TWM606822U - Raw material price prediction system - Google Patents
Raw material price prediction system Download PDFInfo
- Publication number
- TWM606822U TWM606822U TW109212169U TW109212169U TWM606822U TW M606822 U TWM606822 U TW M606822U TW 109212169 U TW109212169 U TW 109212169U TW 109212169 U TW109212169 U TW 109212169U TW M606822 U TWM606822 U TW M606822U
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- algorithm
- raw material
- prediction system
- price
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一種原料價格預測系統,包括至少一操作裝置及一伺服主機。至少一操作裝置包括一輸入模組,適於輸入至少一價格資料。伺服主機與該操作裝置通訊連接,並接收該價格資料,伺服主機包括一資料收集模組、一分析模組及一輸出模組。資料收集模組適於從外部的一網際網路收集多個市場資料。分析模組包括一第一演算法計與一第二演算法,適於以一第一演算法計算該價格資料與該市場資料,並產多個結果資料。輸出模組適於將該結果資料傳送至該操作裝置。 A raw material price prediction system includes at least one operating device and a servo host. The at least one operating device includes an input module adapted to input at least one price data. The server host communicates with the operating device and receives the price data. The server host includes a data collection module, an analysis module and an output module. The data collection module is suitable for collecting multiple market data from an external Internet. The analysis module includes a first algorithm and a second algorithm, and is suitable for calculating the price data and the market data with a first algorithm, and generating multiple result data. The output module is suitable for transmitting the result data to the operating device.
Description
一種預測系統,特別是一種原料價格預測系統。 A prediction system, especially a raw material price prediction system.
工廠在生產貨物時,勢必從市場上購買不同的原料,特別是某些大宗的生產原料(例如PVC粉),這些大宗原料通常會在申購後約兩個月才會到貨。然而,這些大宗原料價格會受到市場環境影響而有所波動。若到貨時波動變動太大,則會影響進貨成本。 When the factory produces goods, it is bound to purchase different raw materials from the market, especially certain bulk production raw materials (such as PVC powder). These bulk raw materials usually arrive about two months after the purchase. However, the prices of these bulk raw materials will fluctuate due to market conditions. If the volatility changes too much when the goods arrive, it will affect the purchase cost.
為了達到合理的原料採購成本,業者通常會進行原料價格預測,惟目前價格預測的方法多依靠採購人員的經驗判斷,準確度有限,並無法有效的掌握市場價格,特別是遭遇市場突發狀況(如金融風暴)時更難以預測。 In order to achieve reasonable raw material procurement costs, the industry usually makes raw material price forecasts. However, the current price forecasting methods mostly rely on the empirical judgments of the purchasers. The accuracy is limited, and the market prices cannot be effectively grasped, especially when the market emerges Such as financial turmoil) is more difficult to predict.
因此,如何解決上述問題便是本領域具通常知識者值得去思量的。 Therefore, how to solve the above problems is worth considering for those with ordinary knowledge in this field.
為解決上述問題,本創作提供一種原料價格預測系統,可輸入歷史價格資料,並產出價格預測模型,能夠更精確的預測原料價格變化。 In order to solve the above problems, this creation provides a raw material price prediction system, which can input historical price data and produce a price prediction model, which can more accurately predict raw material price changes.
本創作提供一種原料價格預測系統,包括至少一操作裝置及一伺服主機。至少一操作裝置包括一輸入模組,適於輸入至少一價格資料。伺服主機與該操作裝置通訊連接,並接收該價格資料,伺服主機包括一資料收集模組、一分析模組及一輸出模組。資料收集模組適於從外部的一網際網路收集多個市場資 料。分析模組包括一第一演算法計與一第二演算法,適於以一第一演算法計算該價格資料與該市場資料,並產多個結果資料。輸出模組適於將該結果資料傳送至該操作裝置。 This creation provides a raw material price prediction system, including at least one operating device and a server host. The at least one operating device includes an input module adapted to input at least one price data. The server host communicates with the operating device and receives the price data. The server host includes a data collection module, an analysis module and an output module. The data collection module is suitable for collecting multiple market data from an external Internet material. The analysis module includes a first algorithm and a second algorithm, and is suitable for calculating the price data and the market data with a first algorithm, and generating multiple result data. The output module is suitable for transmitting the result data to the operating device.
上述之原料價格預測系統,其中,該輸入裝置還適於輸入一演算法指令。 In the above-mentioned raw material price prediction system, the input device is also suitable for inputting an algorithm instruction.
上述之原料價格預測系統,其中,該分析模組接收該演算法指令,並根據該演算法指令選擇該第一演算法或該第二演算法。 In the above-mentioned raw material price prediction system, the analysis module receives the algorithm instruction, and selects the first algorithm or the second algorithm according to the algorithm instruction.
上述之原料價格預測系統,其中,該分析模組是以時間序列建立一預測模型。 In the above-mentioned raw material price forecasting system, the analysis module establishes a forecasting model in a time series.
上述之原料價格預測系統,其中,該第一演算法為Prophet,該第二演算法為ARIMA(Autoregressive Integrated Moving Average Model)。 In the aforementioned raw material price prediction system, the first algorithm is Prophet, and the second algorithm is ARIMA (Autoregressive Integrated Moving Average Model).
10:網際網路 10: Internet
100:原料價格預測系統 100: Raw material price prediction system
110:操作裝置 110: operating device
111:輸入模組 111: Input Module
120:伺服主機 120: Servo host
121:資料收集模組 121: Data Collection Module
122:分析模組 122: Analysis Module
123:輸出模組 123: output module
21、22、23、24、30:曲線圖 21, 22, 23, 24, 30: graph
31:實際價格線 31: Actual price line
32:預測價格線 32: Forecast price line
33:誤差下限值 33: Lower limit of error
34:誤差上限值 34: Upper limit of error
圖1所繪示為本創作之原料價格預測系統之架構圖。 Figure 1 shows the structure of the raw material price prediction system of this creation.
圖2所繪示為分析曲線圖之示意圖。 Figure 2 shows a schematic diagram of the analysis curve.
圖3所繪示為數據驗證的示意圖。 Figure 3 shows a schematic diagram of data verification.
本創作提供一種原料價格預測系統,收集歷史價格資料與市場資料,透過人工智慧演算法來預測原料價格走向,可供業者參考並制定適當的採購策略。 This creation provides a raw material price prediction system that collects historical price data and market data, and predicts the price trend of raw materials through artificial intelligence algorithms, which can be used for reference by the industry and formulate appropriate procurement strategies.
請參閱圖1,圖1所繪示為本創作之原料價格預測系統之架構圖。本創作之原料價格預測系統100包括至少一操作裝置110與一伺服主機120。
Please refer to Figure 1. Figure 1 shows the architecture of the raw material price prediction system created by this creation. The raw material
操作裝置110為使用者操作的裝置,是一種可連接網際網路的電子裝置,可為個人電腦或智慧型裝置。在本實施例中,操作裝置110包括一輸入模組111,輸入模組111適於輸入至少一價格資料。價格資料便是原料的價格,並且包括歷史價格。因此價格資料中還包括一時間資料,時間資料包括年、月、日等資料。
The
伺服主機120為原料價格預測系統100主要運算的元件,可為單一伺服器運算,也可為多個伺服器聯合運算。且伺服主機120是通訊連接至操作裝置110,並從該操作裝置110接收價格資料。
The
在一實施例中,伺服主機120包括一資料收集模組121、一分析模組122與一輸出模組123。資料收集模組121適於從外部的一網際網路10收集多個市場資料。資料收集模組121例如是一種爬蟲程式,可自動從網際網路上收集資料。所收集的資料例如為市場動態等資料。
In one embodiment, the
分析模組122則適於以一第一演算法計算該價格資料與該市場資料,並產出多個結果資料。並且,分析模組122所使用的演算法為時間序列演算法。也就是說,分析模組122分別取得價格資料與市場資料,並以第一演算法使用價格資料與市場資料建立模型,從而預測未來原料價格可能的走向,並產生出預測的結果。
The
在一實施例中,分析模組122中還包括一第二演算法,並且分析模組122可接收來自操作裝置110的演算法指令,並且根據演算法指令選擇以第一演算法或第二演算法進行計算。也就是說,分析模組122中至少包括兩種演算法,並且操作者可選擇演算法進行計算,進而獲得不同的預測結果。在一實施例中,
第一演算法例如為Prophet,第二演算法例如為ARIMA(Autoregressive Integrated Moving Average Model)。
In an embodiment, the
Prophet是一種基於加法模型預測時間序列資料的過程(Additive regression model),特色在於非線性趨勢與年、周、日季節性以及假日效應相吻合,非常適用於分析具有強烈季節效應的歷史資料。而Prophet的模型定義如下:y(t)=g(t)+s(t)+h(t)+εt Prophet is a process of predicting time series data based on an additive model (Additive regression model). The characteristic is that nonlinear trends coincide with annual, weekly, and daily seasonality and holiday effects. It is very suitable for analyzing historical data with strong seasonal effects. The Prophet model is defined as follows: y(t)=g(t)+s(t)+h(t)+ε t
其中,g(t)為分段線性或logistic增長曲線趨勢。通過從數據中選擇變化點,讓Prophet自動探測趨勢變化。g(t)是包含使用傅立葉級數建模每年的季節分量及使用虛變量(dummy variables)的每周的季節分量。h(t)為用戶提供的重要節假日列表。εt則為誤差。 Among them, g(t) is a piecewise linear or logistic growth curve trend. By selecting change points from the data, Prophet automatically detects trend changes. g(t) is the seasonal component of each year using Fourier series modeling and the weekly seasonal component of using dummy variables. h(t) provides a list of important holidays for users. ε t is the error.
ARIMA模型則是回歸分析的一種形式。其中AR(Autoregressive,自迴歸):指用同一變數,例如x的之前各期,亦即x 1至x t-1來預測本期x t的表現,並假設它們為線性關係,模型定義為:
I(Integrated)是指差分時間序列的原始資料使其平穩。MA(Moving Average,移動平均)模型指序列可以由同期與過去的隨機項給予不同的權重來解釋,定義為:x t =μ+w t +θ t ω t-1+θ 2 ω t-2+…+θ q w t-q I (Integrated) refers to the original data of the difference time series to make it stable. The MA (Moving Average) model means that the sequence can be explained by giving different weights to the random terms of the same period and the past, defined as: x t = μ + w t + θ t ω t -1 + θ 2 ω t -2 +…+ θ q w tq
ARIMA模型的標準表示法帶有p、d、q參數來表示所使用的模型的類型。其中,p為自回歸項數;d為差分次數;q為移動平均項數。 The standard notation of ARIMA model has p, d, q parameters to indicate the type of model used. Among them, p is the number of autoregressive terms; d is the number of differences; q is the number of moving average terms.
輸出模組123則適於將結果資料傳送至操作裝置110。即是輸出模組123可將分析的結果轉換成結果資料,一種操作裝置110能夠顯示的檔案格式。操作者即可透過操作裝置110瀏覽這些預測結果。
The
請參閱圖2,圖2所繪示為分析曲線圖之示意圖。分析模組122取得價格資料後,根據價格資料中的時間資料,將其轉換為曲線圖,如曲線圖21,即是價格與時間的關係圖,橫軸為時間(T),縱軸為價格(P)。
Please refer to Figure 2, which is a schematic diagram of the analysis curve. After the
接下來,分析模組122會對曲線圖21進行時間裂解,並產生出不同意義的曲線圖。如曲線圖22表示價格的長期趨勢走向。曲線圖23表示每個季節的價格波動。曲線圖24則是殘差的部分,其中透過市場資料,則可從曲線圖24中找出市場事件(如金融風暴、關稅設置等)的異常變化。經過分析曲線圖22、23、24,即可得到價格預測的曲線模型,進一步可產生結果資料,並提供給操作者下載參與。
Next, the
請參閱圖3,圖3所繪示為數據驗證的示意圖。圖3是將2019年7月至2020年1月PVC粉的價格資料輸入原料價格預測系統100進行預測的示意圖。將價格資料輸入原料價格預測系統100後,會產生曲線圖30。曲線圖30中包括了實際價格線31、預測價格線32、誤差下限值33與誤差上限值34。而從圖3中可以看出,原料價格預測系統100所預測的預測價格線32與實際價格線31十分接近,實際價格線31也落在誤差下限值33與誤差上限值34之間。
Please refer to FIG. 3, which is a schematic diagram of data verification. FIG. 3 is a schematic diagram of inputting the price data of PVC powder from July 2019 to January 2020 into the raw material
唯在2019年11月時中國大陸取消PVC粉的反傾銷稅,進而導致PVC粉價格上漲,而讓實際價格線31與預測價格線32出現了偏差,並且超出了誤差上限值34的範圍。顯見市場消息仍須納入預測模型考量。因此,本創作之原料價格預測系統100設置了資料收集模組121,從網際網路10收集市場消息納入預測模型,提高預測準確度。
Only in November 2019, the Chinese mainland cancelled the anti-dumping duty on PVC powder, which led to the increase in the price of PVC powder, which caused the
本創作之原料價格預測系統100可透過歷史價格資料與市場資訊,透過人工智慧的演算,更精確的預測原料價格的未來走向,讓業者更能夠掌握原料價格,制訂對事業更有利的採購策略。
The raw material
本創作以實施例說明如上,然其並非用以限定本創作所主張之專利權利範圍。其專利保護範圍當視後附之申請專利範圍及其等同領域而定。凡本領域具有通常知識者,在不脫離本專利精神或範圍內,所作之更動或潤飾,均屬於本創作所揭示精神下所完成之等效改變或設計,且應包含在下述之申請專利範圍內。 This creation is described above with examples, but it is not used to limit the scope of patent rights claimed by this creation. The scope of its patent protection shall be determined by the attached scope of patent application and its equivalent fields. Anyone with ordinary knowledge in the field, without departing from the spirit or scope of this patent, makes changes or modifications that are equivalent changes or designs completed under the spirit of this creation, and should be included in the following patent scope Inside.
10:網際網路 10: Internet
100:原料價格預測系統 100: Raw material price prediction system
110:操作裝置 110: operating device
111:輸入模組 111: Input Module
120:伺服主機 120: Servo host
121:資料收集模組 121: Data Collection Module
122:分析模組 122: Analysis Module
123:輸出模組 123: output module
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109212169U TWM606822U (en) | 2020-09-16 | 2020-09-16 | Raw material price prediction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109212169U TWM606822U (en) | 2020-09-16 | 2020-09-16 | Raw material price prediction system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM606822U true TWM606822U (en) | 2021-01-21 |
Family
ID=75239041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109212169U TWM606822U (en) | 2020-09-16 | 2020-09-16 | Raw material price prediction system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM606822U (en) |
-
2020
- 2020-09-16 TW TW109212169U patent/TWM606822U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Forecasting energy demand using neural-network-based grey residual modification models | |
CN107464025B (en) | Supply chain demand prediction and intelligent decision method based on big data | |
Yu et al. | An intelligent quick prediction algorithm with applications in industrial control and loading problems | |
CN107122939B (en) | Joint prediction method for warehousing quantity and ex-warehouse quantity | |
Almalaq et al. | Deep learning application: Load forecasting in big data of smart grids | |
CN112182118B (en) | Target object prediction method based on multiple data sources and related equipment thereof | |
Urraca et al. | Improving hotel room demand forecasting with a hybrid GA-SVR methodology based on skewed data transformation, feature selection and parsimony tuning | |
Jauhar et al. | Sustainable supplier selection: a new differential evolution strategy with automotive industry application | |
CN116843216A (en) | Index early warning method and device, computer equipment and storage medium | |
CN116911962A (en) | Article selecting device and method based on data model | |
Canizes et al. | Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets | |
Sen et al. | A fuzzy inventory model with shortages using different fuzzy numbers | |
Lucic et al. | Performance of the autoregressive integrated moving average model with exogenous variables statistical model on the intraday market for the Denmark-West bidding area | |
CN117635185A (en) | Big data-based manufacturing cost online management method and server | |
TWM606822U (en) | Raw material price prediction system | |
Mohammed et al. | Predicting performance measurement of residential buildings using machine intelligence techniques (MLR, ANN and SVM) | |
Castellanos et al. | Predictive business operations management | |
Rostek | Productivity and improvement of logistics processes in the company manufacturing vehicle semi-trailers–Case study | |
Budeba et al. | Predicting the efficiency of a surface coal mine for competitiveness | |
Kitsatoglou et al. | An ensemble approach for enhanced Day-Ahead price forecasting in electricity markets | |
Abbasi et al. | Applying Neural Networks to Predict Ventilator Demand: A Study of Pakistan's Healthcare Sector | |
Rezaei et al. | Innovative Pricing Mechanisms: From Predictive Modeling to Real-Time Adjustments in Multi-Generation Products | |
Sharma et al. | Price prediction of Ethereum using time series and deep learning techniques | |
JP2020115276A (en) | Information processing method, information processing device, program, and generation method of learned model | |
Chen et al. | A fuzzy polynomial fitting and mathematical programming approach for enhancing the accuracy and precision of productivity forecasting |