TWM628678U - Intelligent multi-input and multi-output energy conversion system - Google Patents
Intelligent multi-input and multi-output energy conversion system Download PDFInfo
- Publication number
- TWM628678U TWM628678U TW111201476U TW111201476U TWM628678U TW M628678 U TWM628678 U TW M628678U TW 111201476 U TW111201476 U TW 111201476U TW 111201476 U TW111201476 U TW 111201476U TW M628678 U TWM628678 U TW M628678U
- Authority
- TW
- Taiwan
- Prior art keywords
- converter
- power
- phase
- output
- phase inverter
- Prior art date
Links
Images
Landscapes
- Logic Circuits (AREA)
Abstract
一種智慧型多進多出能源轉換系統,用以驅動負載。智慧型多進多出能源轉換系統包括:耦接再生能源發電裝置的升降壓直流/直流轉換器、耦接儲能裝置的雙向直流/直流轉換器、直流側並聯耦接升降壓直流/直流轉換器與雙向直流/直流轉換器的三相逆變器、一側耦接市電端與負載且另一側耦接三相逆變器的交流側的變壓器、儲存單元與系統控制單元。系統控制單元依據儲存單元儲存的市電電價、負載的需求功率與市電端的輸出功率之間的關係表控制升降壓直流/直流轉換器、雙向直流/直流轉換器與三相逆變器,進而控制市電端是否對儲能裝置進行充電。An intelligent multiple-input multiple-output energy conversion system for driving loads. The intelligent multi-input and multi-output energy conversion system includes: a buck-boost DC/DC converter coupled to a renewable energy power generation device, a bidirectional DC/DC converter coupled to an energy storage device, and a buck-boost DC/DC converter coupled in parallel on the DC side The three-phase inverter of the converter and the bidirectional DC/DC converter, the transformer, the storage unit and the system control unit, one side is coupled to the mains terminal and the load, and the other side is coupled to the AC side of the three-phase inverter. The system control unit controls the buck-boost DC/DC converter, the bidirectional DC/DC converter and the three-phase inverter according to the relationship table between the mains electricity price stored in the storage unit, the demand power of the load and the output power of the mains terminal, and then controls the mains power Whether the terminal is charging the energy storage device.
Description
本申請關於一種能源轉換系統,特別是有關於一種智慧型多進多出能源轉換系統。The present application relates to an energy conversion system, in particular, to an intelligent multiple-input and multiple-output energy conversion system.
近年來,隨著環保意識的抬頭,發展再生能源已成為重要議題之一。由於集中式再生能源發電系統會因能量轉化以及傳輸的過程產生大量耗損能源而存在效率低的問題,因此,可就近供應負載需求的分散式再生能源發電系統成為主要的發展方向。In recent years, with the rise of environmental awareness, the development of renewable energy has become one of the important issues. Since the centralized renewable energy power generation system will generate a large amount of energy consumption in the process of energy conversion and transmission, it has the problem of low efficiency. Therefore, the decentralized renewable energy power generation system that can supply the load demand nearby has become the main development direction.
為了協調分散式再生能源發電系統與市電併聯以驅動負載,以及增加分散式再生能源發電系統為用戶端帶來的價值,可根據供電與用電狀況,即時監控/調度分散式電源或儲能元件的能源轉換系統逐漸受到重視。其中,智能化高效率的能源管控成為能源轉換系統開發商不斷追求的目標之一。In order to coordinate the distributed renewable energy power generation system in parallel with the mains to drive the load, and to increase the value brought by the distributed renewable energy power generation system to the user side, the distributed power supply or energy storage components can be monitored/dispatched in real time according to the power supply and power consumption conditions The energy conversion system has gradually received attention. Among them, intelligent and high-efficiency energy management and control has become one of the goals continuously pursued by energy conversion system developers.
然而,當前相關業者針對再生能源併網所推出的能源轉換系統,其包括的逆變系統採用規則式(Rule-based,RB)控制方式對不同能量進行調配,但負載、再生能源的發電功率與儲電量等各項數值均會隨時間變化而縝密變動,使得規則式控制策略的切換條件就無法兼顧所有可能性,導致能源無法調配至最佳化,以致能源使用效益下降。因此,如何提供一種具有主動式能源管理解決方案的智慧型多進多出能源轉換系統,已成為本技術領域人員努力追求之目標。However, the current energy conversion system launched by the relevant industry for grid-connected renewable energy includes an inverter system that uses a Rule-based (RB) control method to allocate different energies, but the load and the power generated by the renewable energy are different from those of the renewable energy. Various values such as power storage will change carefully with time, so that the switching conditions of the rule-based control strategy cannot take into account all possibilities, resulting in the inability to allocate energy to the optimum, resulting in a decrease in the efficiency of energy use. Therefore, how to provide an intelligent MIMO energy conversion system with an active energy management solution has become a goal pursued by those skilled in the art.
本申請實施例提供一種智慧型多進多出能源轉換系統,可以有效解決當前能源轉換系統包括的逆變系統採用規則式控制方式對不同能量進行調配,在性能上存在諸多限制的問題。The embodiments of the present application provide an intelligent multi-input and multi-output energy conversion system, which can effectively solve the problem that the inverter system included in the current energy conversion system uses a regular control method to allocate different energies, and there are many limitations in performance.
為了解決上述技術問題,本申請是這樣實現的:In order to solve the above technical problems, this application is implemented as follows:
提供了一種智慧型多進多出能源轉換系統,耦接再生能源發電裝置、市電端與儲能裝置,且驅動負載。智慧型多進多出能源轉換系統包括:升降壓直流/直流轉換器、雙向直流/直流轉換器、三相逆變器、變壓器、儲存單元與系統控制單元。升降壓直流/直流轉換器耦接再生能源發電裝置;雙向直流/直流轉換器耦接儲能裝置,雙向直流/直流轉換器與儲能裝置之間的電能為雙向傳輸;變壓器的一側耦接市電端與負載;三相逆變器的直流側並聯耦接升降壓直流/直流轉換器與雙向直流/直流轉換器,三相逆變器的交流側耦接變壓器的另一側。儲存單元用以儲存二維查表,其中,二維查表係由基於負載的需求功率、再生能源發電裝置的發電功率、儲能裝置的充放電功率、市電端的輸出功率與市電電價的最小等效能耗策略(Equivalent Consumption Minimization. Strategy,ECMS)所獲取,且為市電電價、負載的需求功率與市電端的輸出功率之間的關係表。系統控制單元耦接儲存單元、市電端、再生能源發電裝置、儲能裝置、雙向直流/直流轉換器、升降壓直流/直流轉換器與三相逆變器,系統控制單元用以依據二維查表控制升降壓直流/直流轉換器、雙向直流/直流轉換器與三相逆變器,進而控制市電端是否對儲能裝置進行充電。An intelligent multi-input and multi-output energy conversion system is provided, which is coupled to a renewable energy power generation device, a commercial power terminal and an energy storage device, and drives a load. The intelligent multi-input and multi-output energy conversion system includes: buck-boost DC/DC converter, bidirectional DC/DC converter, three-phase inverter, transformer, storage unit and system control unit. The buck-boost DC/DC converter is coupled to the renewable energy generating device; the bidirectional DC/DC converter is coupled to the energy storage device, and the electric energy between the bidirectional DC/DC converter and the energy storage device is bidirectionally transmitted; one side of the transformer is coupled to The mains terminal and the load; the DC side of the three-phase inverter is coupled to the buck-boost DC/DC converter and the bidirectional DC/DC converter in parallel, and the AC side of the three-phase inverter is coupled to the other side of the transformer. The storage unit is used to store the two-dimensional look-up table, wherein the two-dimensional look-up table is composed of the demand power based on the load, the power generation power of the renewable energy power generation device, the charging and discharging power of the energy storage device, the output power of the mains terminal and the minimum value of the mains electricity price, etc. It is obtained by the Equivalent Consumption Minimization. Strategy (ECMS), and is the relationship table between the electricity price of the mains, the demand power of the load and the output power of the mains terminal. The system control unit is coupled to the storage unit, the mains terminal, the renewable energy generating device, the energy storage device, the bidirectional DC/DC converter, the buck-boost DC/DC converter and the three-phase inverter, and the system control unit is used for checking the two-dimensional The meter controls the buck-boost DC/DC converter, the bidirectional DC/DC converter and the three-phase inverter, and then controls whether the mains terminal charges the energy storage device.
在本申請實施例中,智慧型多進多出能源轉換系統透過系統控制單元依據基於待驅動的負載的需求功率、再生能源發電裝置的發電功率、儲能裝置的充放電功率、市電端的輸出功率與市電電價的最小等效能耗策略所獲取的二維查表,控制升降壓直流/直流轉換器、雙向直流/直流轉換器與三相逆變器,進而控制市電端是否對儲能裝置進行充電;因此,智慧型多進多出能源轉換系統基於最小用電成本的目的根據待驅動的負載的需求功率與市電電價,規劃由再生能源發電裝置、儲能裝置與/或市電端驅動負載,及控制控制市電端是否對儲能裝置進行充電。換句話說,智慧型多進多出能源轉換系統可搭配待驅動的負載的需求功率,快速最佳化調配能源輸出分配比例,使能源使用效益最大化。In the embodiment of the present application, the intelligent MIMO energy conversion system uses the system control unit according to the demand power based on the load to be driven, the generated power of the renewable energy power generation device, the charging and discharging power of the energy storage device, and the output power of the mains terminal. The two-dimensional look-up table obtained by the minimum equivalent energy consumption strategy of the mains electricity price controls the buck-boost DC/DC converter, bidirectional DC/DC converter and three-phase inverter, and then controls whether the mains terminal charges the energy storage device Therefore, the intelligent multi-input and multi-output energy conversion system plans to drive the load by the renewable energy power generation device, the energy storage device and/or the mains terminal according to the demand power of the load to be driven and the electricity price of the mains for the purpose of minimizing the cost of electricity, and Controls whether the mains terminal charges the energy storage device. In other words, the intelligent multi-input and multi-output energy conversion system can match the demand power of the load to be driven, quickly and optimally allocate the energy output distribution ratio, and maximize the energy efficiency.
以下將配合相關圖式來說明本新型的實施例。在這些圖式中,相同的標號表示相同或類似的組件或方法流程。The embodiments of the present invention will be described below in conjunction with the relevant drawings. In the figures, the same reference numbers refer to the same or similar components or method flows.
必須瞭解的是,使用在本說明書中的「包含」、「包括 」等詞,是用於表示存在特定的技術特徵、數值、元件和/或組件,但並不排除可加上更多的技術特徵、數值、元件、組件,或以上的任意組合。It must be understood that words such as "comprise" and "include" used in this specification are used to indicate the existence of specific technical features, values, elements and/or components, but do not exclude the possibility of adding more technical feature, value, element, component, or any combination of the above.
必須瞭解的是,當組件描述為「連接 」或「耦接 」至另一組件時,可以是直接連結、或耦接至其他組件,可能出現中間組件。相反地,當組件描述為「直接連接 」或「直接耦接 」至另一組件時,其中不存在任何中間組件。It must be understood that when an element is described as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element, and intervening elements may be present. In contrast, when an element is described as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.
請參閱圖1,其為本申請的智慧型多進多出能源轉換系統、再生能源發電裝置、市電端、儲能裝置與負載的一實施例連接方塊示意圖。如圖1所示,智慧型多進多出能源轉換系統100耦接再生能源發電裝置50、市電端60與儲能裝置70,且驅動負載80。其中,再生能源發電裝置50可為但不限於太陽能面板或風力發電裝置,儲能裝置70可為但不限於蓄電池(例如:鉛酸電池、鋰電池),負載80為交流負載,但本實施例並非用以限定本申請。Please refer to FIG. 1 , which is a schematic diagram of a connection block of an embodiment of an intelligent MIMO energy conversion system, a renewable energy power generation device, a mains terminal, an energy storage device and a load of the present application. As shown in FIG. 1 , the intelligent MIMO
在本實施例中,智慧型多進多出能源轉換系統100包括:升降壓直流/直流轉換器110、雙向直流/直流轉換器120、三相逆變器130、變壓器140、儲存單元150與系統控制單元160。其中,升降壓直流/直流轉換器110耦接再生能源發電裝置50;雙向直流/直流轉換器120耦接儲能裝置70,雙向直流/直流轉換器120與儲能裝置70之間的電能為雙向傳輸;變壓器140的一側耦接市電端60與負載80,三相逆變器130的直流側並聯耦接升降壓直流/直流轉換器110與雙向直流/直流轉換器120,三相逆變器130的交流側耦接變壓器140的另一側。因此,再生能源發電裝置50、儲能裝置70與市電端60併網供電。也就是說,智慧型多進多出能源轉換系統100透過升降壓直流/直流轉換器110與雙向直流/直流轉換器120將再生能源發電裝置50與儲能裝置70的輸出電壓提升至預設電壓(即直流鏈電壓準位),並透過三相逆變器130將升降壓直流/直流轉換器110與雙向直流/直流轉換器120所輸出的直流電轉換成交流電,再透過變壓器140與市電端60併網,進而與市電端60進行雙向功率傳遞。In this embodiment, the intelligent MIMO
在本實施例中,儲存單元150用以儲存二維查表,其中,二維查表係由基於負載80的需求功率、再生能源發電裝置50的發電功率、儲能裝置70的充放電功率、市電端60的輸出功率與市電電價的最小等效能耗策略所獲取,且為市電電價、負載80的需求功率與市電端60的輸出功率之間的關係表。系統控制單元160耦接儲存單元150、市電端60、再生能源發電裝置50、儲能裝置70、雙向直流/直流轉換器120、升降壓直流/直流轉換器110與三相逆變器130,系統控制單元160用以依據二維查表控制升降壓直流/直流轉換器110、雙向直流/直流轉換器120與三相逆變器130,進而控制市電端60是否對儲能裝置70進行充電。In this embodiment, the
具體地,最小等效能耗策略屬於即時控制策略之一,可事先將再生能源發電裝置50、市電端60、儲能裝置70與待驅動的負載80之各項數值進行窮舉法運算,以獲得最佳之能源分配比例策略(即找出最小消耗能量並以等效耗能的形式呈現)。Specifically, the minimum equivalent energy consumption strategy is one of the real-time control strategies, and the values of the renewable energy
在一示例中,最小等效能耗策略的建構過程中,可先依照不同場域與規格定義出最適合的目標函數(例如:
;
為最低耗成本,單位為元;
為市電轉換器之能源轉換效率比;
為時段t之再生能源發電裝置50的發電功率,單位為瓦特(W);
為時段t之負載80的需求功率,單位為W;
為時段t之儲能裝置70的充放電功率,單位為W;
為市電電價便宜時段;
為市電電價昂貴時段;
為時間電價;
為
、
、
與
的物理範圍限制量;
為時段t之市電端60對儲能裝置70時的輸出功率;
為儲能裝置70放電時時段t之市電端60的輸出功率);接著,對再生能源發電裝置50、市電端60與儲能裝置70的輸出功率、負載80的需求功率與儲能裝置70的殘電量進行全域搜索,以For迴圈或if-then-else條件判斷全部可能的條件(例如:儲能裝置70的電量高且再生能源發電裝置50的發電量不足時,負載80的需求功率等於儲能裝置70的輸出功率;儲能裝置70的電量低但再生能源發電裝置50的發電量大於或等於負載80的需求功率時,再生能源發電裝置50的發電量不僅能供給負載80也能對儲能裝置70充電;儲能裝置70的電量低、再生能源發電裝置50的發電量不足與市電電價為便宜時段時,市電端60能滿足負載80且依照負載80的需求功率決定儲能裝置70的充電電流多寡),再藉由程式運算各參數,進而求出各個情況下的最小等效耗能;最後,將程式所計算得出之最小等效能耗儲存於一個矩陣中,進而建置儲存在儲存單元150中的二維查表,其中,二維查表為市電電價、負載80的需求功率與市電端60的輸出功率之間的關係表(如下表1所示,表1為二維查表的一實施例,表1的橫軸為正規化的市電電價(0至0.5屬於市電電價便宜時段,0.6至1.0屬於市電電價昂貴時段),表1的縱軸為負載80的需求功率(單位為千瓦特),表1呈現儲能裝置70的電量高時不同市電電價與負載80的需求功率所對應之市電端60的輸出功率(單位為千瓦特))。
In an example, in the process of constructing the minimum equivalent energy consumption strategy, the most suitable objective function can be defined according to different fields and specifications (for example: ; is the minimum consumption cost, the unit is Yuan; is the energy conversion efficiency ratio of the mains converter; is the power generation of the renewable energy
表1
由於獲取二維查表的參數包括負載80的需求功率,因此,儲存單元150所儲存的二維查表會依據不同的負載80的輸出功率而有所不同,即可依據智慧型多進多出能源轉換系統100的用戶端的使用需求(即負載80的需求功率)自適應地在儲存單元150儲存對應的二維查表。系統控制單元160可依據二維查表控制升降壓直流/直流轉換器110、雙向直流/直流轉換器120與三相逆變器130,進而控制市電端60是否對儲能裝置70進行充電(例如:根據上表1可知,系統控制單元160可在市電電價便宜時段控制升降壓直流/直流轉換器110、雙向直流/直流轉換器120與三相逆變器130,以使再生能源發電裝置50與市電端60驅動負載80,市電端60對儲能裝置70進行充電;系統控制單元160可在市電電價昂貴時段控制升降壓直流/直流轉換器110、雙向直流/直流轉換器120與三相逆變器130,以使再生能源發電裝置50與儲能裝置70驅動負載80,市電端60不對儲能裝置70進行充電)。因此,系統控制單元160可對儲能裝置70的效能進行能量優化管理,並同時實現驅動負載80的最小用電成本。Since the parameters for obtaining the two-dimensional look-up table include the required power of the
在一實施例中,當系統控制單元160根據當前市電電價與當前負載需求功率無法直接在儲存單元150儲存的二維查表找到對應的數值時,系統控制單元160可將當前市電電價與當前負載需求功率採用雙線性插值法獲取二維查表中對應的市電端60的輸出功率,以控制升降壓直流/直流轉換器110、雙向直流/直流轉換器120與三相逆變器130。其中,雙線性插值法為本領域技術人員所熟悉,於此不再贅述。In one embodiment, when the
在一實施例中,儲存單元150可儲存複數個二維查表,當負載80的需求功率或儲能裝置70的容量產生變化(例如:儲能裝置70內部增加與原有的蓄電池並聯的一個蓄電池)時,系統控制單元160依據不同的二維查表控制升降壓直流/直流轉換器110、雙向直流/直流轉換器120與三相逆變器130。In one embodiment, the
在一實施例中,系統控制單元160與儲存單元150整合成系統處理單元,即儲存單元150成為所述系統處理單元的內存。其中,系統處理單元可為但不限於中央處理器、微控制器或數位訊號處理器。In one embodiment, the
在一實施例中,請參閱圖2,其為本申請的智慧型多進多出能源轉換系統、再生能源發電裝置、市電端、儲能裝置與負載的一實施例連接結構示意圖。如圖2所示,智慧型多進多出能源轉換系統200除了包括升降壓直流/直流轉換器110、雙向直流/直流轉換器120、三相逆變器130、變壓器140、儲存單元150與系統控制單元160以外,還可包括第一脈衝寬度調變(Pulse-Width Modulation,PWM)電路270,第一PWM電路270耦接系統控制單元160、升降壓直流/直流轉換器110與雙向直流/直流轉換器120。其中,變壓器140可具有Y形連接的初級側與三角形連接的二次級側。In an embodiment, please refer to FIG. 2 , which is a schematic diagram of the connection structure of an embodiment of the intelligent MIMO energy conversion system, renewable energy generating device, mains terminal, energy storage device and load of the present application. As shown in FIG. 2 , the intelligent MIMO
請參閱圖2與圖3,圖3為系統控制單元輸出第一控制信號給第一脈衝寬度調變電路的一實施例示意圖。如圖2與圖3所示,系統控制單元160可依據參考電壓
以及再生能源發電裝置50的輸出電壓
與輸出電流
輸出第一控制信號給第一PWM電路270,以使第一PWM電路270控制升降壓直流/直流轉換器110的運作。具體地,系統控制單元160可先利用參考電壓
與輸出電壓
之間的電壓誤差值經電壓控制補償器52得到調節控制信號
;接著,將依據二維查表所獲取的參考電流
與調節控制信號
進行相加,並將相加結果與輸出電流
之間的電流誤差值經電流控制補償器54得到校正的均流控制信號
(即第一控制信號);最後,第一PWM電路270可將三角波的振幅與校正的均流控制信號
進行比較,以輸出控制升降壓直流/直流轉換器110的運作之信號。其中,參考電壓
可依據實際需求進行設定。也就是說,系統控制單元160可基於圖3的電壓迴路與電流迴路控制升降壓直流/直流轉換器110的運作,其中,透過圖3的電壓迴路可得到期望的輸出電壓
的波形,透過圖3的電流迴路可獲取較快的動態響應。
Please refer to FIG. 2 and FIG. 3 . FIG. 3 is a schematic diagram of an embodiment of the system control unit outputting the first control signal to the first pulse width modulation circuit. As shown in FIG. 2 and FIG. 3 , the
請參閱圖2與圖4,圖4為系統控制單元輸出第二控制信號給第一脈衝寬度調變電路的一實施例示意圖。如圖2與圖4所示,系統控制單元160可依據參考電壓
以及儲能裝置70的輸出電壓
與輸出電流
輸出第二控制信號給第一PWM電路270,以使第一PWM電路270控制雙向直流/直流轉換器120的運作。具體地,系統控制單元160可先利用參考電壓
與輸出電壓
之間的電壓誤差值經電壓控制補償器56得到調節控制信號
;接著,將依據二維查表所獲取的參考電流
與調節控制信號
進行相加,並將相加結果與輸出電流
之間的電流誤差值經電流控制補償器58得到校正的均流控制信號
(即第二控制信號);最後,第一PWM電路270可將三角波的振幅與校正的均流控制信號
進行比較,以輸出控制雙向直流/直流轉換器120的運作之信號。也就是說,系統控制單元160可基於圖4的電壓迴路與電流迴路控制雙向直流/直流轉換器120的運作,其中,透過圖4的電壓迴路可得到期望的輸出電壓
的波形,透過圖4的電流迴路可獲取較快的動態響應。
Please refer to FIG. 2 and FIG. 4 . FIG. 4 is a schematic diagram of an embodiment of the system control unit outputting the second control signal to the first pulse width modulation circuit. As shown in FIG. 2 and FIG. 4 , the
由圖3與圖4可知,系統控制單元160可基於電壓迴路與電流迴路的控制策略控制升降壓直流/直流轉換器110與雙向直流/直流轉換器120的運作,以使智慧型多進多出能源轉換系統200在儲能裝置70的輸出電壓
與負載80的需求功率變動的情況下仍然穩定運作並維持輸出驅動負載80所需之能量。
It can be seen from FIG. 3 and FIG. 4 that the
在一實施例中,請參閱圖2,智慧型多進多出能源轉換系統200還可包括直流鏈電容
,升降壓直流/直流轉換器110與三相逆變器130之間並聯直流鏈電容
,系統控制單元160還可用以控制三相逆變器130,以穩定直流鏈電容
的直流鏈電壓
。
In one embodiment, please refer to FIG. 2 , the smart MIMO
在一實施例中,請參閱圖2,智慧型多進多出能源轉換系統200還可包括第二PWM電路280與電流控制電路290,第二PWM電路280耦接三相逆變器130與電流控制電路290,電流控制電路290耦接系統控制單元160。系統控制單元160可依據三相鎖相迴路(Phase-Locked Loop,PLL)法將三相逆變器130產生的三相交流電與市電端60的交流電進行相位同步,並調控三相逆變器130的實功
與虛功
,以輸出三相命令電流
、
、
給電流控制電路290,使得電流控制電路290依據三相命令電流
、
、
與三相逆變器130的三相輸出電流
、
、
產生第三控制信號給第二PWM電路280,進而使第二PWM電路280控制三相逆變器130的運作。
In one embodiment, please refer to FIG. 2 , the intelligent MIMO
具體地,由於三相逆變器130的交流側與市電端60併聯,系統控制單元160需將三相逆變器130產生的三相交流電與市電端60的交流電相位同步,故系統控制單元160依據三相鎖相迴路法偵測市電端60的三相電壓相位角,作為三相逆變器130的三相電壓相位角的依據。其中,三相鎖相迴路法的運作流程(如圖5所示,圖5為本申請的三相鎖相迴路法的控制方塊圖)包括:量測三相線電壓
、
、
,再利用三角公式求得市電端60的三相電壓相位角
(
);依序將三相固定座標軸電壓
、
、
轉換至兩相固定座標軸電壓
、
(
,
,其中,
為市電端60的三相相電壓的峰值);當市電端60的三相電壓相位角
與鎖相迴路產生的角度
不相同時,將兩相固定座標軸電壓
、
藉由同步旋轉座標軸轉換方程式轉換至兩相同步旋轉座標軸電壓
、
(
,
);由於市電端60的三相電壓相位角
與鎖相迴路產生的角度
相同時,
,
0,因此,
可代表為市電端60的三相相電壓的峰值,
可代表市電端60的三相電壓相位角
與鎖相迴路產生的角度
之間的誤差量,故可將電壓之d軸分量目標值
設為零(即期望電壓之d軸分量的誤差量為0),再利用比例積分控制器PI調節
與
之間的誤差產生控制命令
,接著,再經過積分器
獲得鎖相迴路角度
,最後,將鎖相迴路角度
輸入同步旋轉座標軸轉換方程式,形成閉迴路控制,迫使鎖相迴路角度
趨近於市電端60的三相電壓相位角
,進而達成鎖相之目的。
Specifically, since the AC side of the three-
另外,由於智慧型多進多出能源轉換系統200需滿足負載80的需求功率,需確切地控制再生能源發電裝置50、儲能裝置70與市電端60的功率流向,因此,智慧型多進多出能源轉換系統200需要調節三相逆變器130提供的實功
與虛功
。具體地,智慧型多進多出能源轉換系統200利用上述閉迴路控制獲取三相逆變器130提供的實功
與虛功
(
,
,
與
為兩相同步旋轉座標軸電壓,
與
為兩相同步旋轉座標軸電流);當市電端60的三相電壓相位角
與鎖相迴路產生的角度
相同時,
,
0,因此,
,
;由於實功對應q軸,其控制力為q 軸命令電流
;虛功對應d軸,其控制力為d 軸命令電流
,因此,系統控制單元160可控制
與
,進而實現調節實功
與虛功
。更詳細地說,請參閱圖2,在實功控制中,系統控制單元160可利用直流鏈電壓
與系統需求所定義的直流鏈電壓命令
產生q 軸命令電流
;在虛功控制中,系統控制單元160可利用虛功
與系統需求所定義的虛功命令
產生d 軸命令電流
然後,系統控制單元160可將
與
經由反同步旋轉座標軸轉換成三相命令電流
、
、
,電流控制電路290依據三相命令電流
、
、
與三相逆變器130的三相輸出電流
、
、
產生三相控制命令電壓
、
、
(即第三控制信號)給第二PWM電路280,進而使第二PWM電路280依據三相控制命令電壓
、
、
產生脈波寬度調變信號,以控制三相逆變器130的運作。
In addition, since the intelligent MIMO
在一實施例中,再生能源發電裝置50可為太陽能面板,系統控制單元160還可用以採用擾動觀察法追蹤太陽能面板的最大功率點,並控制升降壓直流/直流轉換器110,以使太陽能面板輸出最大功率。In one embodiment, the renewable energy
具體地,系統控制單元160採用穩定可靠之擾動觀察法實現最大功率點追蹤,此方法藉由不斷擾動太陽能面板的操作電壓,並觀察其對輸出功率的影響,來達到太陽能面板輸出最大功率。舉例而言,假設太陽能面板的輸出功率較擾動前大,則表示太陽能面板的電壓可持續往更高的操作電壓移動;反之,太陽能面板的輸出功率較擾動前小,則下個週期即改變電壓變化方向;藉由上述方式,即可求得太陽能面板的命令電壓
,再與實際的輸出電壓
比較後產生控制信號,經過第一PWM電路270產生脈波寬度調變信號控制升降壓直流/直流轉換器110,以使太陽能面板輸出最大功率。
Specifically, the
在一實施例中,請參閱圖2,三相逆變器130的三相相電壓降至百分之九十以下時,系統控制單元160可依據三相相電壓的下降比例調控三相逆變器130的實功
與虛功
,以對智慧型多進多出能源轉換系統200進行低電壓穿越保護。
In one embodiment, please refer to FIG. 2 , when the three-phase voltage of the three-
具體地,當負載80、再生能源發電裝置50、儲能裝置70或市電端60出現干擾或異常(例如:兩相之間短路、相對地短路、雷擊或過載容易引發電壓驟降狀況)時,會產生電力品質不穩定之狀況,故為了保持電壓穩定,智慧型多進多出能源轉換系統200需要符合併網使用的法規要求。因此,智慧型多進多出能源轉換系統200可由三相逆變器130的電壓感測電路獲得三相線電壓,再透過正負零序分析,得到三相正負零序電壓,進一步合成三相相電壓。當負載80、再生能源發電裝置50、儲能裝置70或市電端60發生故障或異常時,三相電壓降至90%以下時,系統控制單元160可依故障電壓之下降比例,獲得所需注入虛功電流比例(例如:當電壓下降介於10%至50%時,則虛功電流比例為兩倍的最大下降電壓比例;當電壓下降超過50%,則虛功電流比例為100%),再配合上述之實虛功控制技術(虛功命令
為三相逆變器130的視在功率與虛功電流比例的乘積,實功命令
的平方與虛功命令
的平方之總和為所述視在功率的平方),即可避免負載80、再生能源發電裝置50、儲能裝置70或市電端60因干擾或異常而發生電壓驟降之狀況。
Specifically, when the
綜上所述,本申請實施例的智慧型多進多出能源轉換系統可透過系統控制單元依據基於待驅動的負載的需求功率、再生能源發電裝置的發電功率、儲能裝置的充放電功率、市電端的輸出功率與市電電價的最小等效能耗策略所獲取的二維查表,控制升降壓直流/直流轉換器、雙向直流/直流轉換器與三相逆變器,進而控制市電端是否對儲能裝置進行充電;因此,智慧型多進多出能源轉換系統基於最小用電成本的目的根據待驅動的負載的需求功率與市電電價,規劃由再生能源發電裝置、儲能裝置與/或市電端驅動負載,及控制控制市電端是否對儲能裝置進行充電。另外,智慧型多進多出能源轉換系統可透過主動式功率控制技術與最佳化能量管理策略,主動控制再生能源發電裝置、市電端與儲能裝置之功率流向,使再生能源發電裝置、市電端與儲能裝置之輸出功率可被主動式分配,達到最佳化之能量管理。此外,智慧型多進多出能源轉換系統可透過調控三相逆變器的實功與虛功,以進行低電壓穿越保護。再者,當再生能源發電裝置為太陽能面板時,智慧型多進多出能源轉換系統可透過擾動觀察法控制升降壓直流/直流轉換器,以使太陽能面板輸出最大功率。To sum up, the intelligent MIMO energy conversion system according to the embodiment of the present application can use the system control unit according to the demand power based on the load to be driven, the generated power of the renewable energy power generation device, the charge and discharge power of the energy storage device, The two-dimensional look-up table obtained by the minimum equivalent energy consumption strategy of the output power of the mains terminal and the mains price, controls the buck-boost DC/DC converter, bidirectional DC/DC converter and three-phase inverter, and then controls whether the mains terminal is suitable for storage. Therefore, the intelligent multi-input and multi-output energy conversion system plans to use the renewable energy power generation device, the energy storage device and/or the mains terminal according to the demand power of the load to be driven and the mains electricity price based on the purpose of the minimum electricity cost. Drive the load, and control whether the mains end charges the energy storage device. In addition, the intelligent multi-input and multi-output energy conversion system can actively control the power flow of the renewable energy power generation device, the mains terminal and the energy storage device through the active power control technology and optimized energy management strategy, so that the renewable energy power generation device, the mains power The output power of the terminal and the energy storage device can be actively distributed to achieve optimal energy management. In addition, the intelligent multi-input multi-output energy conversion system can perform low voltage ride-through protection by regulating the real power and virtual power of the three-phase inverter. Furthermore, when the renewable energy power generation device is a solar panel, the intelligent MIMO energy conversion system can control the buck-boost DC/DC converter through the disturbance observation method, so that the solar panel can output the maximum power.
雖然在本申請的圖式中包含了以上描述的組件,但不排除在不違反新型的精神下,使用更多其他的附加組件,已達成更佳的技術效果。Although the above-described components are included in the drawings of the present application, it is not excluded that more other additional components can be used to achieve better technical effects without violating the spirit of the novelty.
雖然本新型使用以上實施例進行說明,但需要注意的是,這些描述並非用於限縮本新型。相反地,此新型涵蓋了所屬技術領域中的技術人員顯而易見的修改與相似設置。所以,申請專利範圍須以最寬廣的方式解釋來包含所有顯而易見的修改與相似設置。Although the present invention is described using the above embodiments, it should be noted that these descriptions are not intended to limit the present invention. On the contrary, this novel concept covers modifications and similar arrangements obvious to those skilled in the art. Therefore, the scope of the patent application is to be construed in the broadest possible manner to encompass all obvious modifications and similar arrangements.
50:再生能源發電裝置
52,56:電壓控制補償器
54,58:電流控制補償器
60:市電端
70:儲能裝置
80:負載
100,200:智慧型多進多出能源轉換系統
110:升降壓直流/直流轉換器
120:雙向直流/直流轉換器
130:三相逆變器
140:變壓器
150:儲存單元
160:系統控制單元
270:第一PWM電路
280:第二PWM電路
290:電流控制電路
:直流鏈電容
,
,
:三相輸出電流
,
,
:三相命令電流
,
:校正的均流控制信號
,
:調節控制信號
,
:輸出電流
:參考電流
PI:比例積分控制器
,
,
:三相固定座標軸電壓
,
,
:三相線電壓
,
,
:三相控制命令電壓
,
:兩相同步旋轉座標軸電壓
:電壓之d軸分量目標值
:直流鏈電壓
:參考電壓
,
:輸出電壓
:控制命令
:積分器
:鎖相迴路角度50: Renewable energy
此處所說明的圖式用來提供對本申請的進一步理解,構成本申請的一部分,本申請的示意性實施例及其說明用於解釋本申請,並不構成對本申請的不當限定。在圖式中: 圖1為本申請的智慧型多進多出能源轉換系統、再生能源發電裝置、市電端、儲能裝置與負載的一實施例連接方塊示意圖; 圖2為本申請的智慧型多進多出能源轉換系統、再生能源發電裝置、市電端、儲能裝置與負載的一實施例連接結構示意圖; 圖3為系統控制單元輸出第一控制信號給第一脈衝寬度調變電路的一實施例示意圖; 圖4為系統控制單元輸出第二控制信號給第一脈衝寬度調變電路的一實施例示意圖;以及 圖5為本申請的三相鎖相迴路法的控制方塊圖。 The drawings described here are used to provide further understanding of the application and constitute a part of the application. The schematic embodiments and descriptions of the application are used to explain the application and do not constitute an improper limitation of the application. In the schema: 1 is a schematic block diagram of an embodiment of the connection of an intelligent MIMO energy conversion system, a renewable energy power generation device, a mains terminal, an energy storage device and a load according to the application; FIG. 2 is a schematic diagram of the connection structure of an embodiment of an intelligent multi-input and multi-output energy conversion system, a renewable energy power generation device, a mains terminal, an energy storage device and a load of the application; 3 is a schematic diagram of an embodiment of a system control unit outputting a first control signal to a first pulse width modulation circuit; 4 is a schematic diagram of an embodiment of the system control unit outputting the second control signal to the first pulse width modulation circuit; and FIG. 5 is a control block diagram of the three-phase phase-locked loop method of the present application.
50:再生能源發電裝置 50: Renewable energy power generation device
60:市電端 60: Mains terminal
70:儲能裝置 70: Energy storage device
80:負載 80: load
100:智慧型多進多出能源轉換系統 100: Intelligent multi-input and multi-output energy conversion system
110:升降壓直流/直流轉換器 110: Buck-Boost DC/DC Converter
120:雙向直流/直流轉換器 120: Bidirectional DC/DC Converter
130:三相逆變器 130: Three-phase inverter
140:變壓器 140: Transformer
150:儲存單元 150: storage unit
160:系統控制單元 160: System Control Unit
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111201476U TWM628678U (en) | 2022-02-11 | 2022-02-11 | Intelligent multi-input and multi-output energy conversion system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111201476U TWM628678U (en) | 2022-02-11 | 2022-02-11 | Intelligent multi-input and multi-output energy conversion system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM628678U true TWM628678U (en) | 2022-06-21 |
Family
ID=83063678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111201476U TWM628678U (en) | 2022-02-11 | 2022-02-11 | Intelligent multi-input and multi-output energy conversion system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM628678U (en) |
-
2022
- 2022-02-11 TW TW111201476U patent/TWM628678U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mao et al. | Decentralized coordination power control for islanding microgrid based on PV/BES-VSG | |
US10211721B2 (en) | DC/AC converter apparatus comprising means for controlling the reactive power and power conversion and generation system comprising such DC/AC converter apparatus | |
Liu et al. | A hybrid AC/DC micro-grid | |
CN102522906B (en) | Voltage balance and power balance control method of cascaded H bridge converter | |
US20160181809A1 (en) | Grid system conducive to enhancement of power supply performance | |
CN107482659B (en) | Exchange mixed energy storage system control method for coordinating under micro-capacitance sensor off-network state | |
Hillers et al. | Fault-tolerant operation of the modular multilevel converter in an energy storage system based on split batteries | |
Idan et al. | Optimized proportional-integral controller for a photovoltaic-virtual synchronous generator system | |
Chamana et al. | Droop-based control in a photovoltaic-centric microgrid with Battery Energy Storage | |
Modi et al. | Solar PV battery based system for telecom tower application | |
Liu et al. | Review and applications of virtual synchronous machines technologies | |
TWM628678U (en) | Intelligent multi-input and multi-output energy conversion system | |
Atcitty et al. | Battery energy storage system | |
CN111900749B (en) | Network source coordination virtual synchronous machine control method of optical storage integrated system | |
Mao et al. | Coordination control for paralleled inverters based on VSG for PV/battery microgrid | |
Lv et al. | Energy router with virtual inertia control schemes and concurrency operation | |
Yuhendri et al. | Optimum Torque Control of Stand Alone Wind Turbine Generator System Fed Single Phase Boost Inverter | |
Hou et al. | Energy storage minimization control in grid-connected photovoltaic virtual synchronous generator | |
do Nascimento et al. | Operation Analysis of an Islanded Microgrid with a Single Wind Power/BESS Generation Unit | |
Mahish et al. | Distributed generating system integration: Operation and control | |
Ghazzawi | CONTROL STRATEGY AND OPERATING LIMITS OF PHOTOVOLTAIC INVERTER SUPPORTING THE MAIN GRID BASED ON VIRTUAL SYNCHRONOUS GENERATOR CONCEPT | |
Ray et al. | Smart control strategy for a DC microgrid | |
Altowati et al. | Modeling and Operation Analysis of Grid-Connected Microgrid | |
Vinš et al. | Energy storage technology and converter topology for primary frequency control in thermal power plant | |
Sekhar et al. | Improvement of voltage profile of the hybrid power system connected to the grid |