TWM613466U - System for anticipating delivery time - Google Patents

System for anticipating delivery time Download PDF

Info

Publication number
TWM613466U
TWM613466U TW109217329U TW109217329U TWM613466U TW M613466 U TWM613466 U TW M613466U TW 109217329 U TW109217329 U TW 109217329U TW 109217329 U TW109217329 U TW 109217329U TW M613466 U TWM613466 U TW M613466U
Authority
TW
Taiwan
Prior art keywords
production
data
delivery
model
intelligent
Prior art date
Application number
TW109217329U
Other languages
Chinese (zh)
Inventor
李榮生
黃承光
吳君勉
徐嘉泰
簡嘉宏
Original Assignee
治略資訊整合股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 治略資訊整合股份有限公司 filed Critical 治略資訊整合股份有限公司
Priority to TW109217329U priority Critical patent/TWM613466U/en
Publication of TWM613466U publication Critical patent/TWM613466U/en

Links

Images

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A system for anticipating a delivery time is provided. The system relies on production history data in an enterprise resource planning system, present data about materials and production equipment, and the data learning from the above data through a machine-learning algorithm to anticipate a delivery time. For example, the system can create a prediction model from the machine-learning algorithm for predicting the delivery time. The prediction model provides a weight-setting function that allows a decision maker to change production combination by modifying weights applied to parameters for material planning and schedule planning. Therefore, the system can be used to simulate a decision-making process so as to obtain an appropriate solution of production such as one or more production combinations achieving the delivery time.

Description

智能交期預測系統Intelligent delivery forecast system

揭露書公開一種預測交貨日期的智能系統,特別是指一種通過智能手段根據歷史數據與生產資訊預測交期的系統。The disclosure book discloses an intelligent system for predicting the delivery date, especially a system for predicting the delivery date based on historical data and production information through intelligent means.

在產品製造過程,企業需要針對原物料、生產設備與人員等需求預備生產線,而在工廠端,達交率與生產選擇上很大程度影響著企業內部營運與財務狀況,若能精準控制上述關鍵課題將能有效掌控工廠運作、改善營運與財務狀況。然而,在目前工廠製作產品的過程往往受到諸多不可控因素導致而無法如預期交貨,也無法快速的決定產線變更時該如何應對。In the product manufacturing process, companies need to prepare production lines for the needs of raw materials, production equipment and personnel. At the factory side, the delivery rate and production choices greatly affect the internal operation and financial status of the company. If the above key can be accurately controlled The subject will be able to effectively control the operation of the factory and improve the operation and financial status. However, the process of making products in the current factory is often caused by many uncontrollable factors and cannot deliver as expected, nor can it quickly decide how to respond when the production line changes.

再者,因應少量多樣與即時化生產技術(Just In Time,JIT)的趨勢,企業回覆客戶的交期與客戶滿意度息息相關,現行產業常態為較短期(如72小時至1周)的交期回覆常常造成第一線業務的困擾。Furthermore, in response to the trend of a small number of diversified and just-in-time production technologies (Just In Time, JIT), the delivery time of companies responding to customers is closely related to customer satisfaction. The current industry norm is a relatively short-term (such as 72 hours to 1 week) delivery time. The replies often cause problems for the front-line business.

為了能夠準確地提供客戶交貨日期,揭露書提出一種智能交期預測系統,智能交期預測系統中包括應用電腦技術的軟體與搭配硬體實現的功能模組,以執行智能交期預測方法,智能交期預測系統連接一企業資源規劃系統、一生產系統與一製造執行系統,系統包括一生產排程模擬系統,自製造執行系統收集製程上的即時訊息以及接收到實際生產線上的數據,並自生產系統取得生產設備、物料與產品的數據;包括一計算機系統,具有處理器,通過處理器執行程式實現一人工智能多目標優化核心,其中以一算法模塊中的一或多個智能演算法針對企業資源規劃系統提供的數據進行機器學習演算與建模後,提供排程參數、物料人員規劃參數以及多種交期規劃組合至生產排程模擬系統,其中,生產排程模擬系統根據取得的數據演算得出的數據回饋至人工智能多目標優化核心,提供多組態結果以優化建立一預測模型;系統包括計算機系統實現的一決策系統,根據預測模型提供的多組產品訂單交期、生產成本與分批次生產選項,做出一最終決策,包括一交貨日期。In order to accurately provide customers with delivery dates, the disclosure paper proposes an intelligent delivery forecasting system. The intelligent delivery forecasting system includes software using computer technology and functional modules implemented with hardware to implement intelligent delivery forecasting methods. The intelligent delivery forecast system connects an enterprise resource planning system, a production system and a manufacturing execution system. The system includes a production scheduling simulation system. The manufacturing execution system collects instant messages on the process and receives data on the actual production line, and Obtain the data of production equipment, materials and products from the production system; including a computer system with a processor, through which the processor executes a program to achieve an artificial intelligence multi-objective optimization core, which uses one or more intelligent algorithms in an algorithm module After performing machine learning calculations and modeling on the data provided by the enterprise resource planning system, it provides scheduling parameters, material personnel planning parameters, and a variety of delivery planning combinations to the production scheduling simulation system. The production scheduling simulation system is based on the obtained data The calculated data is fed back to the core of artificial intelligence multi-objective optimization, providing multi-configuration results to optimize the establishment of a predictive model; the system includes a decision-making system implemented by a computer system, and multiple sets of product order delivery dates and production costs provided by the predictive model With batch production options, a final decision is made, including a delivery date.

其中主要提供有以計算機實現而提取實體(如公司、工廠)內的企業資源規劃系統(ERP)數據的數據收集模組、利用機器學習演算法學習數據收集模組所取得的數據,並學習數據中各種信息的關聯性以形成預測交貨日期的預測模型的模型訓練模組。當數據收集模組接收到一生產需求的數據時,可通過所建立的預測模型預測交貨日期,並實現在此交貨日期的一或多種生產組合,形成決策,最終提供公司老闆決策。Among them, it mainly provides a data collection module that extracts enterprise resource planning system (ERP) data in entities (such as companies, factories) realized by computers, and uses machine learning algorithms to learn the data obtained by the data collection module, and learn the data The relevance of various information to form a model training module for predicting the delivery date. When the data collection module receives a production demand data, it can predict the delivery date through the established forecasting model, and realize one or more production combinations on this delivery date to form a decision, and finally provide the company's boss decision.

進一步地,智能交期預測系統還可包括其他功能模組,如一數據清洗模組,用以清洗通過企業資源規劃系統取得的數據,以形成符合機器學習演算法學習所需的數據格式的數據;還可包括一自動優化模組,當模型訓練模組通過一或多個機器學習演算法學習數據得出多個預測模型時,可通過自動優化模組選擇或自行組成一表現較優的預測模型,作為預測交期的預測模型;亦可包括一自動學習模組,當通過數據收集模組取得新的數據時,可使得模型訓練模組以機器學習演算法學習新的數據,使得後續根據學習新的數據得出其中各種信息的關聯性優化預測模型。Furthermore, the intelligent delivery forecasting system may also include other functional modules, such as a data cleaning module, used to clean the data obtained through the enterprise resource planning system to form data that meets the data format required for machine learning algorithm learning; It can also include an automatic optimization module. When the model training module uses one or more machine learning algorithms to learn data to obtain multiple prediction models, it can select through the automatic optimization module or form a better-performing prediction model by itself. , As a predictive model for predicting the delivery date; it can also include an automatic learning module. When new data is obtained through the data collection module, the model training module can use machine learning algorithms to learn new data, so that subsequent learning The new data derives an optimized prediction model for the correlation of various information.

更者,針對預測模型中可提供一權重設定功能,讓所述實體之決策者修正生產組合中物料規劃與/或排程規劃中的參數之權重改變生產順序;以及,系統還包括一生產組合選擇模組,其中利用另一機器學習演算法學習實體之決策者過去選擇之生產組合以及修正各生產組合中的參數之權重的歷史數據,形成一生產組合選擇模型,提供實體進行生產重劃。Moreover, a weight setting function can be provided in the forecast model, allowing the decision maker of the entity to modify the weight of the parameters in the material planning and/or scheduling planning in the production combination to change the production sequence; and the system also includes a production combination The selection module uses another machine learning algorithm to learn the production combination selected by the decision maker of the entity in the past and modify the historical data of the weight of the parameters in each production combination to form a production combination selection model to provide the entity for production re-planning.

優選地,所述通過企業資源規劃系統取得的數據為實體過去生產組合的歷史數據,歷史數據至少包括至少一客戶訂單與至少一工廠出貨單,再以機器學習演算法通過歷史數據學習實體過去的生產組合,得出預測交貨日期的預測模型。更者,所述通過企業資源規劃系統取得的數據還包括工廠之生產數據與其中機台的生產時間。所述物料規劃的參數包括生產一產品所需的原料、零組件以及/或半成品的庫存;排程規劃的參數包括依照日期生產產品的交貨比例與數量。Preferably, the data obtained through the enterprise resource planning system is historical data of the entity’s past production combinations. The historical data at least includes at least one customer order and at least one factory shipment order, and the historical data is used to learn the entity’s past using a machine learning algorithm. The combination of production and a forecasting model for forecasting the delivery date. Furthermore, the data obtained through the enterprise resource planning system also includes the production data of the factory and the production time of the machines therein. The parameters of the material planning include the inventory of raw materials, components and/or semi-finished products required to produce a product; the parameters of the scheduling planning include the delivery ratio and quantity of the products produced according to the date.

為使能更進一步瞭解本新型的特徵及技術內容,請參閱以下有關本新型的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本新型加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed descriptions and drawings about the present invention. However, the drawings provided are only for reference and explanation, and are not used to limit the present invention.

以下是通過特定的具體實施例來說明本創作的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本創作的優點與效果。本創作可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本創作的構思下進行各種修改與變更。另外,本創作的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本創作的相關技術內容,但所公開的內容並非用以限制本創作的保護範圍。The following are specific specific examples to illustrate the implementation of this creation, and those skilled in the art can understand the advantages and effects of this creation from the content disclosed in this specification. This creation can be implemented or applied through other different specific embodiments, and various details in this specification can also be based on different viewpoints and applications, and various modifications and changes can be made without departing from the concept of this creation. In addition, the drawings of this creation are merely schematic illustrations, and are not depicted in actual size, and are stated in advance. The following implementations will further describe the related technical content of this creation in detail, but the disclosed content is not intended to limit the scope of protection of this creation.

應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。It should be understood that although terms such as "first", "second", and "third" may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are mainly used to distinguish one element from another, or one signal from another signal. In addition, the term "or" used in this document may include any one or a combination of more of the associated listed items depending on the actual situation.

為了提供企業能在產品製造之前提供客戶準確的交貨日期,說明書公開一種智能交期預測系統,其中利用機器學習法(或配合深度學習法)學習企業提供的生產數據,產生預測交期的預測模型,模擬企業決策過程。特別的是,在模擬企業決策的過程中,採用了企業歷史數據,並可引用進成本等邊界條件,且不影響真實工廠的運作,運用機器人流程自動化(Robotic Process Automation,RPA)方法進行多次模擬,再用機器學習法優化預測模型。進一步地,當取得最終決策合適解時,還可反向推出合適的安全庫存解。In order to provide companies with an accurate delivery date before the product is manufactured, the manual discloses an intelligent delivery forecasting system, which uses machine learning (or with deep learning) to learn the production data provided by the company to generate forecasts for the delivery date. Model to simulate the decision-making process of the enterprise. In particular, in the process of simulating enterprise decision-making, historical data of the enterprise is used, and boundary conditions such as cost can be quoted without affecting the operation of the real factory. The method of Robotic Process Automation (RPA) is used for many times. Simulate, and then use machine learning to optimize the predictive model. Further, when a suitable solution for the final decision is obtained, a suitable safety stock solution can also be reversed.

根據智能交期預測系統實施例,主體為一運行於計算機系統的軟體解決方案,系統包括一計算機系統,具有一或多個處理器與記憶體,通過處理器執行程式實現各種模組,其中包含應用人工智能(AI)多目標優化核心系統、一個參數化的生產目標決策系統,以及一個可針對生產線定製的生產排成模擬系統。當根據客戶需求給定生產參數後,智能交期預測系統可以模擬製造工藝中每一個工序的設備、物料、半成品與人員之關係,以計算出每一批次產品完工時間。智能交期預測系統可以先進規劃排程系統(Advanced Planning and Scheduling,APS)實現。所述系統的計算機系統還包含了對企業資源計劃系統(Enterprise Resource Planning,ERP)的接口,可取得企業之財務、人員、設備、物料等數據,以及對製造執行系統(Manufacturing Execution System,MES)之接口,用以讀取歷史生產數據,並且可由智能交期預測系統主動發起執行命令。According to the embodiment of the intelligent delivery forecasting system, the main body is a software solution running on a computer system. The system includes a computer system with one or more processors and memories. The processors execute programs to realize various modules, including Apply artificial intelligence (AI) multi-objective optimization core system, a parameterized production target decision-making system, and a production scheduling simulation system that can be customized for the production line. After the production parameters are given according to customer needs, the intelligent delivery forecast system can simulate the relationship between equipment, materials, semi-finished products and personnel in each process of the manufacturing process to calculate the completion time of each batch of products. The intelligent delivery forecast system can be realized by the Advanced Planning and Scheduling (APS). The computer system of the system also includes an interface to the enterprise resource planning system (Enterprise Resource Planning, ERP), which can obtain the financial, personnel, equipment, materials and other data of the enterprise, as well as the manufacturing execution system (Manufacturing Execution System, MES). The interface is used to read historical production data, and the intelligent delivery forecast system can actively initiate execution commands.

可參考圖1所示揭露書提出的智能交期預測系統運作的概念示意圖,此圖顯示智能交期預測系統中以智能手段為核心,能夠根據從企業得到的歷史數據101建立模型,其中提出系統模型103包括了交貨模型131與產能模型132,也就是說,通過智能交期預測系統可以根據客戶需求與企業的資源預測出交貨日期(即交期)外,還可推估出產能與生產相關參數。You can refer to the conceptual diagram of the operation of the intelligent delivery forecasting system proposed in the disclosure book shown in Figure 1. This figure shows that the intelligent delivery forecasting system is based on intelligent means as the core and can build a model based on historical data 101 obtained from the enterprise, which proposes the system Model 103 includes delivery model 131 and capacity model 132. In other words, the intelligent delivery forecasting system can predict the delivery date (ie delivery date) based on customer needs and the company’s resources, as well as estimate the production capacity and Production related parameters.

在智能交期預測系統運作的概念下,其中交貨模型131依照企業提供的資訊得出一預期交貨日(即天數105),還可包括交貨日之達交機率。產能模型132依照過往歷史數據之生產組合選擇讓機器學習過去決策者選擇之生產組合,相關生產數據如產品分類,包括既有商品、既有數量、數量改變、類似新品等資訊提出一套生產標準107,之後依照生產中批量時間109與生產規則111,決策者進行生產選擇113,最終產生生產選擇建議115。Under the concept of the operation of the intelligent delivery forecasting system, the delivery model 131 obtains an expected delivery date (that is, the number of days 105) according to the information provided by the enterprise, and can also include the delivery probability of the delivery date. The production capacity model 132 is based on the production combination selection of past historical data. Let the machine learn the production combination selected by the decision maker in the past. Related production data such as product classification, including existing products, existing quantities, quantity changes, similar new products, etc., propose a set of production standards 107. Then, in accordance with the batch time 109 in production and the production rule 111, the decision maker makes a production selection 113, and finally produces a production selection suggestion 115.

在此一提的是,當系統提供了生產選擇建議115,可讓企業決策者(如業務、老闆等)得知新訂單需求可能影響已有訂單之生產,並使其根據交期預測與生產組合決定欲接訂單之交貨日期以及物料與替代的各種可能,最終讓決策者選擇最終解決方案。It is mentioned here that when the system provides a production selection suggestion 115, it can let enterprise decision-makers (such as business, boss, etc.) know that the demand for new orders may affect the production of existing orders, and make them forecast and produce according to the delivery date. The combination determines the delivery date of the order to be received, the various possibilities of materials and substitution, and finally allows the decision maker to choose the final solution.

圖2顯示智能交期預測系統的架構實施例圖。Figure 2 shows an example of the architecture of the intelligent delivery forecasting system.

圖中顯示實現交期預測系統20與其週邊提供數據的系統架構示意圖,智能交期預測系統20連接一企業資源規劃系統24、一生產系統25與一製造執行系統27。其中之一為企業資源規劃系統24,此為一種運行傳統常用於企業內資源規劃計算機系統,連結企業內各部門管理伺服器,統一管理並記錄各種資源與信息,紀錄了企業各種層面的銷售生產採購庫存等數據,形成龐大的歷史生產數據庫,這些數據即可作為所述智能交期預測系統20中學習的數據,以形成預測模型。The figure shows a schematic diagram of the system architecture that realizes the delivery date forecasting system 20 and its surroundings to provide data. The intelligent delivery date forecasting system 20 is connected to an enterprise resource planning system 24, a production system 25, and a manufacturing execution system 27. One of them is the enterprise resource planning system 24, which is a computer system that is traditionally used for resource planning in enterprises. It connects the management servers of various departments in the enterprise, manages and records various resources and information in a unified manner, and records the sales and production of various levels of the enterprise. Purchase inventory and other data to form a huge historical production database, and these data can be used as the learned data in the intelligent delivery forecasting system 20 to form a forecasting model.

交期預測系統20包括以計算機技術實現的功能模組,以計算機系統之處理器執行軟體程式實現一人工智能多目標優化核心21、生產排程模擬系統22以及決策系統23。人工智能多目標優化核心21提供多種以計算機等電腦軟體與硬體實現的智能手段,如算法模塊211所描述的一或多種智能演算法,其中示意表示有幾個模組,如基因算法A、粒子群優化算法B以及決策樹算法C,而實際運行卻不受到圖示的幾種算法限制。The delivery forecasting system 20 includes functional modules implemented by computer technology, and the processor of the computer system executes software programs to implement an artificial intelligence multi-objective optimization core 21, a production scheduling simulation system 22, and a decision-making system 23. The artificial intelligence multi-objective optimization core 21 provides a variety of intelligent means implemented by computer software and hardware, such as one or more intelligent algorithms described in the algorithm module 211, which indicates that there are several modules, such as genetic algorithm A, Particle swarm optimization algorithm B and decision tree algorithm C, but the actual operation is not limited by the several algorithms shown in the figure.

算法模塊211中表示系統可應用的幾種智能演算法,例如基因算法(genetic algorithm,GA)A,基因算法A為一種電腦模擬方法,在系統中可用於生產時間排程的模擬運算,可解決實際生產製程的問題。The algorithm module 211 represents several intelligent algorithms applicable to the system, such as genetic algorithm (GA) A. Genetic algorithm A is a computer simulation method that can be used in the system to simulate production time scheduling, which can solve Problems in the actual production process.

算法模塊211提出一粒子群優化(Particle Swarm Optimization,PSO)算法B,粒子群優化算法B在所述交期預測系統20中用於根據歷史數據得出提供決策的最佳解,特別是針對生產原物料採購時的優化問題模擬出最佳解。The algorithm module 211 proposes a Particle Swarm Optimization (PSO) algorithm B. The particle swarm optimization algorithm B is used in the delivery forecast system 20 to obtain the best solution to provide decision-making based on historical data, especially for production The optimization problem during the purchase of raw materials simulates the best solution.

算法模塊211可包括一決策樹型算法(RF, XGB)C,決策樹型算法C是一種機器學習演算法,利用分類和回歸方法在數據中進行抽樣與隨機選取其中特徵,得出數據特徵後,可以模擬出決策的結果,目的是可以產生提供決策者的多種決策方向。The algorithm module 211 may include a decision tree algorithm (RF, XGB) C. The decision tree algorithm C is a machine learning algorithm that uses classification and regression methods to sample and randomly select features from the data to obtain the data features. , Can simulate the results of decision-making, the purpose is to produce a variety of decision-making directions to provide decision-makers.

經算法模塊211中一或多個智能演算法針對企業資源規劃系統24提供的數據進行機器學習演算與建模後,可以提供排程參數、物料人員規劃參數以及多種交期規劃組合至智能交期預測系統20中生產排程模擬系統22。生產排程模擬系統22還自加上自製造執行系統27用於收集製程上的即時訊息,接收到實際生產線上的數據。生產排程模擬系統22也取得生產系統25中的生產設備251、物料252與產品253等數據。After one or more intelligent algorithms in the algorithm module 211 perform machine learning calculations and modeling on the data provided by the enterprise resource planning system 24, it can provide scheduling parameters, material personnel planning parameters, and multiple delivery planning combinations to intelligent delivery. The production scheduling simulation system 22 in the forecasting system 20. The production scheduling simulation system 22 is also used to collect instant messages on the manufacturing process by adding a self-manufacturing execution system 27 to receive data on the actual production line. The production scheduling simulation system 22 also obtains data such as production equipment 251, materials 252, and products 253 in the production system 25.

如此,使得生產排程模擬系統22可以根據歷史數據演算得出的生產相關排程、原物料、交期規劃、實際歷史生產數據,以及生產線上的真實數據,生產排程模擬系統22產生的數據可以回饋給人工智能多目標優化核心21,提供多組態結果以提供優化其中建立的預測模型,通過預測模型提供決策系統23多組產品訂單交期、生產成本與分批次生產選項等多重解,由決策系統23為計算機系統實現的功能模組,提供多重解給企業主管做出最終決策,包括提供給業務端29向客戶交待的交貨日期,以及提供製造執行系統27生產所需資源與生產指令,以進行生產。當決策系統23做出最終的交期判斷,還可以回溯提供企業應該有的庫存最佳解。In this way, the production scheduling simulation system 22 can calculate the production-related schedules, raw materials, delivery schedules, actual historical production data, and the real data on the production line calculated based on historical data, and the data generated by the production scheduling simulation system 22 It can feed back to the artificial intelligence multi-objective optimization core 21, provide multi-configuration results to optimize the prediction model established therein, and provide the decision-making system through the prediction model 23 multi-group product order delivery, production costs and batch production options and other multiple solutions , The decision-making system 23 is a functional module implemented by the computer system, providing multiple solutions to the business executive to make the final decision, including the delivery date provided to the business end 29 to the customer, and the provision of the manufacturing execution system 27 production resources and resources Production instructions to carry out production. When the decision system 23 makes the final delivery date judgment, it can also retrospectively provide the best solution for the inventory that the enterprise should have.

通過智能交期預測系統20,使得企業決策者可以獲得模擬得出的交期以及生產資訊,主要目的之一是提供業務端29能夠快速且相對精準地回應客戶預期交貨日,並依照其中建立的預測模型伸出生產組合選擇模型,可協助工廠管理者迅速判斷如何規劃生產並估計出多重選擇下的成本變更可能。Through the intelligent delivery forecasting system 20, business decision makers can obtain simulated delivery and production information. One of the main purposes is to provide the business end 29 that can quickly and relatively accurately respond to the customer’s expected delivery date, and establish it according to it. The predictive model of the company extends the production portfolio selection model, which can assist factory managers to quickly determine how to plan production and estimate the possibility of cost changes under multiple choices.

圖3顯示智能交期預測系統中以計算機系統搭配軟體手段實現智能交期預測系統20的各種功能手段,各種功能手段以圖中顯示的功能模組來描述。FIG. 3 shows various functional means of the intelligent delivery forecasting system using a computer system with software means to realize the intelligent delivery forecasting system 20, and the various functional means are described by the functional modules shown in the figure.

智能交期預測系統20中主要的智能手段包括數據收集模組301,實現數據收集的方式如計算機系統通過有線或無線通訊方式通過網路或是特定連線取得一實體(如公司、工廠)內數據,實施例如企業資源規劃系統(ERP)提供數據,數據主要為實體過去生產組合的歷史數據,還可包括工廠之生產數據與其中機台的生產時間,之後可在智能交期預測系統20建立針對此企業的客製化資料庫,再以模型訓練模組307利用一機器學習演算法學習所收集的數據,將數據透過編碼讓機器學習演算法依照提供之數據找出關聯規則,學習數據中各種信息的關聯性,最後可以形成預測交貨日期的預測模型。其中,當以上述數據收集模組301的通訊手段接收到生產需求的數據時,可通過預測模型預測出交貨日期,以及實現交貨日期的一或多種生產組合,用以提供企業決策者進行決策。The main intelligent means in the intelligent delivery forecasting system 20 include the data collection module 301. The way to achieve data collection is to obtain data from an entity (such as a company, a factory) through a computer system through a wired or wireless communication method through a network or a specific connection. Data, such as the data provided by the enterprise resource planning system (ERP). The data is mainly the historical data of the entity's past production combination, and it can also include the production data of the factory and the production time of the machines in it, which can then be established in the intelligent delivery forecast system 20 For the customized database of this company, the model training module 307 uses a machine learning algorithm to learn the collected data. The data is coded so that the machine learning algorithm finds association rules based on the provided data, and learns the data. The relevance of various information can finally form a forecast model for predicting the delivery date. Among them, when the data of the production demand is received by the communication means of the data collection module 301, the delivery date can be predicted through the predictive model, and one or more production combinations that realize the delivery date can be used to provide enterprise decision makers with decision making.

根據智能交期預測系統20的實施例,還可包括其他數據處理與學習的軟體搭配硬體實現的功能模組,如一數據清洗模組303,實現的數據清洗手段用以清洗通過企業資源規劃系統取得的數據,以形成符合機器學習演算法學習所需的數據格式的數據,使得後續手段可依照此格式作為模型訓練的數據。According to the embodiment of the intelligent delivery forecasting system 20, it may also include other data processing and learning software combined with hardware to achieve functional modules, such as a data cleaning module 303. The implemented data cleaning means is used to clean the data through the enterprise resource planning system. The acquired data is used to form data in a data format required by the machine learning algorithm for learning, so that subsequent methods can use this format as data for model training.

智能交期預測系統20還可包括一自動優化模組309,當模型訓練模組307通過一或多個機器學習演算法學習數據得出多個預測模型時,可通過自動優化模組309實現的軟體手段相互比對各種模型,選擇或自行組成一表現較優的預測模型,作為預測交期的預測模型。The intelligent delivery forecasting system 20 may also include an automatic optimization module 309. When the model training module 307 learns data through one or more machine learning algorithms to obtain multiple prediction models, the automatic optimization module 309 can achieve The software means compares various models with each other, selects or composes a better-performing forecasting model by itself, as a forecasting model for forecasting the delivery date.

當通過上述數據收集模組301取得新的數據時,系統利用自動學習模組305針對模型訓練模組307以機器學習演算法學習新的數據的結果,自動提取新的生產流程與學習新的數據,特別可根據學習新的數據得出其中各種信息的關聯性,進行微調,以優化預測模型。When new data is obtained through the above-mentioned data collection module 301, the system uses the automatic learning module 305 to learn the new data with the machine learning algorithm for the model training module 307, and automatically extracts new production processes and learns new data. , In particular, the relevance of various information can be obtained based on learning new data, and fine-tuned to optimize the prediction model.

智能交期預測系統20可再設有一生產組合選擇模組311,這是在智能交期預測系統20得出預測交期後,可利用生產組合選擇的軟體手段利用另一機器學習演算法學習所述實體之決策者過去選擇之生產組合以及修正各生產組合中的參數之權重的歷史數據,之後形成一生產組合選擇模型,提供實體進行一生產重劃。根據一實施例,所形成的生產組合選擇模型用以提出實體部分交貨或挪單挪料的建議組合,形成新的物料規劃與/或新的排程規劃的新的生產組合。The intelligent delivery forecasting system 20 can be further provided with a production combination selection module 311. This is after the intelligent delivery forecasting system 20 obtains the forecast delivery date, the software method of production combination selection can be used to learn from another machine learning algorithm. The historical data of the production combination selected by the decision maker of the entity in the past and the weight of the parameters in each production combination are revised, and then a production combination selection model is formed to provide the entity for a production re-planning. According to an embodiment, the formed production combination selection model is used to propose a suggested combination of physical partial delivery or relocation, forming a new production combination of new material planning and/or new scheduling planning.

根據智能交期預測系統20可應用的一情境應用。企業執行生產時,業務人員需要在工廠於客戶下訂單時回覆客戶批量之預期交貨日,但常見是業務人員需要與產線人員與物料管理人員溝通並確認目前工廠產能狀況,並依照經驗給出預交日,但此預交日與真實交貨日往往相差許多。因此,揭露書提出之智能交期預測系統20採用了上述各功能模組的智能手段,自企業取得歷史數據,如客戶訂單、工廠出貨單等,之後利用機器學習演算法學習數據,訓練得出預測模型,以進行現有產品的交貨預測。而此預測模型因為參考了過去的數據,通過智能手段可以處理將來缺乏完整資料之新品或少量產品的情況,其中主要方式是可以蒐集企業的生產資訊與機台生產時間等資料,如物料前置時間、機台產能與參數、工序間運行時間等,學習得出符合企業需求的交期以及生產組合。According to a contextual application applicable to the intelligent delivery forecasting system 20. When a company performs production, the sales personnel need to reply to the expected delivery date of the customer's batch when the customer places an order in the factory. However, it is common that the sales personnel need to communicate with the production line personnel and the material management personnel and confirm the current factory capacity status, and give them based on experience. The pre-delivery date, but this pre-delivery date is often much different from the actual delivery date. Therefore, the intelligent delivery forecasting system 20 proposed in the disclosure uses the intelligent means of the above-mentioned functional modules to obtain historical data from the enterprise, such as customer orders, factory shipment orders, etc., and then use machine learning algorithms to learn the data and train Develop a forecasting model to forecast the delivery of existing products. And because this prediction model refers to past data, it can deal with new products or a small number of products that lack complete information in the future through intelligent means. The main method is to collect the company's production information and machine production time and other data, such as material advance Time, machine capacity and parameters, working time between processes, etc., learn to meet the needs of the company's delivery date and production combination.

接著,圖4顯示智能交期預測系統所執行的智能交期預測方法的實施例之一流程圖,其中動作描述可參考圖3。Next, FIG. 4 shows a flowchart of an embodiment of the intelligent delivery forecasting method executed by the intelligent delivery forecasting system, wherein the description of the action can be referred to FIG. 3.

智能交期預測方法執行於一計算機系統中,通過計算機系統中的處理電路、記憶體、資料庫實現各種學習演算法,其中流程包括,一開始,計算機系統通過內部或外部網路取得企業資源規劃系統的數據,至少包括至少一客戶訂單與至少一工廠出貨單(步驟S401),並以其中軟體手段清洗數據,主要是清洗通過企業資源規劃系統取得的數據,以形成符合機器學習演算法學習所需的數據格式的數據,另還可過濾不必要、無效或會影響效能的數據(步驟S403),之後即開始利用機器學習演算法學習數據中信息關聯性(步驟S405),形成預測模型(步驟S407)。其中,若通過一或多個機器學習演算法學習數據得出多個預測模型時,計算機系統還可用以選擇或自行組成一表現較優的預測模型,作為預測交期的預測模型。之後,根據一實施例,若產生新的數據,可繼續以機器學習演算法學習新的數據,根據學習新的數據得出其中各種信息的關聯性,回饋給系統以優化預測模型。The intelligent delivery forecast method is implemented in a computer system, and various learning algorithms are realized through the processing circuit, memory, and database in the computer system. The process includes, at the beginning, the computer system obtains the enterprise resource plan through the internal or external network The data of the system includes at least one customer order and at least one factory shipment (step S401), and the data is cleaned by software means, mainly to clean the data obtained through the enterprise resource planning system to form a learning algorithm that conforms to the machine learning algorithm. The data in the required data format can also be filtered for unnecessary, invalid or performance-affecting data (step S403), and then start to use machine learning algorithms to learn the information relevance in the data (step S405) to form a predictive model ( Step S407). Among them, if multiple prediction models are obtained by learning data through one or more machine learning algorithms, the computer system can also be used to select or form a better-performing prediction model as a prediction model for predicting delivery dates. After that, according to an embodiment, if new data is generated, the machine learning algorithm can be used to continue to learn the new data, and the relevance of various information can be obtained based on the learned new data, which is fed back to the system to optimize the prediction model.

完成預測模型後,即接收生產數據(步驟S409),例如業務端接收客戶訂單、產品品項、單位數量、訂單期望交期等數據,並可以同時接受多個訂單。其中細節包括各個產品品項製造所需要的物料、工序、每一工藝階段的半成品以及完成品之數據,這些數據同樣可由企業資源規劃系統(ERP)與製造執行系統(MES)導出。After the prediction model is completed, the production data is received (step S409). For example, the business end receives data such as customer orders, product items, unit quantities, and expected delivery dates for orders, and can accept multiple orders at the same time. The details include the materials, procedures, semi-finished products and finished products required for the manufacture of each product item. These data can also be derived from the enterprise resource planning system (ERP) and the manufacturing execution system (MES).

接著可以設定權重(步驟S411),預測模型提供權重設定功能,這是提供決策者調整生產參數,在此步驟中,可讓實體之決策者修正生產組合中物料規劃與/或排程規劃中的參數之權重改變生產順序。例如,如果這個客戶比其他客戶重要,或是這個半成品是很多其他產品的關鍵零組件,這些系統尚未考量到的參數可以透過調整權重來增加其優先順序。Then the weight can be set (step S411). The predictive model provides a weight setting function, which provides decision makers to adjust production parameters. In this step, the decision makers of the entity can be allowed to modify the material planning and/or scheduling planning in the production mix. The weight of the parameter changes the production sequence. For example, if this customer is more important than other customers, or if this semi-finished product is a key component of many other products, these parameters that have not been considered by the system can be adjusted to increase their priority by adjusting their weights.

最後,通過預測模型得出交貨日期、生產組合等(步驟S413),其中,各生產組合可以記載物料規劃以及排程規劃,以及/或機台生產時間,而物料規劃的參數可包括生產一產品所需的原料、零組件以及/或半成品的庫存,排程規劃的參數則可包括依照日期生產該產品的交貨比例與數量。在一實施例中,之後,還可利用另一機器學習演算法學習實體之決策者過去選擇之生產組合,以及修正各生產組合中的參數之權重的歷史數據,用於形成一生產組合選擇模型,提供實體進行一生產重劃。Finally, the delivery date, production combination, etc. are obtained through the predictive model (step S413), where each production combination can record material planning and scheduling planning, and/or machine production time, and the parameters of material planning can include production one. The inventory of raw materials, components and/or semi-finished products required by the product, and the parameters of the scheduling plan can include the delivery ratio and quantity of the product produced according to the date. In one embodiment, afterwards, another machine learning algorithm can be used to learn the production combination selected by the decision maker of the entity in the past, and to modify the historical data of the weight of the parameters in each production combination to form a production combination selection model , Provide entities for a production redrawing.

舉例來說,以鋁鍛造為例,鍛造分為粗鍛造與精密鍛造等兩個到數個工序,粗鍛造與精密鍛造使用的鍛造設備各自不同,而部分設備也可以被使用於不同的工序,鍛造的原物料為鋁材。另有可重複使用多次的模具,鍛造的半成品為經過粗鍛造之粗胚、完成品為精密鍛造形成之鋁鍛造件、每一個工序所需之工時、需要的人員配置、需用之原料、產生之成品、廢料與批量生產之成品率等數據,以及其對於不同設備之依賴性統計數據,均由以上所述之資料來源導入,如預測目標為系統執行過之品項,亦可以相同品項之歷史數據直接帶入,最終完整的生產模型數據經由工程與生管人員確認。For example, taking aluminum forging as an example, forging is divided into two to several processes, such as rough forging and precision forging. Rough forging and precision forging use different forging equipment, and some equipment can also be used in different processes. The raw material for forging is aluminum. There are also molds that can be reused many times. The semi-finished product forged is the rough blank after rough forging, and the finished product is the aluminum forging formed by precision forging. The man-hours required for each process, the required staffing, and the required raw materials , The data of finished products, scraps and mass production yields, as well as the statistical data of its dependence on different equipment, are imported from the above-mentioned data sources. If the forecast target is an item that has been executed by the system, it can also be the same The historical data of the item is directly brought in, and the final complete production model data is confirmed by the engineering and production management personnel.

圖5顯示智能交期預測方法的另一實施例流程圖,此流程表達出所提出的智能交期預測系統針對現有產品與新產品的處理流程。第一部份針對企業現有產品,在方法中,先取得現有產品資訊(步驟S501),進行數據處理,包括數據清洗與過濾,目的是得出可建模的數據(步驟S503),再以機器學習演算法學習數據的特徵與關聯性(步驟S505),並建立預測模型(步驟S507)。另一方面為針對新產品,取得新產品資訊(步驟S509),包括引入進料時間、機台參數與生產時間、製程工序等數據(步驟S511),同樣地經過數據處理得出可建模的數據後(步驟S513),以機器學習演算法學習新數據中的特徵與關聯性(步驟S515),以建立預測模型(步驟S517)。Fig. 5 shows a flowchart of another embodiment of the intelligent delivery forecasting method, which expresses the processing procedure of the proposed intelligent delivery forecasting system for existing products and new products. The first part is aimed at the company’s existing products. In the method, first obtain the existing product information (step S501), perform data processing, including data cleaning and filtering, with the purpose of obtaining modelable data (step S503), and then use the machine The learning algorithm learns the characteristics and relevance of the data (step S505), and establishes a predictive model (step S507). On the other hand, for new products, obtain new product information (step S509), including the introduction of feed time, machine parameters and production time, process procedures and other data (step S511), and also through data processing to obtain modelable After the data (step S513), machine learning algorithms are used to learn the features and associations in the new data (step S515) to establish a prediction model (step S517).

在此一提的是,針對新產品,這部份往往是缺乏如企業資源規劃系統提供的那樣完整的內容,因此可以採用相似原物料、機台設備、類似製程工法等之資料作為關聯學習標的,數據經清洗後,可對各項目各自建立預測模型,統合成一預測模型。What is mentioned here is that for new products, this part often lacks the complete content as provided by the enterprise resource planning system. Therefore, similar raw materials, machines, equipment, and similar manufacturing methods can be used as related learning targets. , After the data is cleaned, a forecasting model can be established for each project and integrated into a forecasting model.

如此可知,系統針對現有產品與新的產品都形成了預測模型,並且可以是通過多個機器學習演算法得出多個預測模型,在步驟S519中,系統可繼續利用模型演算法得出各自結果,再選擇其中之一預測模型(步驟S521),預測模型用於產生交期(步驟S525),同樣地,新產生的數據將持續自動優化模型(步驟S523)。It can be seen that the system has formed a predictive model for both existing products and new products, and can obtain multiple predictive models through multiple machine learning algorithms. In step S519, the system can continue to use the model algorithm to obtain respective results , And then select one of the prediction models (step S521), the prediction model is used to generate the delivery date (step S525), similarly, the newly generated data will continue to automatically optimize the model (step S523).

實現以上方法流程的系統架構可繼續參考圖6所示實現智能交期預測方法的交貨模型與產能模型的架構實施例示意圖,此圖架構涵蓋了交貨與產能標準雙系統,圖示上半部示意顯示一交貨模型架構61,所在意的是時間數據611,根據企業資源規劃系統得到的客戶需求得到訂單資訊612、銷貨資訊613以及其他有關企業內人員等其他資訊614,進行數據清洗615,以及後續建模、訓練616等步驟,最終產生提供交貨時間的預測模型617。The system architecture that implements the above method flow can continue to refer to the schematic diagram of the implementation of the delivery model and the production capacity model of the intelligent delivery forecasting method shown in Figure 6. The architecture of this figure covers the delivery and production standard dual system, the upper half of the figure The department schematically shows a delivery model architecture 61, which is concerned with time data 611. According to customer needs obtained by the enterprise resource planning system, order information 612, sales information 613, and other information 614 related to personnel in the enterprise are obtained for data cleaning 615, and subsequent steps such as modeling and training 616, finally produce a prediction model 617 that provides delivery time.

另一方面如下半部描述的產能模型架構62,產能包括不容易變動的前置時間621以及生產所需的參數模型622,同樣地,都經過數據清洗(623,624)、建模、訓練(625,626)等步驟,建立針對前置處理的前置模型627以及處理生產參數的參數模型628,如此,開始規劃物料與排程629,導入上述預測模型後,產生交貨時間630。On the other hand, the capacity model architecture 62 described in the following half, capacity includes the lead time 621 that is not easy to change, and the parameter model 622 required for production. Similarly, data cleaning (623,624), modeling, and training (625,626) In other steps, a pre-processing model 627 for pre-processing and a parameter model 628 for processing production parameters are established. In this way, material planning and scheduling 629 are started, and after the above-mentioned prediction model is imported, a delivery time 630 is generated.

圖7接著以示意圖表示智能交期預測方法中處理新舊產品數據的細節以及如何通過回饋建立數據以及優化模型的實施例。FIG. 7 then schematically shows an embodiment of the details of processing new and old product data in the intelligent delivery forecasting method, and how to establish data through feedback and an embodiment of an optimization model.

根據圖示,針對現有產品71,企業資源規劃系統(ERP)提供了工廠數據711,並包括出貨單712與訂單713,經數據清洗後,得出可建模資料714,並據此學習與訓練,以建立模型715,預測模型用以預測交期716,直到系統得到真實交貨日717為止,這部份形成的預測交貨日與真實交貨日可以回饋到企業資源規劃系統,成為現有產品71中的工廠數據711的一部分。According to the figure, for the existing product 71, the enterprise resource planning system (ERP) provides factory data 711, including shipment orders 712 and orders 713. After data cleaning, modelable data 714 is obtained, and learning and Train to establish model 715. The predictive model is used to predict the delivery date 716 until the system gets the real delivery date 717. The predicted delivery date and actual delivery date formed by this part can be fed back to the enterprise resource planning system and become the existing Part of the factory data 711 in the product 71.

針對新產品72,經客戶開出規格,得到產品數據721,還包括生產所需的各種廠內數據722,如機台723、出入料724與工序725等,各數據經數據清洗後,得出可建模資料(726, 727, 728),之後以機器學習演算法學習各項目數據,針對各項目建立模型(729, 730, 731),通過系統的軟體手段,可將各項目模型進行統合,建立統合模型732,能夠針對新產品提出新品交貨預測733,當得到真實交貨日734,產生的新品交貨預測733以及真實交貨日734都會形成系統中的新品數據,也是將來優化模型的依據。For the new product 72, after the customer opens the specifications, the product data 721 is obtained. It also includes various in-plant data 722 required for production, such as machine 723, input and output 724, and process 725. After data cleaning, the data is obtained Model data (726, 727, 728), and then use machine learning algorithms to learn the data of each project, and build models for each project (729, 730, 731). Through the software means of the system, each project model can be integrated, Establish an integrated model 732, which can propose a new product delivery forecast 733 for new products. When the real delivery date 734 is obtained, the new product delivery forecast 733 and the real delivery date 734 will form the new product data in the system, which is also the future optimization model in accordance with.

最後,系統預測的交期還會比對真實交貨日,相關程序可參考圖8所示智能交期預測方法中採用企業數據的實施例圖。Finally, the delivery date predicted by the system will also be compared with the actual delivery date. For related procedures, please refer to the example diagram of using enterprise data in the intelligent delivery date forecasting method shown in FIG. 8.

圖中顯示智能交期預測系統可以自企業資源規劃系統80取得的訂單數據包括預交日準確之訂單801、預交日準確之出貨單802、預交日不準確之訂單803以及預交日不準確之出貨單804,預交日準確與不準確數據都分別進行數據欣喜,分別得出可建模資料(805, 807),並建立預測模型806,經預測交期後,可比對真實交貨日808,以此作為確認模型809的依據。The figure shows that the order data that the intelligent delivery date forecasting system can obtain from the enterprise resource planning system 80 includes orders 801 with accurate pre-delivery dates, shipment orders 802 with accurate pre-delivery dates, orders 803 with inaccurate pre-delivery dates, and pre-delivery dates. For the inaccurate shipment order 804, the accurate and inaccurate data on the pre-delivery date are separately data happy, and the modelable data (805, 807) are obtained respectively, and the forecast model 806 is established. After the delivery date is predicted, it can be compared to the real The delivery date 808 is used as the basis for confirming the model 809.

根據上述實施例可知,智能交期預測系統中採用人工智能多目標優化核心(可參考圖2,21)提供的數據,能夠提供生產排程模擬系統(可參考圖2,22)建構一個生產模型,生產模型考慮生產線協同工作,同時生產多個品項與批次,其中之設備與原料的分配使用,各個品項批次使用有限設備資源的優先順序,並關於生產訂單之拆分或合併、原物料取得的時間與成本等財務規劃,皆為多目標優化之可調適的參數。According to the above embodiment, the intelligent delivery forecasting system adopts the data provided by the artificial intelligence multi-objective optimization core (refer to Figure 2, 21), which can provide a production scheduling simulation system (refer to Figure 2, 22) to construct a production model , The production model considers the collaborative work of the production line to produce multiple items and batches at the same time. Among them, the allocation and use of equipment and raw materials, the priority of each item batch using limited equipment resources, and the splitting or merging of production orders Financial planning such as the time and cost of raw material acquisition are all adjustable parameters for multi-objective optimization.

舉例來說,在鋁鍛造的製程中,不同的工件所需要的預熱、加壓鍛造時間或有差異,同時還需要考慮操作人員之熟練度、各個工序設備加工之良品率等因素,經由以上過程產生的工藝參數以及歷史數據,可以得到工序耗時與用料的統計模型。根據實施例,採用統計模型之最壞、標準與最佳情況(Worst Case, Typical Case, Best Case)分析,或是採用更完整之統計採樣,可以平行計算蒙地卡羅方法(MC)進行模擬。For example, in the aluminum forging process, the preheating and pressure forging time required for different workpieces may be different. At the same time, it is necessary to consider factors such as the proficiency of the operator and the yield rate of the equipment processing in each process. The process parameters and historical data generated by the process can be used to obtain statistical models of process time and materials. According to the embodiment, using the worst case, typical case, and best case (Worst Case, Typical Case, Best Case) analysis of the statistical model, or using more complete statistical sampling, the Monte Carlo method (MC) can be calculated in parallel for simulation .

而利多目標優化核心建構的模型,可生成多組可調適生產參數,經帶入生產排程模擬系統進行模擬,可以平行計算方法可以同時模擬大量的參數,以取得面向交期與財務的優化解。相關人工智能機器學習演算法例如圖2所提到的基因算法(GA)、粒子群算法(PSO)與決策樹型算法(RF, GB, XGB)等算法,可以在高維度的廣域參數空間中持續迭代,以極高的效率精準地收斂至最佳的參數組合。The model built by the core of the multi-objective optimization core can generate multiple sets of adjustable production parameters. After being brought into the production scheduling simulation system for simulation, a parallel calculation method can simulate a large number of parameters at the same time to obtain an optimized solution for delivery and finance. . Related artificial intelligence machine learning algorithms, such as the genetic algorithm (GA), particle swarm optimization (PSO), and decision tree algorithm (RF, GB, XGB) mentioned in Figure 2, can be used in a high-dimensional wide-area parameter space Continuous iteration, converging to the best parameter combination with high efficiency and precision.

智能交期預測系統最後預測交期經更新模型後將得到愈來愈接近真實交貨日的交期,使得智能交期預測系統提供的交期可以成為業務端與客戶協商訂單交期的準確依據,同時還可求得的生產參數,再經由工程與生管人員之確認後,基於智能交期預測系統與企業資源規劃系統、製造執行系統之接口,可以直接進行原料訂貨與執行生產命令,再確保最後完成之訂單交期與預測規劃之交期相符合。The intelligent delivery forecasting system finally forecasts the delivery date after the updated model will get closer and closer to the actual delivery date, so that the delivery date provided by the intelligent delivery forecasting system can be an accurate basis for the business end to negotiate the order delivery date with the customer , And the production parameters that can be obtained at the same time, after confirmation by the engineering and production management personnel, based on the interface of the intelligent delivery forecast system, the enterprise resource planning system, and the manufacturing execution system, you can directly order raw materials and execute production orders, and then Ensure that the delivery date of the final completed order matches the delivery date of the forecast plan.

綜上所述,以上實施例描述一種智能交期預測系統,所提出的智能交期預測系統先取得企業提供的數據,如過去生產的歷史數據以及目前物料與生產設備的相關數據,藉著智能手段學習數據,以形成預測交貨日期的預測模型,藉此模擬決策過程,而提供企業合適的解決方案,最終再由決策者做出生產規劃與交期判斷。如此,智能交期預測系統可以提供企業決策者與經營階層回答產能吃緊時又要滿足客戶訂單時,在不考慮短期內人工與增加機器設備時決策優先順序,並對挪單與替代料提供相對最適合的解。To sum up, the above embodiments describe an intelligent delivery forecasting system. The proposed intelligent delivery forecasting system first obtains data provided by the enterprise, such as historical data of past production and current data related to materials and production equipment. The method learns data to form a predictive model for predicting the delivery date, thereby simulating the decision-making process, and providing suitable solutions for the enterprise, and finally the decision-maker makes production planning and delivery judgments. In this way, the intelligent delivery forecasting system can provide business decision-makers and business executives with answering the need to meet customer orders when production capacity is tight, and to decide the priority order without considering the short-term labor and the addition of machinery and equipment, and provide a comparison between moving orders and alternative materials. The most suitable solution.

以上所公開的內容僅為本新型的優選可行實施例,並非因此侷限本新型的申請專利範圍,所以凡是運用本新型說明書及圖式內容所做的等效技術變化,均包含於本新型的申請專利範圍內。The content disclosed above is only a preferred and feasible embodiment of the present model, and does not limit the scope of the patent application of the present model. Therefore, all equivalent technical changes made by using the description and schematic content of the present model are included in the application of the present model. Within the scope of the patent.

101:歷史數據 103:系統模型 131:交貨模型 132:產能模型 105:天數 107:標準 109:批量時間 111:生產規則 113:生產選擇 115:生產選擇建議 24:企業資源規劃系統 20:交期預測系統 21:人工智能多目標優化核心 211:算法模塊 A:基因算法 B:粒子群優化算法 C:決策樹型算法 22:生產排程模擬系統 23:決策系統 25:生產系統 251:生產設備 252:物料 253:產品 27:製造執行系統 29:業務端 301:數據收集模組 303:數據清洗模組 305:自動學習模組 307:模型訓練模組 309:自動優化模組 311:生產組合選擇模組 61:交貨模型架構 611:時間數據 612:訂單資訊 613:銷貨資訊 614:其他資訊 615:數據清洗 616:建模、訓練 617:交貨時間預測模型 62:產能模型架構 621:前置時間 622:參數模型 623,624:數據清洗 625,626:建模、訓練 627:前置模型 628:參數模型 629:規劃物料與排程 630:交貨時間 71:現有產品 711:工廠數據 712:出貨單 713:訂單 714:可建模資料 715:建立模型 716:交貨預測 717:真實交貨日 72:新產品 721:產品數據 722:廠內數據 723:機台 724:出入料 725:工序 726, 727, 728:可建模資料 729, 730,731:建立模型 732:建立統合模型 733:新品交貨預測 734:真實交貨日 80:企業資源規劃系統 801:預交日準確之訂單 802:預交日準確之出貨單 803:預交日不準確之訂單 804:預交日不準確之出貨單 805, 807:可建模資料 806:建立預測模型 808:真實交貨日 809:確認模型 步驟S401~S413:智能交期預測實施例流程之一 步驟S501~S525:智能交期預測實施例流程之二 101: historical data 103: System Model 131: Delivery Model 132: Capacity Model 105: days 107: Standard 109: Batch time 111: Production Rules 113: Production Selection 115: Production Selection Suggestions 24: Enterprise Resource Planning System 20: Delivery forecast system 21: Artificial intelligence multi-objective optimization core 211: Algorithm module A: Genetic algorithm B: particle swarm optimization algorithm C: Decision tree algorithm 22: Production scheduling simulation system 23: Decision System 25: Production system 251: Production Equipment 252: Materials 253: Products 27: Manufacturing Execution System 29: Business end 301: Data Collection Module 303: data cleaning module 305: Automatic learning module 307: Model Training Module 309: Automatic optimization module 311: Production Combination Selection Module 61: Delivery model architecture 611: Time Data 612: order information 613: Sales Information 614: Additional Information 615: data cleaning 616: Modeling, Training 617: Delivery time prediction model 62: Capacity model architecture 621: lead time 622: Parametric Model 623,624: Data cleaning 625,626: Modeling, training 627: front model 628: Parametric Model 629: Planning materials and scheduling 630: delivery time 71: Existing products 711: Factory Data 712: Shipment 713: order 714: Modelable data 715: Model 716: Delivery Forecast 717: actual delivery date 72: new products 721: product data 722: In-plant data 723: Machine 724: Incoming Material 725: process 726, 727, 728: Modelable data 729, 730, 731: Build a model 732: Establish a unified model 733: New product delivery forecast 734: actual delivery date 80: Enterprise Resource Planning System 801: Orders with accurate pre-delivery date 802: Shipment orders with accurate pre-delivery date 803: Orders with inaccurate pre-delivery date 804: Shipment orders with inaccurate pre-delivery date 805, 807: Modelable data 806: Build a predictive model 808: actual delivery date 809: Confirm Model Steps S401 to S413: One of the processes of the embodiment of intelligent delivery forecasting Steps S501~S525: Second process of the embodiment of intelligent delivery forecasting

圖1顯示智能交期預測系統運作的概念示意圖;Figure 1 shows the conceptual diagram of the operation of the intelligent delivery forecast system;

圖2顯示智能交期預測系統的架構實施例圖;Figure 2 shows an embodiment diagram of the architecture of the intelligent delivery forecasting system;

圖3顯示智能交期預測系統的功能模組實施例圖;Figure 3 shows an embodiment diagram of functional modules of the intelligent delivery forecasting system;

圖4顯示智能交期預測系統所執行的方法的實施例之一流程圖;Fig. 4 shows a flow chart of one of the embodiments of the method executed by the intelligent delivery date forecasting system;

圖5顯示智能交期預測系統所執行的方法的實施例之二流程圖;FIG. 5 shows a flowchart of the second embodiment of the method executed by the intelligent delivery date forecasting system;

圖6顯示實現智能交期預測方法的交貨模型與產能模型的架構實施例示意圖;FIG. 6 shows a schematic diagram of an embodiment of the architecture of a delivery model and a production capacity model that implements an intelligent delivery forecast method;

圖7顯示智能交期預測方法中處理產品數據的實施例示意圖;以及FIG. 7 shows a schematic diagram of an embodiment of processing product data in an intelligent delivery forecast method; and

圖8顯示智能交期預測方法中採用企業數據的實施例圖。Fig. 8 shows an embodiment diagram of using enterprise data in the intelligent delivery date forecasting method.

24:企業資源規劃系統 24: Enterprise Resource Planning System

20:交期預測系統 20: Delivery forecast system

21:人工智能多目標優化核心 21: Artificial intelligence multi-objective optimization core

211:算法模塊 211: Algorithm module

A:基因算法 A: Genetic algorithm

B:粒子群優化算法 B: particle swarm optimization algorithm

C:決策樹型算法 C: Decision tree algorithm

22:生產排程模擬系統 22: Production scheduling simulation system

23:決策系統 23: Decision System

25:生產系統 25: Production system

251:生產設備 251: Production Equipment

252:物料 252: Materials

253:產品 253: Products

27:製造執行系統 27: Manufacturing Execution System

29:業務端 29: Business end

Claims (10)

一種智能交期預測系統,連接一企業資源規劃系統、一生產系統與一製造執行系統,包括:一生產排程模擬系統,由一計算機系統之一處理器執行軟體程式實現該生產排程模擬系統,自該製造執行系統收集製程上的即時訊息以及接收到實際生產線上的數據,並自該生產系統取得生產設備、物料與產品的數據;一人工智能多目標優化核心,由該計算機系統之該處理器執行軟體程式實現該人工智能多目標優化核心,其中以一算法模塊中的一或多個智能演算法針對該企業資源規劃系統提供的數據進行機器學習演算與建模後,提供排程參數、物料人員規劃參數以及多種交期規劃組合至該生產排程模擬系統,其中,該生產排程模擬系統根據取得的數據演算得出的數據回饋至該人工智能多目標優化核心,提供多組態結果以優化建立一預測模型,其中該企業資源規劃系統連結一企業內各部門管理伺服器,統一管理並記錄各種資源與信息,紀錄該企業銷售生產採購庫存的數據,形成一歷史生產數據庫,作為該智能交期預測系統中學習的數據,用以形成該預測模型;以及一決策系統,由該計算機系統之該處理器執行軟體程式實現該決策系統,根據該預測模型提供的多組產品訂單交期、生產成本與分批次生產選項,做出一最終決策,包括一交貨日期。 An intelligent delivery forecasting system that connects an enterprise resource planning system, a production system and a manufacturing execution system, including: a production scheduling simulation system, a computer system and a processor executing a software program to realize the production scheduling simulation system , Collect the instant messages on the manufacturing process and receive the data on the actual production line from the manufacturing execution system, and obtain the data of production equipment, materials and products from the production system; an artificial intelligence multi-objective optimization core, by the computer system The processor executes a software program to realize the artificial intelligence multi-objective optimization core. One or more intelligent algorithms in an algorithm module are used to perform machine learning calculations and modeling on the data provided by the enterprise resource planning system to provide scheduling parameters , Material personnel planning parameters and a variety of delivery planning are combined into the production scheduling simulation system, where the production scheduling simulation system calculates the data based on the obtained data and feeds it back to the artificial intelligence multi-objective optimization core, providing multiple configurations As a result, a predictive model is optimized and established. The enterprise resource planning system connects to the management servers of various departments in an enterprise, manages and records various resources and information uniformly, records the data of the enterprise’s sales, production and purchase inventory, and forms a historical production database as The data learned in the intelligent delivery forecasting system is used to form the forecasting model; and a decision-making system in which the processor of the computer system executes a software program to implement the decision-making system, according to the multiple sets of product orders provided by the forecasting model Make a final decision, including a delivery date, for the period, production cost, and batch production options. 如請求項1所述的智能交期預測系統,其中以該計算機系統之該處理器執行軟體程式實現該智能交期預測系統的模組還包括:一數據收集模組,提取一實體內的該企業資源規劃系統的數 據;一模型訓練模組,利用一機器學習演算法學習該數據收集模組所取得的數據,學習數據中各種信息的關聯性,以形成預測該交貨日期的該預測模型;一數據清洗模組,用以清洗通過該企業資源規劃系統取得的數據,以形成符合該機器學習演算法學習所需的數據格式的數據;以及一自動優化模組,當該模型訓練模組通過一或多個機器學習演算法學習數據得出多個預測模型時,通過該自動優化模組選擇或自行組成一表現較優的預測模型,作為預測交期的該預測模型;其中,當該數據收集模組接收到一生產需求的數據時,通過該預測模型預測該交貨日期,以及實現該交貨日期的一或多種生產組合。 The intelligent delivery forecasting system according to claim 1, wherein the module for realizing the intelligent delivery forecasting system by the processor of the computer system executing a software program further includes: a data collection module for extracting the Number of enterprise resource planning systems According to; a model training module, using a machine learning algorithm to learn the data obtained by the data collection module, learning the correlation of various information in the data, to form the prediction model for predicting the delivery date; a data cleaning model Group, used to clean the data obtained through the enterprise resource planning system to form data conforming to the data format required by the machine learning algorithm learning; and an automatic optimization module, when the model training module passes one or more When the machine learning algorithm learns data to derive multiple prediction models, the automatic optimization module selects or forms a better-performing prediction model as the prediction model for predicting the delivery date; wherein, when the data collection module receives When the data of a production demand is reached, the delivery date is predicted through the prediction model, and one or more production combinations that realize the delivery date. 如請求項2所述的智能交期預測系統,其中還包括一自動學習模組,當通過該數據收集模組取得新的數據時,使得該模型訓練模組以該機器學習演算法學習該新的數據,根據學習該新的數據得出其中各種信息的關聯性優化該預測模型。 The intelligent delivery forecast system according to claim 2, which further includes an automatic learning module, when new data is obtained through the data collection module, the model training module is made to learn the new data with the machine learning algorithm. Optimize the prediction model based on the relevance of various information obtained by learning the new data. 如請求項2所述的智能交期預測系統,其中通過該企業資源規劃系統取得的數據為該實體過去生產組合的歷史數據,該歷史數據至少包括至少一客戶訂單與至少一工廠出貨單,該機器學習演算法通過該歷史數據學習該實體過去的生產組合,得出預測該交貨日期的該預測模型。 The intelligent delivery forecast system according to claim 2, wherein the data obtained through the enterprise resource planning system is historical data of the entity’s past production combinations, and the historical data includes at least one customer order and at least one factory shipment order, The machine learning algorithm learns the past production combination of the entity through the historical data, and obtains the prediction model for predicting the delivery date. 如請求項4所述的智能交期預測系統,其中通過該企業資源規劃系統取得的數據還包括工廠之生產數據與其中機台的生產時間。 The intelligent delivery forecast system according to claim 4, wherein the data obtained through the enterprise resource planning system also includes the production data of the factory and the production time of the machines therein. 如請求項1至5中任一項所述的智能交期預測系統,其中各 生產組合記載物料規劃以及排程規劃,以及/或機台生產時間。 The intelligent delivery forecast system according to any one of claims 1 to 5, wherein each The production portfolio records material planning and scheduling planning, and/or machine production time. 如請求項6所述的智能交期預測系統,其中該物料規劃的參數包括生產一產品所需的原料、零組件以及/或半成品的庫存;該排程規劃的參數包括依照日期生產該產品的交貨比例與數量。 The intelligent delivery forecast system according to claim 6, wherein the parameters of the material planning include the inventory of raw materials, components and/or semi-finished products required to produce a product; the parameters of the scheduling planning include the production of the product according to the date Delivery ratio and quantity. 如請求項7所述的智能交期預測系統,其中該預測模型中提供一權重設定功能,讓該實體之決策者修正該生產組合中該物料規劃與/或該排程規劃中的參數之權重改變生產順序。 The intelligent delivery forecast system according to claim 7, wherein the forecast model provides a weight setting function to allow the decision maker of the entity to modify the weight of the parameter in the material plan and/or the schedule plan in the production combination Change the production sequence. 如請求項8所述的智能交期預測系統,其中還包括一生產組合選擇模組,其中利用另一機器學習演算法學習該實體之決策者過去選擇之生產組合以及修正各生產組合中的參數之權重的歷史數據,形成一生產組合選擇模型,提供該實體進行一生產重劃。 The intelligent delivery forecast system according to claim 8, which further includes a production combination selection module, wherein another machine learning algorithm is used to learn the production combination selected by the decision maker of the entity in the past and to modify the parameters in each production combination The historical data of the weights forms a production portfolio selection model, which provides the entity for a production re-planning. 如請求項9所述的智能交期預測系統,其中該生產組合選擇模型用以提出該實體部分交貨或挪單挪料的建議組合,形成一新的物料規劃與/或一新的排程規劃的一新的生產組合。 The intelligent delivery forecast system according to claim 9, wherein the production combination selection model is used to propose a suggested combination of partial delivery or relocation of the entity to form a new material plan and/or a new schedule A new production mix planned.
TW109217329U 2020-12-30 2020-12-30 System for anticipating delivery time TWM613466U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109217329U TWM613466U (en) 2020-12-30 2020-12-30 System for anticipating delivery time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109217329U TWM613466U (en) 2020-12-30 2020-12-30 System for anticipating delivery time

Publications (1)

Publication Number Publication Date
TWM613466U true TWM613466U (en) 2021-06-21

Family

ID=77518242

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109217329U TWM613466U (en) 2020-12-30 2020-12-30 System for anticipating delivery time

Country Status (1)

Country Link
TW (1) TWM613466U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831418B (en) * 2022-08-24 2024-02-01 大陸商鼎捷軟件股份有限公司 Design modification processing system based on automatic detection and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831418B (en) * 2022-08-24 2024-02-01 大陸商鼎捷軟件股份有限公司 Design modification processing system based on automatic detection and method thereof

Similar Documents

Publication Publication Date Title
CN108009739B (en) Intelligent machining workshop production planning and scheduling integrated method
Sadeghi et al. A fuzzy grey goal programming approach for aggregate production planning
CN107464025B (en) Supply chain demand prediction and intelligent decision method based on big data
Cus et al. Approach to optimization of cutting conditions by using artificial neural networks
Ghosh et al. Data mining driven DMAIC framework for improving foundry quality–a case study
KR101846793B1 (en) Method of planning a manufacturing process by collecting and analyzing data from machine, and system using the same
US20210073695A1 (en) Production scheduling system and method
CN109074047A (en) For controlling the method and machine system of industrial operation
CN109564416A (en) For optimizing the system of industrial machine operation by the input of modification standard procedure parameter
CN106537270A (en) Cascaded model predictive control (mpc) approach for plantwide control and optimization
Sun et al. Machining cycle time prediction: Data-driven modelling of machine tool feedrate behavior with neural networks
CN117494472B (en) Discrete process optimization method and device based on simulation verification
TWM613466U (en) System for anticipating delivery time
CN115796328A (en) Product process route simulation system and product performance prediction method
Kuric et al. Computer aided process planning in machinery industry
TW202226088A (en) Method and system for anticipating delivery time
CN106909992B (en) Split charging production method and device of multi-variety small-batch mixed flow assembly line
CN114819239A (en) Intelligent delivery period prediction method and system
CN108665094A (en) A kind of copper plate/strip founding-tandem rolling Optimization Scheduling of data-driven
JP7261639B2 (en) Production control system and production control method
CN116415780A (en) Intelligent ordering method and system
CN116012109A (en) Order generation method and custom production method based on meta universe
Turgay et al. Digital Twin Based Flexible Manufacturing System Modelling with Fuzzy Approach
Khan et al. Role of CAD/CAM in designing challenges facing in manufacturing industry and developing manufacturing in modern manufacturing technology
CN112506164A (en) Layout planning method, device and platform for reconfigurable manufacturing system