TWM601397U - Customized marketing system with customer clustering service - Google Patents
Customized marketing system with customer clustering service Download PDFInfo
- Publication number
- TWM601397U TWM601397U TW109206194U TW109206194U TWM601397U TW M601397 U TWM601397 U TW M601397U TW 109206194 U TW109206194 U TW 109206194U TW 109206194 U TW109206194 U TW 109206194U TW M601397 U TWM601397 U TW M601397U
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- digital
- trajectory
- analyzed
- training
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一種客戶分群服務客製化行銷系統,一處理模組利用一深度學習演算法,根據一儲存模組儲存的多筆數位軌跡訓練資料,建立一預訓練模型,並利用該預訓練模型,根據該等數位軌跡訓練資料,產生多筆向量資料,再利用一機器學習演算法,根據該等向量資料及該儲存模組儲存的多筆交易訓練資料,建立一預測模型,且利用該預測模型,根據經由一通訊模組接收到來自一伺服器的多筆待分析數位軌跡資料,產生多個預測結果,並根據該等預測結果,從該等待分析數位軌跡資料中,獲得多個目標待分析數位軌跡資料,最後根據該等目標待分析數位軌跡資料,產生一行銷名單。A customized marketing system for customer grouping services. A processing module uses a deep learning algorithm to establish a pre-training model based on multiple digital trajectory training data stored in a storage module, and uses the pre-training model according to the Wait for the digital trajectory training data, generate multiple vector data, and then use a machine learning algorithm to establish a prediction model based on the vector data and the multiple transaction training data stored in the storage module, and use the prediction model according to Receive multiple digital trajectories to be analyzed from a server via a communication module, generate multiple prediction results, and obtain multiple target digital trajectories to be analyzed from the digital trajectory data to be analyzed based on the prediction results Finally, based on the digital trajectory data to be analyzed, a one-line sales list is generated.
Description
本新型是有關於一種行銷系統,特別是指一種客戶分群服務客製化行銷系統。 This model relates to a marketing system, in particular to a customized marketing system for customer grouping services.
現有金融產業從資料庫中的客戶資料進行規則篩選後,找出潛力客戶,以建立的行銷名單,而通常為讓行銷部門能夠快速的了解客戶需求,會再對潛力客戶進行分群。 The existing financial industry conducts regular screening from the customer data in the database to find potential customers to establish a marketing list. Usually, the marketing department can quickly understand customer needs and then group potential customers.
然而,現有金融產業常是以固定規則篩選出潛力客戶名單,並進行分群,例如年齡介於25~40歲且有購買過外幣基金的客戶系統會判定之後可能會再購買外幣基金,故系統判定該客戶為潛力客戶,且歸類為有高度換匯需求的群組,但是客戶過去有購買過外幣基金,並不代表未來也會購買外幣基金,現有行銷的篩選方式無法精確地找出潛力客戶。 However, the existing financial industry often uses fixed rules to filter out the list of potential customers and group them into groups. For example, customers who are between 25 and 40 years old and have purchased foreign currency funds will be determined by the system to purchase foreign currency funds later, so the system determines The customer is a potential customer and is classified as a group with high foreign exchange needs. However, the customer has purchased foreign currency funds in the past, which does not mean that they will purchase foreign currency funds in the future. The existing marketing screening methods cannot accurately identify potential customers .
因此,本新型之目的,即在提供一種能精確地找出潛力 客戶的客戶分群服務客製化行銷系統。 Therefore, the purpose of this new model is to provide a method that can accurately identify potential Customer segmentation service customized marketing system for customers.
於是,本新型客戶分群服務客製化行銷系統,適用於將一伺服器儲存的多筆相關於多個待分群客戶的待分析數位軌跡資料進行分群,每一待分析數位軌跡資料包括多個相關於一網站的待分析瀏覽紀錄,包含一通訊模組、一儲存模組,及一處理模組。 Therefore, the new customer grouping service customized marketing system is suitable for grouping multiple pieces of to-be-analyzed digital trajectory data stored in a server that are related to multiple customers to be grouped. Each piece of digital trajectory data to be analyzed includes multiple related The browsing record to be analyzed on a website includes a communication module, a storage module, and a processing module.
該通訊模組經由一通訊網路連接該伺服器。 The communication module is connected to the server via a communication network.
該儲存模組儲存多筆分別相關於多個客戶的數位軌跡訓練資料、多筆分別對應該等數位軌跡訓練資料的交易訓練資料,及多筆相關於多個待分群客戶的待分析數位軌跡資料,每一數位軌跡訓練資料包括多個相關於該網站的瀏覽紀錄,每一交易訓練資料包括多個商品購買紀錄。 The storage module stores multiple digital trajectory training data related to multiple customers, multiple transaction training data corresponding to the digital trajectory training data, and multiple digital trajectory data to be analyzed related to multiple customers to be grouped , Each digital trajectory training data includes multiple browsing records related to the website, and each transaction training data includes multiple commodity purchase records.
該處理模組電連接該通訊模組及該儲存模組,該處理模組利用一深度學習演算法,根據該等數位軌跡訓練資料,建立一用以將資料轉換成向量的預訓練模型,並利用該預訓練模型,根據該等數位軌跡訓練資料,產生多筆分別對應該等數位軌跡訓練資料的向量資料,再利用一機器學習演算法,根據該等交易訓練資料及該等向量資料,建立一用以預測客戶是否會購買商品的預測模型,且利用該預測模型,根據該等待分析數位軌跡資料,產生多個分別對應該等待分析數位軌跡資料的預測結果,並根據該等預測結果,從該等待分析數位軌跡資料中,獲得多個目標待分析數位軌跡資料, 其中該等目標待分析數位軌跡資料所對應的預測結果為會購買商品,最後根據該等目標待分析數位軌跡資料,產生一行銷名單。 The processing module is electrically connected to the communication module and the storage module. The processing module uses a deep learning algorithm to create a pre-training model for converting the data into vectors based on the digital trajectory training data, and Using the pre-training model, based on the digital trajectory training data, multiple vector data corresponding to the digital trajectory training data are generated, and then a machine learning algorithm is used to establish the transaction training data and the vector data. A prediction model for predicting whether a customer will purchase a product, and using the prediction model to generate a plurality of prediction results corresponding to the waiting analysis digital trajectory data based on the waiting analysis digital trajectory data, and according to the prediction results, In the digital trajectory data waiting to be analyzed, multiple target digital trajectory data to be analyzed are obtained, The prediction result corresponding to the digital trajectory data of the targets to be analyzed is that goods will be purchased, and finally a one-line sales list is generated based on the digital trajectory data of the targets to be analyzed.
本新型之功效在於:藉由該處理模組根據該等預測結果,精確地找出會購買商品的該等目標待分析數位軌跡資料。 The effect of the present invention is that the processing module accurately finds out the digital trajectory data to be analyzed for the targets that will purchase the goods according to the prediction results.
1:客戶分群服務客製化行銷系統 1: Customer segmentation service customized marketing system
11:通訊模組 11: Communication module
12:儲存模組 12: Storage module
13:處理模組 13: Processing module
21~27:步驟 21~27: Steps
261~263:步驟 261~263: Step
本新型之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一方塊圖,說明本新型客戶分群服務客製化行銷系統的一實施例;圖2是一流程圖,說明本新型客戶分群服務客製化行銷系統的該實施例所執行的步驟流程;及圖3一流程圖,輔助圖2說明步驟26的子步驟。
The other features and effects of the present invention will be clearly presented in the implementation with reference to the drawings, in which: Figure 1 is a block diagram illustrating an embodiment of the present new customer segmentation service customized marketing system; Figure 2 is A flowchart illustrating the flow of steps performed by this embodiment of the new type of customer grouping service customized marketing system; and Fig. 3 is a flowchart assisting Fig. 2 to illustrate the sub-steps of
參閱圖1,本新型客戶分群服務客製化行銷系統1的一實施例,適用於將一伺服器2儲存的多筆相關於多個待分群客戶的待分析數位軌跡資料進行分群,每一待分析數位軌跡資料包括多個相關於一網站的待分析瀏覽紀錄,該客戶分群服務客製化行銷系統1包含一通訊模組11、一儲存模組12,及一處理模組13。值得注意
的是,在本實施例中,該客戶分群服務客製化行銷系統1例如為一電腦主機,但不以此為限。
Referring to Figure 1, an embodiment of the new customer grouping service customized
該通訊模組11經由一通訊網路100連接該伺服器2,該通訊網路100例如為網際網路(internet)或是內部網路(intranet)。
The
值得注意的是,在本實施例中,該伺服器2架設一包括多個頁面的網站,並透過在該網站埋設追蹤代碼(Tracking Code),以搜集該等待分析數位軌跡資料,但不以此為限。
It is worth noting that in this embodiment, the
該儲存模組12儲存多筆分別相關於多個客戶的數位軌跡訓練資料、多筆分別對應該等數位軌跡訓練資料的交易訓練資料,及多筆相關於多個待分群客戶的待分析數位軌跡資料,每一數位軌跡訓練資料包括多個相關於該網站的瀏覽紀錄,每一交易訓練資料包括多個商品購買紀錄。值得注意的是,在本實施例中,每一瀏覽紀錄包括一相關於該網站之其中一頁面的瀏覽頁面、一交談識別碼(Session ID)、一客戶識別碼、一相關於瀏覽裝置的訊錄(cookies)、一頁面瀏覽時間,及一前一瀏覽頁面,每一商品購買紀錄包括一客戶識別碼、一交易型態、一交易金額、一手續費,及一交易時間,但不以此為限。
The
該處理模組13電連接該通訊模組11及該儲存模組12。
The
參閱圖1及圖2,說明本新型客戶分群服務客製化行銷系統1的該實施例所執行的步驟流程。
1 and 2 to illustrate the flow of steps executed by this embodiment of the new customer segmentation service customized
在步驟21中,該處理模組13利用一深度學習演算法,根據該等數位軌跡訓練資料,建立一用以將資料轉換成向量的預訓練模型。值得注意的是,在本實施例中,該深度學習演算法例如為一相關於自然語言處理(Natural Language Processing,NLP))的嵌入語言模型(Embeddings from Language Models,ELMo)深度學習演算法,但不以此為限。
In
在步驟22中,該處理模組13利用該預訓練模型,根據該等數位軌跡訓練資料,產生多筆分別對應該等數位軌跡訓練資料的向量資料。值得注意的是,在本實施例中,每一向量資料包括多個相關於所對應之數位軌跡訓練資料的瀏覽紀錄之瀏覽頁面的詞向量(word vector),但不以此為限。
In
在步驟23中,該處理模組13利用一機器學習演算法例如基於樹模型(Tree-Based Models)及隨機森林(Random Forest)等演算法,根據該等交易訓練資料及該等向量資料,建立一用以預測客戶是否會購買商品的預測模型。
In
在步驟24中,該處理模組13利用該預測模型,根據經由該通訊模組11接收到來自該伺服器2的該等待分析數位軌跡資料,產生多個分別對應該等待分析數位軌跡資料的預測結果,每一預測結果為會購買商品或不會購買商品。
In
在步驟25中,該處理模組13根據該等預測結果,從該等
待分析數位軌跡資料中,獲得多個目標待分析數位軌跡資料,其中該等目標待分析數位軌跡資料所對應的預測結果為會購買商品。
In
在步驟26中,該處理模組13利用一分群演算法,將該等目標待分析數位軌跡資料進行分群,以獲得多個群組。
In
搭配參閱圖3,步驟26包括子步驟261~263,以下說明步驟26的子步驟。
3 in conjunction,
在步驟261中,該處理模組13利用一基因序列比對(Sequence Alignment)演算法將該等目標待分析數位軌跡資料進行分群,以獲得多個軌跡群組。
In
在步驟262中,對於每一軌跡群組,該處理模組13利用該預訓練模型,根據該軌跡群組的目標待分析數位軌跡資料,產生多筆分別對應該軌跡群組的目標待分析數位軌跡資料的目標向量資料。
In
在步驟263中,該處理模組13利用該分群演算法,根據該等軌跡群組對應的目標向量資料,將該等軌跡群組進行分群,以獲得該等群組。
In
值得注意的是,在本實施例中,該處理模組13在步驟261先利用一基因序列比對演算法進行細分群,並在步驟263利用該分群演算法(例如k-means演算法)進行粗分群,舉例來說,有3578筆目標待分析數位軌跡資料,經過步驟261細分群後,該處理模組
13將該等3578筆目標待分析數位軌跡資料分群成326個軌跡群組,並經過步驟263粗分群後,該處理模組13將該等326個軌跡群組分群成7個群組。
It is worth noting that, in this embodiment, the
在步驟27中,該處理模組13根據該等目標待分析數位軌跡資料及該等群組,產生一行銷名單。
In
綜上所述,本新型客戶分群服務客製化行銷系統,藉由該處理模組13根據該等數位軌跡訓練資料建立該預訓練模型,且利用該預訓練模型產生對應該等數位軌跡訓練資料的該等向量資料,再以該預測模型,根據該通訊模組11從該伺服器2接收到即時的該等待分析數位軌跡資料產生該等預測結果,最後根據該等預測結果,精確地找出會購買商品的該等目標待分析數位軌跡資料,並以該等目標待分析數位軌跡資料產生該行銷名單,使得行銷部門能根據該行銷名單產生即時性的客製化推播服務,故確實能達成本新型的目的。
In summary, the new customer segmentation service customized marketing system uses the
惟以上所述者,僅為本新型之實施例而已,當不能以此限定本新型實施之範圍,凡是依本新型申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。 However, the above-mentioned are only examples of the present model, and should not be used to limit the scope of implementation of the present model, all simple equivalent changes and modifications made in accordance with the patent scope of the present model application and the contents of the patent specification still belong to This new patent covers the scope.
1:客戶分群服務客製化行銷系統 1: Customer segmentation service customized marketing system
11:通訊模組 11: Communication module
12:儲存模組 12: Storage module
13:處理模組 13: Processing module
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109206194U TWM601397U (en) | 2020-05-20 | 2020-05-20 | Customized marketing system with customer clustering service |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109206194U TWM601397U (en) | 2020-05-20 | 2020-05-20 | Customized marketing system with customer clustering service |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM601397U true TWM601397U (en) | 2020-09-11 |
Family
ID=73645157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109206194U TWM601397U (en) | 2020-05-20 | 2020-05-20 | Customized marketing system with customer clustering service |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM601397U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI747290B (en) * | 2020-05-20 | 2021-11-21 | 中國信託商業銀行股份有限公司 | Customer grouping service customized marketing method and system |
-
2020
- 2020-05-20 TW TW109206194U patent/TWM601397U/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI747290B (en) * | 2020-05-20 | 2021-11-21 | 中國信託商業銀行股份有限公司 | Customer grouping service customized marketing method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8032448B2 (en) | Detecting and measuring risk with predictive models using content mining | |
US20210374164A1 (en) | Automated and dynamic method and system for clustering data records | |
CA3007338A1 (en) | Method and system for purchase behavior prediction of customers | |
CN111738532A (en) | Method and system for acquiring influence degree of event on object | |
KR102407057B1 (en) | Systems and methods for analyzing the public data of SNS user channel and providing influence report | |
TWI747290B (en) | Customer grouping service customized marketing method and system | |
CN114202336A (en) | Risk behavior monitoring method and system in financial scene | |
KR102461415B1 (en) | Method for credit evaluation based on external data and apparatus for performing the method | |
CN112070543A (en) | Method for detecting comment quality in E-commerce website | |
Bouzidi et al. | Deep learning-based automated learning environment using smart data to improve corporate marketing, business strategies, fraud detection in financial services, and financial time series forecasting | |
CN114997916A (en) | Prediction method, system, electronic device and storage medium of potential user | |
CN115545886A (en) | Overdue risk identification method, overdue risk identification device, overdue risk identification equipment and storage medium | |
CN111143533A (en) | Customer service method and system based on user behavior data | |
TWM601397U (en) | Customized marketing system with customer clustering service | |
Elrefai et al. | Using artificial intelligence in enhancing banking services | |
KR102433933B1 (en) | Method for credit evaluation based on data collected via e-commerce sales and distribution management system platform | |
Tan et al. | The impact of feature selection: A data‐mining application in direct marketing | |
CN113706258B (en) | Product recommendation method, device, equipment and storage medium based on combined model | |
CN115018576A (en) | Financial data processing method, device, equipment and storage medium | |
JP6910515B1 (en) | Analytical instruments, analytical methods and analytical programs | |
CN114399352A (en) | Information recommendation method and device, electronic equipment and storage medium | |
Lee et al. | Application of machine learning in credit risk scorecard | |
CN111861493A (en) | Information processing method, information processing device, electronic equipment and storage medium | |
Goel et al. | Classification Of Positive And Negative Fake Online Reviews Using Machine Learning Techniques | |
Aurelia et al. | Designing a mobile based-application using Apriori algorithm: A Business development strategy during pandemic COVID-19 |