TWM618950U - Product process abnormality analysis platform using artificial intelligence - Google Patents
Product process abnormality analysis platform using artificial intelligence Download PDFInfo
- Publication number
- TWM618950U TWM618950U TW110205794U TW110205794U TWM618950U TW M618950 U TWM618950 U TW M618950U TW 110205794 U TW110205794 U TW 110205794U TW 110205794 U TW110205794 U TW 110205794U TW M618950 U TWM618950 U TW M618950U
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- analysis
- product process
- graphical
- analysis platform
- Prior art date
Links
Images
Landscapes
- General Factory Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申請提出一種運用人工智慧之產品製程異常分析平台,其中,該產品製程異常分析平台包括一巨量資料儲存裝置以及一產品製程異常分析系統,該巨量資料儲存裝置用以儲存多筆製造原始資料,且該等製造原始資料來自多個製造設備,該產品製程異常分析系統用以產生對應多個製造設備的多個圖形化分析結果以及一圖形化介面,並選擇性的使該圖形化介面包括該多個圖形化分析結果的至少一者。藉此提升巨量資料分析的方便性及效率,以快速排除製程異常之情況。This application proposes a product process anomaly analysis platform using artificial intelligence. The product process anomaly analysis platform includes a huge data storage device and a product process anomaly analysis system. The huge data storage device is used to store multiple manufacturing primitives. Data, and the manufacturing raw data comes from multiple manufacturing equipment. The product process anomaly analysis system is used to generate multiple graphical analysis results corresponding to multiple manufacturing equipment and a graphical interface, and selectively use the graphical interface At least one of the multiple graphical analysis results is included. This improves the convenience and efficiency of analyzing huge amounts of data, and quickly eliminates process abnormalities.
Description
本申請係有關於一種資料分析平台,尤指一種運用人工智慧之產品製程異常分析平台。This application relates to a data analysis platform, especially a product process anomaly analysis platform using artificial intelligence.
一般來說,半導體元件的生產需經過千道以上的製造以及檢測程序,並藉由精密的製造設備以及製程設計來保持最終產品的良率,因此,為了有效控管半導體元件的製造過程,製程過程中的所有資料以及數據必須被即時蒐集分析。Generally speaking, the production of semiconductor components requires more than a thousand manufacturing and testing procedures, and the yield of the final product is maintained by sophisticated manufacturing equipment and process design. Therefore, in order to effectively control the manufacturing process of semiconductor components, the manufacturing process All information and data in the process must be collected and analyzed in real time.
隨著製程推進,生產線上的多個製造設備會產生幾萬種即時監控資料、近萬個線上抽樣檢測的量測值(metrology),以及幾百種在半導體元件上不同位置測量的電性測試參數,同時,加上各種積體電路的生產模式,導致生產線在一個月內即可產生超過數十億筆的巨量資料。With the advancement of the manufacturing process, multiple manufacturing equipment on the production line will generate tens of thousands of real-time monitoring data, nearly 10,000 on-line sampling and inspection measurements (metrology), and hundreds of electrical tests measured at different positions on semiconductor components At the same time, coupled with various integrated circuit production modes, the production line can generate more than billions of huge amounts of data in one month.
因此,為了分析生產線上所產生的巨量資料,現行常採用商用統計分析方法,以期能快速找出製程異常的原因。但統計關聯分析方法只能呈現出可能的相關聯問題,無法精準定位出製程異常的原因,又因為製造設備隨時會產生巨量資料,統計關聯分析方法更無法即時完成對應分析,使用者需額外花費時間於統計關聯分析結果中查找相關聯問題,並自行分析其製造設備異常的原因,導致現行統計分析方法無法快速排除異常的情況。Therefore, in order to analyze the huge amount of data generated on the production line, commercial statistical analysis methods are often used in order to quickly find out the cause of process abnormalities. However, the statistical correlation analysis method can only present possible correlation problems, and cannot accurately locate the cause of the abnormal process. Moreover, because the manufacturing equipment generates a huge amount of data at any time, the statistical correlation analysis method cannot complete the corresponding analysis in real time, and the user needs additional It takes time to find related problems in the results of statistical correlation analysis, and analyzes the causes of abnormalities in its manufacturing equipment on its own. As a result, the current statistical analysis methods cannot quickly eliminate the abnormalities.
基於現有技術存在上述諸多問題,確實有待提出更佳解決方案的必要性。Based on the above-mentioned problems in the prior art, it is indeed necessary to propose a better solution.
有鑑於上述現有技術之不足,本申請的主要目的在於提供一運用人工智慧之產品製程異常分析平台,其利用人工智慧分析生產線上的製造設備的製程參數以及量測參數,並產生多個圖形化分析結果,且選擇性的提供多個圖形化分析結果的其中一者以供檢視,使用者可藉由圖形化分析結果快速取得對應不同製造設備的預測結果,藉此提升巨量資料分析的方便性及效率,以快速排除製程異常之情況,優化產品整體製程。In view of the above-mentioned shortcomings of the prior art, the main purpose of this application is to provide a product process anomaly analysis platform using artificial intelligence, which uses artificial intelligence to analyze the process parameters and measurement parameters of the manufacturing equipment on the production line, and generate multiple graphics Analyze the results, and optionally provide one of multiple graphical analysis results for viewing. Users can quickly obtain the prediction results corresponding to different manufacturing equipment through the graphical analysis results, thereby improving the convenience of analyzing huge amounts of data Performance and efficiency to quickly eliminate process abnormalities and optimize the overall product manufacturing process.
為達成上述目的,本申請提出一種運用人工智慧之產品製程異常分析平台,其包括一巨量資料儲存裝置以及一產品製程異常分析系統,其中,該巨量資料儲存裝置用以儲存多筆製造原始資料,且該等製造原始資料來自多個製造設備並包括多個製程參數以及多個量測資料,該產品製程異常分析系統用以產生對應該多個製造設備的圖形化分析結果,並產生一圖形化介面,且該圖形化介面包括該圖形化分析結果。In order to achieve the above objective, this application proposes a product process anomaly analysis platform using artificial intelligence, which includes a huge data storage device and a product process anomaly analysis system, wherein the huge data storage device is used to store multiple manufacturing primitives. The manufacturing raw data comes from multiple manufacturing equipment and includes multiple process parameters and multiple measurement data. The product process anomaly analysis system is used to generate graphical analysis results corresponding to multiple manufacturing equipment and generate a A graphical interface, and the graphical interface includes the graphical analysis result.
進一步的,該產品製程異常分析系統更包括一資料分析引擎以及一介面產生模組,且該資料分析引擎包括:一前處理器、一人工智慧分析器以及一後處理器,其中,該前處理器用以於該巨量資料儲存裝置取得多筆製造原始資料的至少一部分,且將該多筆製造原始資料的至少一部分轉換為多筆處理後資料,該人工智慧分析器用以接收並分析該多筆處理後資料,且產生對應的分析結果資料,該分析結果資料為一製程異常分析結果,該後處理器用以接收該分析結果資料,並產生該圖形化分析結果。該介面產生模組用以接收該圖形化分析結果,並用以產生該圖形化介面,且該圖形化介面包括該圖形化分析結果。Further, the product process anomaly analysis system further includes a data analysis engine and an interface generation module, and the data analysis engine includes: a pre-processor, an artificial intelligence analyzer, and a post-processor, wherein the pre-processing The device is used to obtain at least a part of multiple manufacturing raw data from the huge data storage device, and convert at least a portion of the multiple manufacturing raw data into multiple processed data, and the artificial intelligence analyzer is used to receive and analyze the multiple After processing the data, corresponding analysis result data is generated. The analysis result data is a process abnormal analysis result. The post-processor is used to receive the analysis result data and generate the graphical analysis result. The interface generating module is used for receiving the graphical analysis result and used for generating the graphical interface, and the graphical interface includes the graphical analysis result.
由上述結構,該運用人工智慧之產品製程異常分析平台可藉由其所蒐集的巨量資料,以圖形化分析結果簡單明瞭的提供所需的分析結果,使用者無需於眾多分析結果中自行分析或查找,即可快速取得所需的製程相關資訊,此外,藉由提供該多個製造設備的運作資訊的圖形化介面,使用者更可快速掌握生產線之整體狀態,藉此提升巨量資料分析的方便性及效率。With the above structure, the product process anomaly analysis platform using artificial intelligence can use the huge amount of data it collects to provide the required analysis results simply and clearly with graphical analysis results, and users do not need to analyze the results by themselves. Or search, you can quickly obtain the required process-related information. In addition, by providing the graphical interface of the operation information of the multiple manufacturing equipment, the user can quickly grasp the overall status of the production line, thereby improving the analysis of huge amounts of data Convenience and efficiency.
請參考圖1,圖1為本申請之運用人工智慧之產品製程異常分析平台之實施環境示意圖,其包括一產品製程異常分析平台100、一產線系統200以及一輸入輸出模組300,該產品製程異常分析平台100與該產線系統200以及該輸入輸出模組300通訊連接。該產線系統200用以監控生產線上的多個製造設備,並即時蒐集與該生產線以及該多個製造設備相關的製造原始資料,且該製造原始資料皆具有前後時間序列關係,以即時掌控該生產線上的該多個製造設備的所有狀態,其中,該多個製造原始資料包括對應於不同製程的多個製程參數以及多個量測資料。該產品製程異常分析平台100用以接收來自該產線系統200的該多個製造原始資料,並對該多個製造原始資料進行分析,以產生圖形化分析結果以及一圖形化介面,其中,該圖形化介面包括該圖形化分析結果,換言之,該圖形化介面可不同時包括所有圖形化分析結果。該輸入輸出模組300則用以接收並顯示該圖形化介面,並用以接收使用者所輸入的使用者選擇資訊。Please refer to Figure 1. Figure 1 is a schematic diagram of the implementation environment of the product process anomaly analysis platform using artificial intelligence in this application. It includes a product process
藉此,當產品出現異常時,一使用者可藉由該輸入輸出模組300顯示的該圖形化介面的圖形化分析結果快速確認該生產線上的多個製造設備以及多個製程的異常狀態或相關資訊,進而快速判定異常狀態的成因,而無須在眾多分析結果中查找所需的資訊以分析可能的異常狀態成因,藉此達到提升巨量資料分析的方便性及效率的目的。In this way, when the product is abnormal, a user can quickly confirm the abnormal state or abnormal state of multiple manufacturing equipment and multiple processes on the production line through the graphical analysis result of the graphical interface displayed by the input and
在一實施例中,該產品製程異常分析平台100為一良率品質工程分析決策系統。In one embodiment, the product process
在一實施例中,該產線系統200例如為生產執行系統、設備工程系統、或精密製程的工程系統,且本申請不以此為限制。In one embodiment, the
在一實施例中,該輸入輸出模組300例如為觸控顯示螢幕、或者搭配輸入裝置的顯示器,輸入裝置例如為鍵盤、滑鼠,且本申請不以此為限制。In one embodiment, the input and
在一實施例中,該生產線為一半導體元件產線,且本申請不以此為限制。In one embodiment, the production line is a semiconductor device production line, and this application is not limited thereto.
請參考圖2,該產品製程異常分析平台100至少包括一中央控制系統110、一巨量資料儲存裝置130、一產品製程異常分析系統150、一資料輸入介面170以及一輸出入介面190,其中,該中央控制系統110與該巨量資料儲存裝置130、該產品製程異常分析系統150、該資料輸入介面170以及該輸出入介面190電性連接。Please refer to FIG. 2, the product process
該中央控制系統110用以管理該產品製程異常分析系統150,並監控該巨量資料儲存裝置130、該產品製程異常分析系統150、該資料輸入介面170以及該輸出入介面190之間的資料交換,並調度該產品製程異常分析平台100整體的運算、儲存與網路資源,藉此提升該產品製程異常分析平台100的資源使用效率以及運作效能。The
在一實施例中,該中央控制系統110例如為一整合(Composer)模組,且本申請不以此為限制。In one embodiment, the
該資料輸入介面170用以與該產線系統200通訊連接,以接收該多筆製造原始資料。The
在一實施例中,該資料輸入介面170可以是符合序列資料(RS232)通訊介面、通用序列匯流排(USB)規範之連接埠,且本申請不以此為限制。In one embodiment, the
該巨量資料儲存裝置130用以儲存多筆製造原始資料及其對應之時間,該等製造原始資料由該產線系統200提供,並來自於多個製造設備,其中,每一製造設備於該生產線上隨時間以及製程產生對應的製造原始資料。The massive
在一實施例中,該巨量資料儲存裝置130可以多個硬碟儲存裝置來實現,且本申請不以此為限制。In one embodiment, the massive
該產品製程異常分析系統150用以於該巨量資料儲存裝置130讀取該多筆製造原始資料中的至少一部份,並對該多筆製造原始資料中的至少一部份進行分析預測,以產生該多個圖形化分析結果以及該圖形化介面,其中,該圖形化介面可選擇性地包括該多個圖形化分析結果中的至少一者,換言之,該圖形化介面可不同時包括所有的圖形化分析結果。The product process
該輸出入介面190與該輸入輸出模組300通訊連接,用以將該圖形化介面提供至該輸入輸出模組300,並接收使用者所輸入的使用者選擇資訊。The I/
在一實施例中,該輸出入介面190包括符合通用序列匯流排(USB)、高畫質多媒體介面(HDMI)、視訊圖形陣列(VGA)規範之連接埠,且本申請不以此為限制。In one embodiment, the I/
在一實施例中,該產品製程異常分析平台100可由刀鋒伺服器(Blade Server)來實現,且本申請不以此為限制。In one embodiment, the product process
在一實施例中,該多筆製造原始資料可包括多個製程參數以及多個量測資料該多個製程參數例如為製程步驟、製程配方指導參數、目標參數、參考校正、場精細校正、晶圓網格校正、焦點校正、曝露劑量校正、蝕刻時間、沉積、氣流速率和濺射電壓等,該多個量測資料包括套刻測量、臨界尺寸測量、對準測量、找平測量、曝露劑量、蝕刻測量或沉積測量等量測資料,然而該多個製程參數以及該多個量測資料根據製程的不同而有所改變,且本申請不以此為限制。In one embodiment, the multiple pieces of manufacturing raw data may include multiple process parameters and multiple measurement data. The multiple process parameters are, for example, process steps, process recipe guidance parameters, target parameters, reference calibration, field fine calibration, crystal Circular grid correction, focus correction, exposure dose correction, etching time, deposition, air flow rate and sputtering voltage, etc. The multiple measurement data include overlay measurement, critical dimension measurement, alignment measurement, leveling measurement, exposure dose, Measurement data such as etching measurement or deposition measurement, but the plurality of process parameters and the plurality of measurement data vary depending on the process, and this application is not limited thereto.
進一步的,該產品製程異常分析系統150更包括一資料分析引擎151以及一介面產生模組153,如圖3所示,且該資料分析引擎151與該介面產生模組153通訊連接。該資料分析引擎151用以根據接收的製造原始資料進行分析以及預測,以產生對應的圖形化分析結果,例如,對應一產品的相關製程的圖形化分析結果。該介面產生模組153用以接收該多個圖形化分析結果,且用以對應產生該圖形化介面,並選擇性地使該圖形化介面僅包括該多個圖形化分析結果的其中一者,例如,僅包括出現異常狀態的圖形化分析結果,或者僅包括對應使用者選擇資訊的圖形化分析結果。Further, the product process
在一實施例中,該異常狀態可為根據資料分析引擎的分析預測結果判斷出製程步驟異常之狀態,且本申請不以此為限制。舉例來說,根據圖形化分析結果,其分析預測結果顯示一製程步驟的一製程參數低於一預設值,該介面產生模組153判斷為異常狀態且使該圖形化介面包括該製程參數的數值的圖形化分析結果,藉此,使用者可快速辨別異常的製程參數,以排除製程異常之情況。In one embodiment, the abnormal state may be a state in which the process step is judged to be abnormal based on the analysis and prediction result of the data analysis engine, and this application is not limited thereto. For example, according to the graphical analysis result, the analysis and prediction result shows that a process parameter of a process step is lower than a preset value. The
在一實施例中,該使用者選擇資訊為使用者欲主動檢視的資訊,其包括該產品製程異常分析平台100由該產線系統200所取得的製造原始資料所產生的圖形化分析結果。例如:該使用者選擇資訊為對應該生產線上之製造設備之製程步驟之選擇資訊,該介面產生模組153根據該使用者選擇資訊使該圖形化介面包括對應該製程步驟之該圖形化分析結果,藉此提供給使用者檢視。In one embodiment, the user selection information is the information that the user wants to actively view, and it includes a graphical analysis result generated by the production process
在一實施例中,該資料分析引擎151可由一單板電腦執行對應的分析預設程式來實現,且本申請不以此為限制。In one embodiment, the
在一實施例中,該介面產生模組153可由一單板電腦執行對應的介面產生程式來實現,且本申請不以此為限制。In one embodiment, the
在一實施例中,前述之程式用以儲存於該單板電腦的一電腦可讀記憶體裝置,例如為硬碟裝置,且本申請不以此為限制。In one embodiment, the aforementioned program is used to store a computer-readable memory device of the single-board computer, such as a hard disk device, and this application is not limited thereto.
請參考圖4,圖4為資料分析引擎151之平台架構圖。該資料分析引擎151至少包括一前處理器1511、一人工智慧分析器1513以及一後處理器1515。Please refer to FIG. 4, which is a platform architecture diagram of the
該前處理器1511用以根據該人工智慧分析器1513所欲進行的分析預測向該巨量資料儲存裝置130讀取所需要的製造原始資料。舉例來說,該人工智慧分析器1513可用以根據製造參數以及量測資料來分析預測產品良率,因此,於此實施例中,該前處理器1511即用以向該巨量資料儲存裝置130讀取所需的製造原始資料來進行分析預測。The
進一步的,該前處理器1511用以對接收的製造原始資料進行前處理,即對製造原始資料進行篩選、清理(Clean)、統一格式(Format)、缺失值(Missing value)處理、轉換(Transform)等等處理,以移除異常資料,並確保資料品質及高預測精度,以產生用以提供至該人工智慧分析器1512的處理後資料。Further, the
在一實施例中,該前處理器1511可以一結構化查詢語言(Structured Query Language, SQL)、一資料倉儲(Hive)、一R語言或一Python語言來實現,且本申請不以此為限制。In one embodiment, the
該人工智慧分析器1513用以接收該多個處理後資料,並以其分析預測模型進行秒級運算以計算預測出對應的預測值(Conjecture value)、信心指標(Reliance Index)以及製程參數整體相似度指標(Global Similarity Index)等製程異常分析結果。The artificial intelligence analyzer 1513 is used to receive the multiple processed data, and use its analysis and prediction model to perform second-level operations to calculate and predict the corresponding prediction value (Conjecture value), confidence index (Reliance Index), and overall similarity of process parameters Process abnormal analysis results such as the Global Similarity Index (Global Similarity Index).
在此實施例中,該分析預測模型係以該生產線上的製造設備隨製程所產生的製造參數以及量測資料等該多筆製造原始資料進行訓練並建立模型。In this embodiment, the analysis and prediction model is trained on the multiple pieces of manufacturing raw data such as manufacturing parameters and measurement data generated by the manufacturing equipment along the manufacturing process on the production line to build the model.
在此實施例中,該人工智慧分析器1513用以分析預測製造設備的製造參數以及量測資料預測值,且本申請不以此為限制。In this embodiment, the artificial intelligence analyzer 1513 is used to analyze and predict the manufacturing parameters of the manufacturing equipment and the predicted value of the measurement data, and the application is not limited thereto.
進一步的,該信心指標表示預測值準確度之可信度。該信心指標之目的係藉由分析製造設備之製造參數,計算出一個介於0與1之間的信心值,以判斷該分析結果是否可被信賴。並運用最大可容忍誤差上限值(EL)相對應該信心指標,求得信心指標門檻值(RIT)。該信心指標值大於信心指標門檻值時,代表該分析結果可被信賴;反之,該信心指標值低於該信心指標門檻值時,則發出警訊。因此,作為設備工程師的使用者可藉此進行製造設備檢查,或作為製程工程師的使用者可進行參數調校,以確認製程是否穩定。Further, the confidence index indicates the credibility of the accuracy of the predicted value. The purpose of the confidence index is to calculate a confidence value between 0 and 1 by analyzing the manufacturing parameters of the manufacturing equipment to determine whether the analysis result can be trusted. And use the maximum tolerable error upper limit (EL) to correspond to the confidence index to obtain the confidence index threshold (RIT). When the confidence indicator value is greater than the confidence indicator threshold, it means that the analysis result can be trusted; on the contrary, when the confidence indicator value is lower than the confidence indicator threshold, a warning is issued. Therefore, users as equipment engineers can use this to inspect manufacturing equipment, or users as process engineers can adjust parameters to confirm whether the process is stable.
該人工智慧分析器1513並用以計算出相似度指標,該相似度指標之主要目的係比較預測段與建模段製造參數之相似程度。該相似度指標包含二部份,其一為該製程參數整體相似度指標,其二為製程參數個體相似度指標(ISI)。該製程參數整體相似度指標為預測段之製程參數與建模段所有參數的相似程度。而該製程參數個體相似度指標則為預測段之任一製程參數與建模段之該參數所有樣本經標準化之絕對相似程度,該相似度指標亦作為輔助信心指標之判斷。因此,作為製程工程師的使用者可根據相似度指標的分析預測結果,判斷是否進行參數調校,以確認製程是否穩定。The artificial intelligence analyzer 1513 is also used to calculate the similarity index. The main purpose of the similarity index is to compare the similarity of the manufacturing parameters between the prediction segment and the modeling segment. The similarity index includes two parts, one is the overall similarity index of the process parameters, and the second is the individual process parameter similarity index (ISI). The overall similarity index of the process parameters is the degree of similarity between the process parameters in the prediction section and all the parameters in the modeling section. The individual similarity index of the process parameter is the standardized absolute similarity between any process parameter in the prediction section and all samples of the parameter in the modeling section. The similarity index is also used as an auxiliary confidence index for judgment. Therefore, a user as a process engineer can determine whether to perform parameter adjustment based on the analysis and prediction result of the similarity index to confirm whether the process is stable.
舉例來說,若預測點之信心指標高於該信心指標門檻值,且預測點之製程參數整體相似度指標高於製程參數整體相似度指標門檻值時,需檢查該製程參數個體相似度指標顯示之製程參數是否異常。For example, if the confidence index of the prediction point is higher than the confidence index threshold, and the overall similarity index of the process parameter at the prediction point is higher than the overall similarity index threshold of the process parameter, check the individual similarity index display of the process parameter Whether the process parameters are abnormal.
舉例來說,若預測點之信心指標低於該信心指標門檻值,且預測點之製程參數整體相似度指標低於製程參數整體相似度指標門檻值時,顯示預測值可能不準確,但由於預測點之製程參數整體相似度指標較低,表示新進元件(例如晶圓)與建模參數資料相似度高,此時可能會有該分析預測模型預測值不佳之狀況。For example, if the confidence index of the prediction point is lower than the threshold value of the confidence index, and the overall similarity index of the process parameters of the prediction point is lower than the overall similarity index threshold of the process parameters, the predicted value may be inaccurate, but due to the prediction The overall similarity index of the process parameters of the point is low, indicating that the new component (such as wafer) has a high similarity with the modeling parameter data. At this time, there may be a situation where the prediction value of the analysis and prediction model is not good.
舉例來說,若預測點之信心指標低於該信心指標門檻值,且預測點之製程參數整體相似度指標高於製程參數整體相似度指標門檻值時,表示分析預測模型預測值不佳,且由於預測點之製程參數整體相似度指標值高,表示新進元件與建模製造參數相似程度低,因此可認定為預測值不準確。For example, if the confidence index of the prediction point is lower than the confidence index threshold, and the overall similarity index of the process parameters of the prediction point is higher than the overall similarity index threshold of the process parameters, it means that the prediction value of the analysis and prediction model is not good, and Since the overall similarity index value of the process parameters of the prediction point is high, it means that the similarity of the new component and the modeled manufacturing parameters is low, so the predicted value can be regarded as inaccurate.
舉例來說,當各預測點之製程參數整體相似度指標高於製程參數整體相似度指標門檻值時,表示製程參數可能異常。For example, when the overall similarity index of the process parameters at each prediction point is higher than the threshold value of the overall similarity index of the process parameters, it indicates that the process parameters may be abnormal.
此外,由於所有製造原始資料皆有前後的時間序列關係,該人工智慧分析器1513能準確有效定位出問題,例如,當分析結果資料中異常發生的時間點越密集時,即能定位問題所在。In addition, because all the manufacturing raw data have a time series relationship before and after, the artificial intelligence analyzer 1513 can accurately and effectively locate the problem. For example, when the time points of the abnormality in the analysis result data are denser, the problem can be located.
在一實施例中,該人工智慧分析器1513可以簡易循環式類神經網路(Simple Recurrent Neural Networks, SRNN)及複迴歸分析(Multiple Regression Analysis, MRA)來實現,且本申請不以此為限制。In one embodiment, the artificial intelligence analyzer 1513 can be implemented by Simple Recurrent Neural Networks (SRNN) and Multiple Regression Analysis (MRA), and this application is not limited thereto .
在一實施例中,該產線系統200即時接收的製造原始資料更用以更新調校或再訓練該分析預測模型,使該人工智慧分析器1513可精準掌握該生產線上之運作狀態,以提高該人工智慧分析器1513之分析預測精準度。In one embodiment, the manufacturing raw data received by the
該後處理器1515用以接收該人工智慧分析器1513之分析結果,並據以進行資料圖形化,以產生對應的該圖形化分析結果,舉例來說,以圖表、圖形和分布圖實現的圖形化分析結果,例如,以曲線圖展示該生產線上多台製造設備的良率。藉此,使用者可藉由圖形化分析結果快速了解該人工智慧分析器1513之分析結果的狀態或趨勢。The post-processor 1515 is used to receive the analysis result of the artificial intelligence analyzer 1513, and perform data graphing accordingly to generate the corresponding graphical analysis result, for example, graphs realized by charts, graphs, and distribution graphs The results of chemical analysis, for example, show the yield rate of multiple manufacturing equipment on the production line as a graph. In this way, the user can quickly understand the state or trend of the analysis result of the artificial intelligence analyzer 1513 through the graphical analysis result.
在一實施例中,該後處理器1515可以資料統計分析程式來實現,且本申請不以此為限制。In an embodiment, the post-processor 1515 can be implemented by a data statistical analysis program, and this application is not limited thereto.
由本申請的上述實施例及應用方法可歸納出一產品製程異常分析平台之運作方法,如圖5所示,其步驟包括:According to the above-mentioned embodiments and application methods of the present application, the operation method of a product process abnormality analysis platform can be summarized, as shown in Fig. 5, the steps include:
步驟S100:蒐集多筆製造原始資料。一產品製程異常分析平台100用以接收一產線系統200所傳送的多筆製造原始資料,並儲存於該產品製程異常分析平台100之巨量資料儲存裝置130。Step S100: Collect multiple pieces of manufacturing original data. A product process
步驟S200:執行資料分析。該產品製程異常分析平台100之產品製程異常分析系統150根據該多筆製造原始資料的至少一部分產生多個圖形化分析結果。Step S200: perform data analysis. The product process
步驟S300:產生一圖形化介面,該圖形化介面包括至少一圖形化分析結果。該產品製程異常分析系統150用以產生該圖形化介面,並選擇性的使該圖形化介面包括該圖形化分析結果的至少一者,且該圖形化介面係用以顯示該多個製造設備的運作資訊。Step S300: Generate a graphical interface, the graphical interface including at least one graphical analysis result. The product process
進一步的,步驟200更包括以下步驟:Further, step 200 further includes the following steps:
步驟S210:取得所需的製造原始資料。產品製程異常分析系統150包括一資料分析引擎151,該資料分析引擎151的前處理器1511用以根據一人工智慧分析器1513所欲進行的分析預測向該巨量資料儲存裝置130讀取所需要的製造原始資料。Step S210: Obtain the required manufacturing original data. The product process
步驟S230:對多筆製造原始資料執行前處理。該前處理器1511進一步對接收的該多筆製造原始資料進行前處理,並產生對應的處理後資料。Step S230: Perform pre-processing on multiple pieces of manufacturing original data. The pre-processor 1511 further performs pre-processing on the received multiple pieces of manufacturing raw data, and generates corresponding processed data.
步驟S250:對處理後資料執行資料分析。該人工智慧分析器1513對處理後資料執行分析預測,並產生對應之分析結果。Step S250: Perform data analysis on the processed data. The artificial intelligence analyzer 1513 performs analysis and prediction on the processed data and generates corresponding analysis results.
步驟S270:對分析結果執行後處理。該資料分析引擎151的後處理器1515對該分析結果進行後處理,以產生對應的圖形化分析結果。Step S270: Perform post-processing on the analysis result. The post-processor 1515 of the
綜上所述,本申請之運用人工智慧之產品製程異常分析平台實施例可藉由其所蒐集的巨量資料,運用人工智慧以圖形化分析結果簡單明瞭的提供所需的分析預測結果,使用者無需於眾多分析結果中自行分析或查找,即可快速取得所需的製程相關資訊,此外,藉由提供該多個製造設備的運作資訊的圖形化介面,使用者更可快速掌握生產線之整體狀態,藉此提升巨量資料分析的方便性及效率。In summary, the embodiment of the product process anomaly analysis platform using artificial intelligence in this application can use the huge amount of data it collects to use artificial intelligence to provide the required analysis and prediction results in a simple and clear graphical analysis result. Users do not need to analyze or search among the many analysis results to quickly obtain the required process-related information. In addition, by providing the graphical interface of the operation information of the multiple manufacturing equipment, the user can quickly grasp the overall production line Status, thereby improving the convenience and efficiency of massive data analysis.
100:產品製程異常分析平台 110:中央控制系統 130:巨量資料儲存裝置 150:產品製程異常分析系統 151:資料分析引擎 1511:前處理器 1513:人工智慧分析器 1515:後處理器 153:介面產生模組 170:資料輸入介面 190:輸出入介面 200:產線系統 300:輸入輸出模組 S100、S200、S210、S230、S250、S270、S300:步驟100: Product process abnormal analysis platform 110: Central Control System 130: Massive data storage device 150: Product Process Abnormal Analysis System 151: Data Analysis Engine 1511: preprocessor 1513: Artificial Intelligence Analyzer 1515: post processor 153: Interface generation module 170: data input interface 190: I/O interface 200: Production line system 300: Input and output modules S100, S200, S210, S230, S250, S270, S300: steps
圖1為根據本申請之運用人工智慧之產品製程異常分析平台實施例之實施環境示意圖; 圖2為根據本申請之運用人工智慧之產品製程異常分析平台實施例之平台架構示意圖; 圖3為根據本申請之運用人工智慧之產品製程異常分析系統實施例之平台架構示意圖; 圖4為根據本申請之資料分析引擎實施例之平台架構圖; 圖5為根據本申請之運作方法實施例之步驟流程示意圖;以及 圖6為根據本申請之運作方法實施例之另一步驟流程示意圖。 FIG. 1 is a schematic diagram of the implementation environment of an embodiment of a product process anomaly analysis platform using artificial intelligence according to this application; FIG. 2 is a schematic diagram of the platform architecture of an embodiment of a product process anomaly analysis platform using artificial intelligence according to the present application; FIG. 3 is a schematic diagram of the platform architecture of an embodiment of the product process anomaly analysis system using artificial intelligence according to the present application; Figure 4 is a platform architecture diagram of an embodiment of the data analysis engine according to the present application; FIG. 5 is a schematic diagram of a step flow diagram of an embodiment of an operating method according to the present application; and FIG. 6 is a schematic diagram of another step flow diagram of the embodiment of the operating method according to the present application.
150:產品製程異常分析系統 150: Product Process Abnormal Analysis System
151:資料分析引擎 151: Data Analysis Engine
153:介面產生模組 153: Interface generation module
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110205794U TWM618950U (en) | 2021-05-20 | 2021-05-20 | Product process abnormality analysis platform using artificial intelligence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110205794U TWM618950U (en) | 2021-05-20 | 2021-05-20 | Product process abnormality analysis platform using artificial intelligence |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM618950U true TWM618950U (en) | 2021-11-01 |
Family
ID=79908293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110205794U TWM618950U (en) | 2021-05-20 | 2021-05-20 | Product process abnormality analysis platform using artificial intelligence |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM618950U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI803364B (en) * | 2022-05-03 | 2023-05-21 | 南亞科技股份有限公司 | Method for controlling etching tool |
-
2021
- 2021-05-20 TW TW110205794U patent/TWM618950U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI803364B (en) * | 2022-05-03 | 2023-05-21 | 南亞科技股份有限公司 | Method for controlling etching tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI672599B (en) | Search apparatus and search method | |
TWI443776B (en) | An automated state estimation system for cluster tools and a method of operating the same | |
US20190064751A1 (en) | Retrieval apparatus and retrieval method | |
Jiang et al. | A Gaussian mixture model clustering ensemble regressor for semiconductor manufacturing final test yield prediction | |
US20190026419A1 (en) | Method and system for quickly diagnosing, classifying, and sampling in-line defects based on caa pre-diagnosis database | |
JP2020047847A (en) | Data processing method, data processor and data processing program | |
JP2023535721A (en) | Prediction of equipment failure modes from process traces | |
CN101118422A (en) | Virtual measurement prediction generated by semi-conductor, method for establishing prediction model and system | |
US8793106B2 (en) | Continuous prediction of expected chip performance throughout the production lifecycle | |
CN115964211A (en) | Root cause positioning method, device, equipment and readable medium | |
TWM618950U (en) | Product process abnormality analysis platform using artificial intelligence | |
KR20190060548A (en) | Method of analyzing and visualizing the cause of process failure by deriving the defect occurrence index by variable sections | |
TWM618959U (en) | Artificial intelligence for using multiple data analysis platform | |
TWM618947U (en) | Full abnormality positioning analysis platform using artificial intelligence | |
TWM618987U (en) | Tendency chart table analyzing platform using artificial intelligence | |
TWI815123B (en) | Massive data analysis platform using artificial intelligence and its operation method | |
TWM618960U (en) | Using an artificial intelligence manufacturing unit exception analysis platform | |
TWM618949U (en) | Process event abnormality analysis platform using artificial intelligence | |
TWM619003U (en) | Intelligent alarm platform using artificial intelligence | |
TWM619004U (en) | Abnormality analysis induction platform using artificial intelligence | |
TWM627157U (en) | Process time anomaly analysis platform using artificial intelligence | |
TWM627156U (en) | Signal anomaly analysis platform of manufacturing equipment using artificial intelligence | |
TW202015059A (en) | Analysis device, analysis method, and analysis program | |
TW202014712A (en) | Analysis device, analysis method, and analysis program | |
TWM619002U (en) | Scalable bulk data analysis platform |