TWM625409U - 自動蒐集目的地旅遊規劃及網路評量資訊提供平台 - Google Patents

自動蒐集目的地旅遊規劃及網路評量資訊提供平台 Download PDF

Info

Publication number
TWM625409U
TWM625409U TW110211633U TW110211633U TWM625409U TW M625409 U TWM625409 U TW M625409U TW 110211633 U TW110211633 U TW 110211633U TW 110211633 U TW110211633 U TW 110211633U TW M625409 U TWM625409 U TW M625409U
Authority
TW
Taiwan
Prior art keywords
data
information
tourism
database
module
Prior art date
Application number
TW110211633U
Other languages
English (en)
Inventor
高聖哲
趙致緯
Original Assignee
豐趣科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豐趣科技股份有限公司 filed Critical 豐趣科技股份有限公司
Priority to TW110211633U priority Critical patent/TWM625409U/zh
Publication of TWM625409U publication Critical patent/TWM625409U/zh

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

一種自動蒐集目的地旅遊規劃及網路評量資訊提供平台,包括一官方與網路資料蒐集系統、社群與旅遊評論系統及一分析應用與決策執行系統;官方與網路資料蒐集系統接收來自一交通部觀光局公示開放資料和台灣好玩卡營運資料,社群與旅遊評論系統運用網路爬蟲技術蒐集不同網站資料,分析廣大網友們回饋的星級分數資訊,結合上開兩系統資料庫中大數據資訊回饋預測、擬定下一步策略,轉化成為實際行動,輸出至分析應用與決策執行系統中並構成如監控台儀錶板之樣式報表,進行整理與分析、重複循環利用讓資料庫獲得不斷累積、自動修正參數之智能資訊提供功能之使用目的者。

Description

自動蒐集目的地旅遊規劃及網路評量資訊提供平台
本新型涉及一種運用蒐集市場上旅遊相關資訊包含官方釋出的開放資料外,還包含大量Google搜尋結果,以有條件、自動化、多管道的標準作業方式進行大量採擷,主要技術包含應用程式介面(API)和網路爬蟲技術(Web Crawler),藉以達到可供使用者身入其境盡興玩意之旅遊規劃資訊提供之使用目的。
由於科技之的進步,網路相較於人力具有無遠弗屆效率高、透明化之優點,透過其可輕易獲取無窮資訊之需求,如此趨勢之下,隨著市面上旅遊產品之蓬勃發展,透過附掛商業消費行為之使用,特別是應用於交通、地域消費型態及旅遊人文環境上,然,多變的地理人文影響,過多條漉式旅遊資訊常導致受洗腦之妨礙,如旅遊品質、消費糾紛、水土不服等狀況出現,輕則旅興徒勞無益,重則破費消災,其金錢損失事小,然正事無成,實為惋責!以此為鑑,遂激發創作人改良精益之決心,致成就本新型創作之研發。
經查中華民國智慧財產局發明公告號:201724006名稱「旅遊規劃的資訊提供方法」,其說明書揭櫫:一種旅遊規劃的資訊提供方法,藉由一伺服器來實施,並包含以下步驟:(A)該伺服器儲存多筆資訊,每筆資訊包含對應於一特定地點的地理 位置資料、以及相關於該特定地點的事件資料;(B)當該伺服器接收到一來自一使用端且包含對應於多個感興趣地點的位置資料的資訊請求時,該伺服器根據該位置資料及每筆資訊的該地理位置資料,自該等筆資訊中選出多筆感興趣目標資訊,其中每筆感興趣目標資訊中的該地理位置資料所對應的特定地點與該等感興趣地點的其中一者間的距離小於一預設距離;及(C)該伺服器傳送該等筆感興趣目標資訊的該事件資料至該使用端。此案發明與本創作最大差異處為分析消費者使用行為依存沉溺指標,亦使用者消費行為分析,參考目前旅遊大數據資訊挖掘使用者消費行為動態,非僅僅提供使用者所欲知曉或主動提出消費行為分析及即興旅遊規劃建議,習用發明仍僅存在於提供使用者所欲求之資訊,並未及時建議或反映人性本身具旅遊探險及心悸感官消費行為需求。
再查!查中華民國智產局發明專利TWI695277號,發明專利名稱為「自動化網站資料蒐集方法」(參見第一圖圖示),其說明書內容揭櫫:一種自動化網站資料蒐集方法,係利用一電子裝置使用一混合式網路爬蟲爬取網站產生文字資料集的流程圖10,包括下列步驟:指定該網站的其中一個網頁作為分析網頁,並取得該分析網頁所有的指定特徵,其中該指定特徵係為該分析網頁中的各個網頁標籤在該分析網頁中的分布概率;選出其中若干個該些指定特徵所關聯的網路位址作為一網頁爬取種子節點;在該網站內爬取各該網頁爬取種子節點所關聯至少一階層的網路位址,並從中挑選出若干個網路位址作為一關聯網路位址集合;在該網站取得與該關聯網路位址集合中選出一爬取目標網址;取出該網站中關聯該爬取目標網址的所有網頁標籤及其所對應的文字內容;以及並將該網頁標籤及該網頁標籤所對應的文字內容,按照各該爬取目標網址的階層關係產生該文字資料集。依上開發明方法其係為蒐尋所列 搜集條件之標的資料集,然本創作則就所列搜集目標資料集之資訊中加入群網部落格評量資料集、旅遊網路行為資料集、消費生態使用分析資料集及匯整各網路文章旅遊紀要評析萃取、進行大數據分析並依蒐集之資料集導出專屬於客製化旅遊規劃模組之生命軌跡藍圖,每人心中各有一套旅遊記事簿,類似旅遊日記簿,此番想念絕非上開創作可達到之初衷。
再述中華民國智產局發明專利公開號108103960號,發明說明書公開本名稱「深度學習方法、系統、伺服器及可讀存儲介質」,其說明書內容:一種深度學習方法,包括對多個因子的權重資料與評分資料進行訓練,建立因子權重與評分的評估模組;即時獲取當前環境的因子資訊;將當前環境的因子資訊輸入因子權重與因子評分的評估模型,並計算多個因子的動態權重資料與評分資料;將多個因子的動態權重資料與評分資料輸入風險評估模型,確定風險評估結果;判斷環境是否滿足預設的第一環境重要特徵條件;當環境滿足預設的第一環境重要特徵條件時,對多個因子的權重資料及評分資料進行取樣;及所述多個因子的權重及評分的樣本資料進行訓練,分別對因子權重與評分的評估模型進行調整更新。依現行大數據資料庫分析與結合人工智能判讀已是未來趨勢,綜上開數發明專利之結合是否可達到本創作之功效,或許可能,就目前止,本創作之自動蒐集目的地旅遊規劃及網路評量資訊提供平台技術至少是唯一,其間眾多資料集程式介面之連結是關鍵技術,平台系統裝置間穩定且提供大數據分析計算之設計門檻,非有業界從事多年系統Coding及規劃技巧豈能得心應手,是此創作人嘔心瀝血之用心良苦,至為關鍵!
一種自動蒐集目的地旅遊規劃及網路評量資訊提供平台20,包括(配合參閱第二圖圖示):一官方與網路資料蒐集系統201,市場上旅遊相關資訊除了官方釋出的開放資料外(Open Data)外,還包含了大量Google搜尋結果,資訊相當豐富,本系統以有條件、自動化、多管道的方式進行大量採集,主要技術包含應用程式介面(API)和網路爬蟲技術(Web Crawler),資料採集管道來自公示網路蒐集模組201A、群組處理模組201B、Google資料庫201C及預暫存資料庫201D,其中該公示網路蒐集模組201A中資料集資訊主要以會員資料、套票及元件資料、交易訂單、核銷紀錄、網站數據為主,又Google資料庫201C中主要匯集網站管理者多樣化數據、網站流量監測、網站行銷效益及訂單銷售轉換率,藉由分析網站內自然流量關鍵字和搜尋引擎優化(SEO)排名成效,該群組處理模組201B中多語言語譯分析工具可協助分析字串中的正、負面情緒及量度級別,用於解析群組中對網友討論評比景點的價值觀感度及相關文章論述,上開資料集資訊透過預儲存資料庫201D匯集後送往社群與旅遊評論系統202中規劃分存;一社群與旅遊評論系統202,主要由正規化資料存儲模組202A、市場統計資料庫202B及旅遊評價模組202C單元所構成,其中該正規化資料存儲模組202A經該官方與網路資料蒐集系統201中預暫存資料庫201D管道蒐集而來的資訊,以預先定義好的資料欄位、資料型態來儲存,在本模組中階段處理作業時,會以預先定義好資料格式統一採用100分的評分機制來定義存儲資料集,非以外部網站皆透過分數級別或星等來評分,其計算精度採99.99,非僅僅以優、中、劣來區分。系統中該市場統計資料庫202B係僅透過市場問卷調查的方式來定義資料集,因消費者預期心理或意圖較為隱性,較 少直接展露於書面行為上,相對難以觀察得知,本創作透過客服進行處理消費者深度接觸訪談,可獲得直接意見回饋徑直接存入該市場統計資料庫202B中儲存,再藉由旅遊評價模組202C套入評分機制計算資料集關聯,與後續要產出的數據報告進行交叉分析,並建立起一套數據模型,此階段著重在資料的清洗運算和數據模型建立,資料清洗再資料探勘作業中是至為重要第一環,首先必須保證資料的正確性和合理性,其分析出的結果財部會失真,最終產出資料集送往分析應用與決策執行系統203中處理;一分析應用與決策執行系統203,主要由析濾模組203A及輸出模組203B單元所構成,其中該析濾模組203接收來自社群與旅遊評論系統202中旅遊評價模組202C之資料集,經過濾後分匯送至該輸出模組203B,最終資料以Google Data Studio為主要輸出介面,其提供強大的報表功能可用視覺化圖表來呈現,其報表樣式如監控台的儀表(Dashboard),幫助在面對龐大的數據資訊時可提供更有效率的閱讀和理解,透過視覺化報告分析問題點後,便能有所依據的預測、擬定下一步策略,轉化成為實際行動,輸出如監控台儀錶板之樣式報表,進行整理與資料及分析、重複循環利用讓資料庫獲得不斷累積、自動修正參數之智能資訊提供功能之使用目的者。
根據上述技術界定要求下,本創作其主要優勢在於透過本創作分別建立大數據資料庫平台與景點數據資料庫、設計大數據標準化作業程序,以可透過自動及半自動化方式進行數據蒐集萃取、清洗彙整;並且透過資料探勘(Data Mining)、運用數據庫建立模型、從資料中找出隱藏的特殊關聯性及特徵,據以挖掘出對旅遊服務產業有參考價值的分析報告。如平台中擁有相關銷售和核銷資訊(包含:客 戶資料、交易訂單、網站統計數據等),便可利用此資料庫找出消費者的慣性模式、進行消費者分群分類,並針對不同客群進行產品重新設計與研擬精準行銷策略;又或者根據數據資料庫中消費者好玩卡產品的核銷紀錄,分析出消費者實際到訪景點的相關性(即景點資料的相依性),作為旅遊產品設計調整之參考依據。
10:混合式網路爬蟲爬取網站產生文字資料集的流程圖
20:自動蒐集目的地旅遊規劃及網路評量資訊提供平台
201:官方與網路資料蒐集系統
210A:公示網路蒐集模組
210B:群組處理模組
201C:Google資料庫
201D:預暫存資料庫
202:社群與旅遊評論系統
202A:正規化資料存儲模組
202B:市場統計資料庫
202C:旅遊評價模組
203:分析應用與決策執行系統
203A:析濾模組
203B:輸出模組
第一圖 係為習用創作自動化網站資料蒐集方法示意圖。
第二圖 係為本創作平台之模組方塊結構示意圖。
第三圖 係為本創作實施例示意圖。
為達成上述目的及功效,本新型所採用之技術手段及構造,茲繪圖就本新型較佳實施例詳加說明其運算機制與功能如下,俾利完全了解(配合參閱第三圖圖示)。
本創作採用PHP程式語言為基礎,作為資料擷取的開發工具。而在作業系統環境部份,儲存大數據資料庫的平台是採用開源(Open Source)的作業系統與資料庫軟體,本創作服務系統使用Linode雲端平台的虛擬主機;該雲端主機架構其優勢在於大幅減少傳統服務模式上所需之軟硬體及維運費用。此外,雲端服務直接透過網際網路提供,無須繞經層層的網路系統商,除減輕內部系統網路負擔外,更可藉由網際網路上幾近無限的頻寬,達成大量及穩定的服務。本創作採用Linode所提供的雲端運算平台架設服務系統。在雲端主機架構方面,本創作所使用的雲端主機系統架構。目前本專案透過利用虛擬主機Server 01中的公示網路蒐集模組201A作為資料擷取伺服器,另外儲存一份虛擬機映像檔可以作為未來依流量擴充的 第二台資料擷取伺服器Server 02。大數據資料庫會在每日凌晨從各個好玩卡平台收集前一天的數據資料,依過去數據收集的經驗觀之,可預期服務系統上線後將會面臨大流量之挑戰。當各個好玩卡的每日資料量大幅增加,導致伺服器分析數據的速度無法應付每一個好玩卡台的資料產生的速度時,該官方與網路資料蒐集系統201可以透過動態加入新的主機伺服器作為資料擷取的伺服器,且執行模式為熱插拔(Hot Plug),以達成系統服務不中斷之目標。在雲端Google資料庫201C方面,該社群與旅遊評論系統202則透過線上即時監控的方式資料擷取市場統計資料庫202B伺服器的狀況。本創作同時導入異地備援與備份機制,依據2003年行政烷國家資通安全會報之建議,主機房與異地備援機房之距離應距離30公里以上。由於本創作的資料擷取伺服器主機是建置在Linode位在日本的資料中心,因此本創作針對大數據資料庫的部份,以完整資料備份模式將資料儲存的Google資料庫201C位在彰濱工業區的資料中心。Google資料庫201C的雲端備份硬碟的規格,採用1PB(1024TB)的空間來儲存。當主要使用的資料中心發生問題時,本系統可以快速的將資料從Google資料庫201C中心取出,並轉換到其他的Linode資料中心運行。本創作的備援模式是在每天早上3:00進行資料庫完整備份,備份過程中,所有系統服務皆不會中斷,使用者連線亦不受影響。整個大數據資料庫會儲存成一個壓縮檔並儲存於LinodeCloudStorage後再同步到谷歌(Google)的機房,以確保系統發生災害時的可復原性。系統不中斷服務:為了減少專案執行期間服務中斷,本創作服務系統建立於Linode的雲端服務上,Linode針對單一虛擬主機的平台維運服務提供99.99%SLA(Service-Level Agreement),也就是以一年365天來計算,Linode服務最多只能允許中斷8.76小時。因此,本專案採用伺服器群組模式, 可同時讓多台虛擬主機並行處理、互相備援,整體系統可用率超過99.99%以上、每年當機時數低於3小時。前述整體系統可用率指線上運作之各項系統功能,可正常提供使用者服務的百分比,如因硬體或系統程式錯誤造成系統無法使用或執行錯誤,該時間皆列入系統不可用時間之計算。另外系統監控作業:本創作服務系統對於系統底層的主機運作監控採用Google StackdriverStackdriver為Google雲端提供的監控服務,主要目的是要監控雲端運營的性能和可用性,本創作採用Google Stackdriver來即時監控系統底層運營狀態並記錄過去六週的維運狀況。Stackdriver會從Google在全世界的六個資料中心進行網站的連線測試,這六個資料中心分別位在美國的維吉尼亞州(Virginia)、奧勒岡州(Oregon)、愛荷華州(Iowa)、比利時(Belgium)、新加坡(Singapore)和巴西聖保羅(Sao Paulo)。監控策略採取每一分鐘檢測一次,每次連線回應的時間必須小於10秒鐘。一旦所有連線都大於10秒時,表示系統已經中斷服務,監控系統就會發送簡訊給營運工程師和相關人員,當大數據伺服器恢復後,監控系統也會再度發簡訊通知,確認六個Google資料中心已經可以正常連線大數據伺服器。以一天(2020年11月26日)為例,大數據伺服器的SLA為100%,在正常情況下,六個Google資料中心連線到大數據伺服器的回應時間皆會在1秒以內。比較花時間的時巴西聖保羅(Sao Paulo)的資料中心,平均回應時間為0.58秒。有時候有部份的資料中心可能因為連線的網路路徑的關係出現延遲的狀況,在14:45的時候Google在新加坡的資料中心的回應時間為1.179秒,在這種情況下,由於其他的資料中心都是連線正常的狀況,因此可以視為單一個案。
惟,以上所述僅為本新型之較佳實施例而已,非因此即侷限本新型之專利範圍,故舉凡運用本新型說明書及圖式內容所為簡易修飾及等效結構變化,均應同理包含於本新型之專利範圍內,合予陳明。
綜上所述,本新型其實用性及成本效益上,確實是完全符合產業上發展所需,且所揭露之結構新型亦具有習用所未有的創新構造,具「新穎性」應無疑慮,其新型更臻習用發明之功效增進,更具符合「進步性」達成目的,故本新型誠為一實用性優異之新型創作,為符合新型專利之申請要件,爰依法提出申請,盼 審委早日賜准本新型,以保障新型人之辛苦創作,倘若 鈞局審委有任何稽疑,請不吝來函指示,新型人定當竭力配合,實感德便。
20:自動蒐集目的地旅遊規劃及網路評量資訊提供平台
201:官方與網路資料蒐集系統
210A:公示網路蒐集模組
210B:群組處理模組
201C:Google資料庫
201D:預暫存資料庫
202:社群與旅遊評論系統
202A:正規化資料存儲模組
202B:市場統計資料庫
202C:旅遊評價模組
203:分析應用與決策執行系統
203A:析濾模組
203B:輸出模組

Claims (2)

  1. 一種自動蒐集目的地旅遊規劃及網路評量資訊提供平台,主要包含:一官方與網路資料蒐集系統,市場上旅遊相關資訊除了官方釋出的開放資料外(Open Data)外,還包含了大量Google搜尋結果,資訊相當豐富,本系統以有條件、自動化、多管道的方式進行大量採集,主要技術包含應用程式介面(API)和網路爬蟲技術(Web Crawler),資料採集管道來自公示網路蒐集模組、群組處理模組、Google資料庫及預暫存資料庫,其中該公示網路蒐集模組中資料集資訊主要以會員資料、套票及元件資料、交易訂單、核銷紀錄、網站數據為主,又Google資料庫中主要匯集網站管理者多樣化數據、網站流量監測、網站行銷效益及訂單銷售轉換率,藉由分析網站內自然流量關鍵字和搜尋引擎優化(SEO)排名成效,該群組處理模組中多語言語譯分析工具可協助分析字串中的正、負面情緒及量度級別,用於解析群組中網友討論評比景點的價值觀感度及相關文章論述,上開資料集資訊透過預儲存資料庫匯集後送往社群與旅遊評論系統中規劃分存;一社群與旅遊評論系統,主要由正規化資料存儲模組、市場統計資料庫及旅遊評價模組單元所構成,其中該正規化資料存儲模組經該官方與網路資料蒐集系統中預儲存資料庫管道蒐集而來的資訊,以預先定義好的資料欄位、資料型態來儲存,系統中該市場統計資料庫係僅透過市場問卷調查的方式來定義資料集,因消費者預期心理或意圖較為隱性,較少直接展露於書面行為上,相對難以觀察得知,本創作透過客服進行處理消費者深度接觸訪談,可獲得直接意見回饋徑直接存入該市場統計資料庫中儲存,再藉由旅遊評價模組套入評分機制計算資料 集關聯,與後續要產出的數據報告進行交叉分析,並建立起一套數據模型,此階段著重在資料的清洗運算和數據模型建立,資料清洗再資料探勘作業中是至為重要第一環,首先必須保證資料的正確性和合理性,其分析出的結果財部會失真,最終產出資料集送往分析應用與決策執行系統中處理;一分析應用與決策執行系統,主要由析濾模組及輸出模組單元所構成,其中該析濾模組接收來自社群與旅遊評論系統中旅遊評價模組之資料集,經過濾後分匯送至該輸出模組,本系統中最終資料以Google Data Studio為主要輸出介面,其提供強大的報表功能可用視覺化圖表來呈現,其報表樣式如監控台的儀表(Dashboard),幫助在面對龐大的數據資訊時可提供更有效率的閱讀和理解,透過視覺化報告分析問題點後,便能有所依據的預測、擬定下一步策略,轉化成為實際行動,輸出如監控台儀錶板之樣式報表,進行整理與資料及分析、重複循環利用讓資料庫獲得不斷累積、自動修正參數之智能資訊提供功能之使用目的者。
  2. 如申請專利範圍第1項所述之自動蒐集目的地旅遊規劃及網路評量資訊提供平台,其中該社群與旅遊評論系統中正規化資料存儲模組在階段處理作業時,會以預先定義好資料格式統一採用100分的評分機制來定義存儲資料集,非以外部網站皆透過分數級別或星等來評分,其計算精度採99.99,非僅僅以優、中、劣等來區分。
TW110211633U 2021-10-01 2021-10-01 自動蒐集目的地旅遊規劃及網路評量資訊提供平台 TWM625409U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110211633U TWM625409U (zh) 2021-10-01 2021-10-01 自動蒐集目的地旅遊規劃及網路評量資訊提供平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110211633U TWM625409U (zh) 2021-10-01 2021-10-01 自動蒐集目的地旅遊規劃及網路評量資訊提供平台

Publications (1)

Publication Number Publication Date
TWM625409U true TWM625409U (zh) 2022-04-11

Family

ID=82197867

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110211633U TWM625409U (zh) 2021-10-01 2021-10-01 自動蒐集目的地旅遊規劃及網路評量資訊提供平台

Country Status (1)

Country Link
TW (1) TWM625409U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820929B (zh) * 2022-09-27 2023-11-01 中華電信股份有限公司 人工智慧交通資訊預測系統、方法及電腦可讀媒介

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820929B (zh) * 2022-09-27 2023-11-01 中華電信股份有限公司 人工智慧交通資訊預測系統、方法及電腦可讀媒介

Similar Documents

Publication Publication Date Title
Ahmed et al. The future of big data in facilities management: opportunities and challenges
Ogilvie et al. Assessing the evaluability of complex public health interventions: five questions for researchers, funders, and policymakers
US20090048904A1 (en) Method and system for determining topical on-line influence of an entity
Schulz et al. Crisis information management in the Web 3.0 age.
CN104834668A (zh) 基于知识库的职位推荐系统
Unhelkar Big data strategies for agile business
Kaschesky et al. Opinion mining in social media: modeling, simulating, and visualizing political opinion formation in the web
Chen et al. Analyzing the sentiment correlation between regular tweets and retweets
US20160012454A1 (en) Database systems for measuring impact on the internet
Gioti et al. Social business intelligence: Review and research directions
Hughes et al. Designing an application for social media needs in emergency public information work
TWM625409U (zh) 自動蒐集目的地旅遊規劃及網路評量資訊提供平台
Zhang Evaluation and analysis of human resource management mode and its talent screening factors based on decision tree algorithm
Jennex Identifying the components of a knowledge management strategy
CN116703665A (zh) 一种基于数字化计算的学生智能辅导系统和方法
Veglis Interactive Data Visualization
Huang et al. Innovation in methodology of education: big data and artificial intelligence
KR102180329B1 (ko) 가짜 뉴스 판단 시스템
Liu et al. Social-Transportation Analytic Toolbox (STAT) for Transit Networks
Campos et al. Proposal for a framework for production strategy utilizing Big Data: illustrative case in public service
Bjurstrom et al. Sentiment analysis methodology for social web intelligence
Liao et al. Applications of social network analysis in promoting circular economy: a literature review
Bansal et al. BIG DATA IN SOCIAL MEDIA: CONCEPTS & APPLICATIONS
CN117131288B (zh) 一种产学研用推荐系统及方法
Chinnaiah et al. Identification in Social Media During Crisis

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees