀的測量後,就能以低精度體組成分析儀測量到趨近於以高精度體組成分析儀測量到的體組成資料,達到能準確且容易地掌握個人骨骼肌肉量變化的效果。
為了詳細說明本創作之技術特點所在,茲針對以下一較佳實施例,並配合圖式1-4說明如後,其中:本創作之體組成分析儀之資料整合系統10,主要包含一高精度體組成分析儀20、一低精度體組成分析儀30及一運算裝置40,其中:
該高精度體組成分析儀20係測得一受測者之第一體組成數據。
該低精度體組成分析儀30係測得該受測者之第二體組成數據。
如圖1-2所示,該運算裝置40係電性連接該高精度體組成分析儀20及該低精度體組成分析儀30,並接受該第一、二體組成數據,該運算裝置40包含一資料庫41及一運算單元43,該運算裝置40將該第一、第二體組成數據儲存於該資料庫41,並由該運算單元43以該第一體組成數據做為一標準值,再計算該第一體組成數據與該第二體組成數據之間的一偏差值,並以該偏差值對該第二體組成數據進行修正,得到一修正後的第二體組成數據。
在本較佳實施例中,如圖1所示,係以DXA做為該高精度體組成分析儀20,並以BIA一般家用機型做為該低精度體組成分析儀30,該運算裝置40係以個人電腦為例。在其他較佳實施例中,如圖4所示,該高精度體組成分析儀20亦可為CT、高階專業體組成分析儀或MRI(圖未示),而該低精度體組成分析儀30則能以其他BIA一般家用機型(手持式、穿戴式家用型機)為例,該運算裝置40則能以智慧型手機、平板電腦(圖未示)為例,故該高精度體組成分析儀20以及該運算裝置40之選擇,並不僅以本較佳實施例為限。此外,在其他較佳實施例中,該高精度體組成分析儀20及該低精度體組成分析儀30之數量亦可為複數個,且由不同的該受測者進行測量,並將該複數受測者所測得之第一、二體組成數據儲存於該資料庫41,並經由該運算單元43進行運算,故該高精度體組成分析儀20、該低精度體組成分析儀30及該受測者之數量不僅以本較佳實施例為限。
在本較佳實施例中,該運算裝置40係電性連接該高精度體組成分析儀20與及該低精度體組成分析儀30的方式係為無線連接(如藍芽、wifi)。在其他較佳實施例中,該運算裝置40可為有線連接該高精度體組成分析儀20與及該低精度體組成分析儀30,故該運算裝置40連接該高精度體組成分析儀20與及該低精度體組成分析儀30的方式,不僅以本較佳實施例為限。
在本較佳實施例中,該運算裝置40更包含一資料整合單元45及一顯示單元47,該資料整合單元45係向該資料庫41索取該第一、第二體組成數據,並整合成一分析資料451顯示於該顯示單元47,該分析資料451可依需求選擇呈現方式,如圖表、文字報告…等。
在本較佳實施例中,該第一體組成數據及該第二體組成數據係以骨骼肌肉量(Skeletal Muscle Mass; SMM)為例,當該第一、第二體組成數據為複數個時,該修正後的第二體組成數據係藉由下列一公式計算得到:
Figure 02_image001
,其中,
Figure 02_image003
為該修正後的第二體組成數據,
Figure 02_image005
Figure 02_image007
為權重,
Figure 02_image009
Figure 02_image011
分別為該第一體組成數據及該第二體組成數據量測的一標準差,
Figure 02_image009
遠小於
Figure 02_image011
Figure 02_image013
為該第一、第二體組成數據的一平均量測偏差,該平均量測偏差初始之預設為0,若
Figure 02_image009
為0且
Figure 02_image011
不為0時,則
Figure 02_image015
,近似於
Figure 02_image017
表示。
在其他較佳實施例中,該第一體組成數據及該第二體組成數據亦能以測量身體質量指數(BMI)、脂肪肌肉評估、肥胖度分析、內臟脂肪、身體年齡或基礎代謝率...等為例,而公式亦會依照本較佳實施例的公式所應用之邏輯及原理略做改變,故該第一體組成數據及該第二體組成數據不僅以本較佳實施例為限。
在本較佳實施例中,該資料整合單元45更包含一資料判斷邏輯453,該資料判斷邏輯453係索取該複數第一、第二體組成數據的測量時間點,並以兩兩一組分類,並依測量時間點先後順序統計得到複數組資料;當該複數組資料為0,且沒有該平均量測偏差時,係將該平均量測偏差預設為0;當該複數組資料為1,且沒有該平均量測偏差時,該平均量測偏差為該第一、第二體組成數據之相差;當該複數組資料小於等於3時,該平均量測偏差以使用資料數量較多者為主;當該複數組資料大於3時,則以一統計方法計算得到該平均量測偏差,其中該統計方法可為多元迴歸分析或機器學習…等。
在本較佳實施例中,該資料判斷邏輯453具有一可供設定的預定區間,用以索取該預定區間內的該複數第一、第二體組成數據,藉此提升該第一、二體組成數據之平均測量偏差的真實性,但不以此為限。
在本較佳實施例中,該運算單元43具有一趨勢線計算邏輯431,當該第一、第二體組成數據數量分別為1時,使用線性近似的方式取得趨勢線(如圖3虛線所示),當該第一、第二體組成數據數量分別為2時,可使用非線性或分段線性迴歸分析取近似。在其他較佳實施例中,取得趨勢線的方式亦可採如希爾伯特-黃轉換(Hilbert-Huang Transform)計算。短期內體組成參數變化不大,可視為穩態時間序列,例如短期內密集的測量,可用傅立葉變換求得,故該趨勢線計算邏輯431不僅以本較佳實施例為限。
以上說明本創作一較佳實施例之技術特點,以下說明本創作一較佳實施例的測量結果,其中為了便於說明,係以一該受測者測量一該第一體組成數據以及該複數第二體組成數據進行說明。
如圖3所示,本創作所提供之體組成分析儀之資料整合系統,該受測者於2020年12月20日以該高精度體組成分析儀20係測得該受測者之第一體組成數據(如正方形所示),而後續分別於2020年12月23日、2020年12月26日、2020年12月27日…等日期測量得到各該第二體組成數據(如圓形所示),藉由該公式計算得到該修正後的第二體組成數據(如星形所示),以2021年1月14日所測的該第二體組成數據與該修正後的第二體組成數據可看出,該受測者以該低精度體組成分析儀30實際測量到的骨骼肌肉量約莫為31.7,但是在藉由本創作的修正下,該受測者卻可得到趨近於以DXA測量到的骨骼肌肉量約莫為29.7數值。
藉此,本創作提供之一種體組成分析儀之資料整合系統10,藉由整合第一體組成數據與第二體組成數據之間之偏差值,並以偏差值對第二體組成數據進行修正之技術特徵,能令受測者在接受一次高精度體組成分析儀的測量後,就能以低精度體組成分析儀測量到趨近於以高精度體組成分析儀測量到的骨骼肌肉量數據,達到能準確且容易地掌握個人骨骼肌肉量變化的效果。
上述較佳實施例是為了幫助理解本創作的原理和方法,本創作並不限於上述之較佳實施例。凡在本創作的精神和原則之內的任何組合和更動修改,都應在本創作的保護範圍內。
10:體組成分析儀之資料整合系統 20:高精度體組成分析儀 30:低精度體組成分析儀 40:運算裝置 41:資料庫 43:運算單元 431:趨勢線計算邏輯 45:資料整合單元 451:分析資料 453:資料判斷邏輯 47:顯示單元
圖1係本創作一較佳實施例之示意圖。 圖2係本創作一較佳實施例之方塊圖。 圖3係本創作一較佳實施例之使用狀態示意圖。 圖4係本創作一較佳實施例之示意圖,顯示其他高精度體組成分析儀、低精度體組成分析儀及運算裝置。
10:體組成分析儀之資料整合系統
20:高精度體組成分析儀
30:低精度體組成分析儀
40:運算裝置
47:顯示單元

Claims (7)

  1. 一種體組成分析儀之資料整合系統,其包含:一高精度體組成分析儀,測得一受測者之第一體組成數據;一低精度體組成分析儀,測得該受測者之第二體組成數據;以及一運算裝置,電性連接該高精度體組成分析儀及該低精度體組成分析儀,並接收該第一、第二體組成數據,該運算裝置包含一資料庫及一運算單元,該運算裝置將該第一、第二體組成數據儲存於該資料庫,並由該運算單元以該第一體組成數據做為一標準值,再計算該第一體組成數據與該第二體組成數據之間的一偏差值,並以該偏差值對該第一或第二體組成數據進行修正,得到一修正後的第二體組成數據。
  2. 如請求項1所述之體組成分析儀之資料整合系統,其其中:該運算裝置係電性連接該高精度體組成分析儀及該低精度體組成分析儀的方式可為無線或有線連接。
  3. 如請求項1所述之體組成分析儀之資料整合系統,其中:該運算裝置更包含一資料整合單元及一顯示單元,該資料整合單元係向該資料庫索取該第一、第二體組成數據,並整合成一分析資料顯示於該顯示單元。
  4. 如請求項1所述之體組成分析儀之資料整合系統,其中:該第一體組成數據及該第二體組成數據係骨骼肌肉量,當該第一、第二體組成數據為複數個時,該修正後的第二體組成數據係藉由下列公式計算所得到:
    Figure 111201250-A0305-02-0011-1
    ,其中,
    Figure 111201250-A0305-02-0011-4
    為該修正後的第二體組成數據,
    Figure 111201250-A0305-02-0011-2
    Figure 111201250-A0305-02-0011-6
    為權重,σ A σ B 分別為該第一體組成數據及該第二體組成數據量測的一標準差,σ A 遠小於σ B Bias BA 為該第一、第二體組成數據的一平均量測偏差,該 平均量測偏差初始之預設為0,若σ A 為0且σ B 不為0時,則
    Figure 111201250-A0305-02-0012-5
    ,近似於x B -Bias BA 表示。
  5. 如請求項3所述之體組成分析儀之資料整合系統,其中:該資料整合單元更包含一資料判斷邏輯,該資料判斷邏輯係索取該複數第一、第二體組成數據的測量時間點,並以兩兩一組分類,依測量時間點先後順序統計得到複數組資料;當該複數組資料為0,且沒有該平均量測偏差時,係將該平均量測偏差預設為0;當該複數組資料為1,且沒有該平均量測偏差時,該平均量測偏差為該第一、第二體組成數據之相差;當該複數組資料小於等於3時,該平均量測偏差以使用資料數量較多者為主;當該複數組資料大於3時,則以一統計方法計算得到該平均量測偏差。
  6. 如請求項5所述之體組成分析儀之資料整合系統,其中:該資料判斷邏輯具有一可供設定的預定區間,用以索取該預定區間內的該複數第一、第二體組成數據的測量時間點。
  7. 如請求項4所述之體組成分析儀之資料整合系統,其中:該運算單元具有一趨勢線計算邏輯。
TW111201250U 2022-01-28 2022-01-28 體組成分析儀之資料整合系統 TWM630144U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111201250U TWM630144U (zh) 2022-01-28 2022-01-28 體組成分析儀之資料整合系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111201250U TWM630144U (zh) 2022-01-28 2022-01-28 體組成分析儀之資料整合系統

Publications (1)

Publication Number Publication Date
TWM630144U true TWM630144U (zh) 2022-08-01

Family

ID=83783401

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111201250U TWM630144U (zh) 2022-01-28 2022-01-28 體組成分析儀之資料整合系統

Country Status (1)

Country Link
TW (1) TWM630144U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790910B (zh) * 2022-01-28 2023-01-21 興友科技股份有限公司 體組成分析儀之資料整合系統

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790910B (zh) * 2022-01-28 2023-01-21 興友科技股份有限公司 體組成分析儀之資料整合系統

Similar Documents

Publication Publication Date Title
Frankenfield Bias and accuracy of resting metabolic rate equations in non-obese and obese adults
Washburn et al. The validity of the Stanford seven-day physical activity recall in young adults
Aeberli et al. Waist circumference and waist-to-height ratio percentiles in a nationally representative sample of 6-13 year old children in Switzerland
Davis et al. Prediction of normal values for lactate threshold estimated by gas exchange in men and women
Jee et al. Development and application of biological age prediction models with physical fitness and physiological components in Korean adults
Valente-dos-Santos et al. Allometric modelling of peak oxygen uptake in male soccer players of 8–18 years of age
Schoenfeld et al. Comparison of amplitude‐mode ultrasound versus air displacement plethysmography for assessing body composition changes following participation in a structured weight‐loss programme in women
Anderson et al. Comparison of energy assessment methods in overweight individuals
CN111887847A (zh) 基于人体成分仪的内脏脂肪测量方法、装置、计算机设备和存储介质
Montgomery et al. Comparison of body fat results from 4 bioelectrical impedance analysis devices vs. air displacement plethysmography in american adolescent wrestlers
TWM630144U (zh) 體組成分析儀之資料整合系統
Gartner et al. Use of hand-to-hand impedancemetry to predict body composition of African women as measured by air displacement plethysmography
Aldosky et al. Regional body fat distribution assessment by bioelectrical impedance analysis and its correlation with anthropometric indices
Reinert et al. Correlation of air displacement plethysmography with alternative body fat measurement techniques in men and women
TWI790910B (zh) 體組成分析儀之資料整合系統
Cleland et al. Combined associations of sitting time and physical activity with obesity in young adults
Karavelioglu et al. Gender differences in hand grip strength of the child athletes by using absolute, ratio and allometric scaling methods
US11363963B2 (en) Method and device for determining the hydration, fitness and nutrition status of a human body
Scott et al. Development and validation of a PACER prediction equation for VO2peak in 10-to 15-year-old youth
Ezeukwu et al. Comparison of body fat percentages in Nigerian obese females using field methods
Tee et al. Determination of normative reference for the definition of sarcopenia among Filipinos
Gibson et al. Intraindividual variability in test-retest air displacement plethysmography measurements of body density for men and women
US20210145303A1 (en) Indicator determination
Mishra et al. Peak Expiratory Flow Rate Measure among Community-Dwelling Elderly Rural Population
RU2214789C1 (ru) Способ определения функционального состояния организма