TWM601387U - Intelligent system for testing sensed data - Google Patents

Intelligent system for testing sensed data Download PDF

Info

Publication number
TWM601387U
TWM601387U TW109205865U TW109205865U TWM601387U TW M601387 U TWM601387 U TW M601387U TW 109205865 U TW109205865 U TW 109205865U TW 109205865 U TW109205865 U TW 109205865U TW M601387 U TWM601387 U TW M601387U
Authority
TW
Taiwan
Prior art keywords
data
model
sensing data
intelligent detection
detected
Prior art date
Application number
TW109205865U
Other languages
Chinese (zh)
Inventor
李榮生
高于勝
簡嘉宏
王薇婷
Original Assignee
治略資訊整合股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 治略資訊整合股份有限公司 filed Critical 治略資訊整合股份有限公司
Priority to TW109205865U priority Critical patent/TWM601387U/en
Publication of TWM601387U publication Critical patent/TWM601387U/en

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

An intelligent system for testing sensed data is provided. The system includes a computer system having a memory for storing instructions and algorithmic programs, and a database for storing sensed data obtained from an object to be tested. The sensed data is divided into a training set and a testing set. A deep learning algorithm is performed on the training set for retrieving features of the object so as to establish a deep learning based testing model. The testing set is used to test the testing model, and a machine learning algorithm is performed on the data that fails to pass the test. Historical parameter data is further introduced to train the testing model being established by machine learning, and a model optimization algorithm is applied to optimize the testing model for obtaining optimized control parameters of the object.

Description

感測數據智能檢測系統Sensing data intelligent detection system

說明書公開一種檢測感應數據的技術,特別是指利用深度學習法與機器學習法從感測數據建立檢測模型的一種感測數據智能檢測系統。The specification discloses a technology for detecting sensing data, in particular a sensing data intelligent detection system that uses deep learning and machine learning methods to establish a detection model from the sensing data.

當檢測一個產品、一個系統或一個場域是否有異常時,常見的方式是利用特定感測器感測出數據,如感測聲音、拍攝影像等,之後以分析工具分析出感測數據中的資訊,藉此判斷待測對象是否有異常狀況。When detecting whether a product, a system, or a field is abnormal, the common way is to use a specific sensor to sense the data, such as sensing sound, shooting images, etc., and then use analysis tools to analyze the sensed data Information to determine whether the object under test is abnormal.

舉例來說,當要判斷一個物體表面是否有瑕疵,可以照相機拍攝物體表面,可比對物體表面影像與樣本影像,可判斷出是否有異常的情況。若以馬達為例,一般的方式是以聲音感測器錄製馬達運轉時產生的音訊,經比對聲音樣板後可判斷是否運作有異常,作為日後改良的依據。For example, when it is necessary to determine whether an object surface is flawed, the surface of the object can be photographed with a camera, and the surface image of the object can be compared with the sample image to determine whether there is any abnormality. Taking a motor as an example, the general method is to record the audio generated when the motor is running by a sound sensor. After comparing the sound model, it can be judged whether there is abnormal operation, which can be used as a basis for future improvement.

說明書公開一種感測數據智能檢測系統,系統如一電腦系統,其中運行感測數據的檢測方法,電腦系統設有一記憶體,其中儲存執行感測數據智能檢測方法的程式集以及演算法,電腦系統還設有一數據庫,其中儲存自一待檢測對象所取得的感測數據。The specification discloses an intelligent detection system for sensing data. The system is like a computer system in which a detection method for sensing data is run. The computer system is provided with a memory in which programs and algorithms for executing the intelligent detection method for sensing data are stored. There is a database in which the sensing data obtained from an object to be detected is stored.

在一實施例中,感測數據為通過感測器感測待檢測對象得出的數據,在系統所執行的感測數據智能檢測方法中,先將感測數據區分為訓練數據與測試數據,對其中的訓練數據執行一深度學習演算法,從該訓練數據中取得關於待檢測對象的特徵,建立用以檢測待檢測對象的一檢測模型,接著以其中的測試數據測試此檢測模型,針對測試結果為不通過的測試數據,執行機器學習演算法,並以歷史參數數據訓練檢測模型,以一模型優化演算法優化檢測模型,以得出經優化待檢測對象的控制參數。In an embodiment, the sensed data is data obtained by sensing the object to be detected by the sensor. In the intelligent detection method for sensed data executed by the system, the sensed data is first divided into training data and test data. Perform a deep learning algorithm on the training data, obtain the characteristics of the object to be detected from the training data, establish a detection model for detecting the object to be detected, and then use the test data to test the detection model. The result is the failed test data, the machine learning algorithm is executed, the detection model is trained with historical parameter data, and the detection model is optimized with a model optimization algorithm to obtain the optimized control parameters of the object to be tested.

進一步地,還從訓練數據中得出驗證數據,於上述步驟中從訓練數據經深度學習演算法形成檢測模型時,可以此驗證數據驗證檢測模型,以得出用以產生控制參數的一參數模型。所述控制參數為驅動待檢測對象運作的參數,產生經過優化的控制參數即為所述方法的主要目的之一。Further, verification data is also obtained from the training data. When the detection model is formed from the training data through the deep learning algorithm in the above steps, the verification data can be used to verify the detection model to obtain a parameter model for generating control parameters . The control parameters are parameters that drive the operation of the object to be detected, and generating optimized control parameters is one of the main purposes of the method.

進一步地,可再以模型優化演算法優化參數模型,再產生經優化的控制參數,並繼續驅動待檢測對象,反覆以上步驟,再次得出感測數據,通過重複感測數據智能檢測方法優化待檢測對象的控制參數。Further, the model optimization algorithm can be used to optimize the parameter model, and then generate optimized control parameters, and continue to drive the object to be detected. Repeat the above steps to obtain the sensor data again, and optimize the sensor data by repeating the sensor data intelligent detection method. Control parameters of the detection object.

進一步地,在一實施例中,可以一K折交叉驗證法利用驗證數據評估從多個深度學習演算法與機器學習法產生的多個模型,評估的因子例如為從多個深度學習演算法產生的該多個模型中得出各模型的準確度、精確度與召回率,再根據評分從中選出檢測模型。Further, in one embodiment, a K-fold cross-validation method can be used to evaluate multiple models generated from multiple deep learning algorithms and machine learning methods using verification data, and the evaluation factors are, for example, generated from multiple deep learning algorithms The accuracy, precision and recall rate of each model are obtained from the multiple models, and then the detection model is selected based on the score.

為使能更進一步瞭解本新型的特徵及技術內容,請參閱以下有關本新型的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本新型加以限制。In order to further understand the features and technical content of the present invention, please refer to the following detailed descriptions and drawings about the present invention. However, the drawings provided are only for reference and explanation and are not used to limit the present invention.

以下是通過特定的具體實施例來說明本創作的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本創作的優點與效果。本創作可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本創作的構思下進行各種修改與變更。另外,本創作的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本創作的相關技術內容,但所公開的內容並非用以限制本創作的保護範圍。The following are specific specific examples to illustrate the implementation of this creation, and those skilled in the art can understand the advantages and effects of this creation from the content disclosed in this specification. This creation can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of this creation. In addition, the drawings in this creation are merely schematic illustrations, and are not depicted in actual size, and are stated in advance. The following embodiments will further describe the related technical content of this creation in detail, but the disclosed content is not intended to limit the protection scope of this creation.

應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。It should be understood that although terms such as “first”, “second”, and “third” may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are mainly used to distinguish one element from another, or one signal from another signal. In addition, the term "or" used in this document may include any one or a combination of more of the associated listed items depending on the actual situation.

揭露書公開一種感測數據智能檢測系統,其中運行感測數據智能檢測方法,主要目的之一是利用深度學習演算法初期訓練與建立模型,以及配合機器學習演算法執行後期測試與訓練,從感測數據中訓練得出用以檢測特定待檢測對象的檢測模型。舉例來說,待檢測對象可為一個產品、一個系統或一個場域,利用感測器感測待檢測對象的特定資訊,如影像、聲音、震動,得出的感測數據如拍攝待檢測對象得出的影像、錄製待檢測對象產生的聲音並轉換得到的頻譜,或是偵測待檢測對象運作時產生的震動的信息,這些感測數據可成為檢測各種待檢測對象的信息,用以優化驅動待檢測對象運作的控制參數。The disclosure book discloses a sensory data intelligent detection system, in which the sensory data intelligent detection method is run. One of the main purposes is to use the deep learning algorithm to train and build the model, and to cooperate with the machine learning algorithm to perform later testing and training. A detection model for detecting a specific object to be detected is trained from the measurement data. For example, the object to be inspected can be a product, a system, or a field. The sensor is used to sense specific information of the object to be inspected, such as images, sounds, and vibrations, and the resulting sensing data such as shooting the object to be inspected The obtained image, the recorded sound produced by the object to be detected and converted spectrum, or the information of the vibration generated when the object to be detected is detected in operation, these sensed data can be used as information for detecting various objects to be detected for optimization Control parameters that drive the operation of the object to be detected.

實現所述感測數據智能檢測系統的實施例可參考圖1所示的系統架構實施例圖。For an embodiment of the intelligent detection system for sensing data, refer to the system architecture embodiment diagram shown in FIG. 1.

圖中顯示一待檢測對象10,待檢測對象以控制參數驅動而運作,所述感測數據智能檢測系統能夠通過學習感測數據優化其本身的控制參數,或是優化產生此待檢測對象的系統的控制參數。舉例來說,待檢測對象10通過一或多個感測器(感測器一101、感測器二102與感測器三103)感測待檢測對象10得出感測數據,若以拍攝待檢測對象10產生影像為例,感測器一101、感測器二102與感測器三103可為拍攝多角度的攝影機;若以感測某個場域的環境情形,感測器一101、感測器二102與感測器三103可為設於場域中不同位置感測器。感測器一101、感測器二102與感測器三103產生的感測數據可儲存於感測數據處理主機12,再轉換與初步處理成為電腦系統14中數據庫145中的數據。The figure shows an object 10 to be detected. The object to be detected is driven by control parameters. The sensing data intelligent detection system can optimize its own control parameters by learning the sensing data, or optimize the system that generates the object to be detected Control parameters. For example, the object to be detected 10 is sensed by one or more sensors (sensor one 101, sensor two 102, and sensor three 103) to obtain sensing data. Taking the image generated by the object to be detected 10 as an example, the first sensor 101, the second sensor 102, and the third sensor 103 can be cameras that shoot at multiple angles; if it is used to sense the environment of a certain field, the first sensor 101. The second sensor 102 and the third sensor 103 may be sensors located at different positions in the field. The sensing data generated by sensor one 101, sensor two 102, and sensor three 103 can be stored in the sensing data processing host 12, and then converted and preliminarily processed into data in the database 145 in the computer system 14.

電腦系統14設有處理器141、記憶體143以及數據庫145,其中記憶體143用以儲存執行感測數據智能檢測方法的程式集以及演算法,數據庫145用以儲存以一或多個感測器量測待檢測對象10後所得出的感測數據,再以電腦系統14的處理器141執行感測數據智能檢測方法。The computer system 14 is provided with a processor 141, a memory 143, and a database 145. The memory 143 is used to store programs and algorithms for performing the intelligent detection method of sensing data, and the database 145 is used to store one or more sensors. The sensing data obtained after measuring the object 10 to be inspected, and then the processor 141 of the computer system 14 executes the intelligent sensing data detection method.

運用上述系統架構,圖2顯示系統所執行的感測數據智能檢測方法的主要流程實施例圖。Using the above system architecture, FIG. 2 shows an embodiment diagram of the main flow of a method for intelligent detection of sensor data executed by the system.

系統一開始,如步驟S201,取得自待檢測對象所得出的感測數據,接著如步驟S203,將感測數據區分為訓練數據(training data)與測試數據(testing data),在特定實施例中,可再由訓練數據中得出驗證數據(validation data)。在步驟S205中,對訓練數據執行一深度學習演算法(deep-learning algorithm),可從訓練數據中取得關於待檢測對象的特徵,這些特徵反映出待檢測對象運作或是相關系統運作的資訊,從中學習而建立用以檢測待檢測對象的檢測模型,這是一種基於深度學習的檢測模型。At the beginning of the system, in step S201, the sensing data obtained from the object to be detected is obtained, and then in step S203, the sensing data is divided into training data and testing data. In a specific embodiment , And then the validation data can be obtained from the training data. In step S205, a deep-learning algorithm is executed on the training data, and the characteristics of the object to be detected can be obtained from the training data. These features reflect the information about the operation of the object to be detected or the operation of related systems. It learns from it to establish a detection model to detect the object to be detected, which is a detection model based on deep learning.

之後,如步驟S207,以感測數據中選擇的測試數據測試以上步驟得出的檢測模型,檢測結果包括通過測試的部分,以及未通過測試的部分。通過測試的數據表示檢測模型符合預期,表示從目前檢測模型所得出的模型參數為適當,不用調整。然而,若檢測結果包括了未通過測試的部分,在所述感測數據智能檢測方法中,如步驟S209,可針對不通過的測試數據,執行機器學習演算法,並以歷史參數數據訓練以上步驟得出的檢測模型,可以歷史參數數據訓練得出參數模型,再以一模型優化演算法優化檢測模型,此為一種基於機器學習的檢測模型,如步驟S211,可以得出經優化待檢測對象的控制參數。After that, in step S207, the detection model obtained in the above steps is tested with the test data selected in the sensing data, and the detection result includes the part that passed the test and the part that failed the test. The tested data indicates that the detection model meets expectations, and that the model parameters derived from the current detection model are appropriate and do not need to be adjusted. However, if the detection result includes the part that failed the test, in the intelligent detection method for sensing data, as in step S209, the machine learning algorithm can be executed for the failed test data, and the above steps can be trained with historical parameter data The obtained detection model can be trained with historical parameter data to obtain a parameter model, and then a model optimization algorithm is used to optimize the detection model. This is a detection model based on machine learning. In step S211, the optimized object to be detected can be obtained Control parameters.

機器學習(machine learning)方法涵蓋眾多,如支持向量機(Support vector machine)、隨機森林(Random Forest)、簡單貝葉斯(Naïve Bayes)和深度學習演算法等等。以上所述深度學習演算法為機器學習(machine learning)方法的一種,利用電腦系統中處理器的算力,可以將所得到的大量感測數據透過多個處理層(layer)中的線性或非線性轉換(linear or non-linear transformation),以特徵抽取(feature extraction)步驟取得數據中代表關於待檢測對象的感測數據特性的特徵。Machine learning (machine learning) methods cover many, such as support vector machine (Support vector machine), random forest (Random Forest), simple Bayes (Naïve Bayes) and deep learning algorithms and so on. The above-mentioned deep learning algorithm is a kind of machine learning method. It uses the computing power of the processor in the computer system to pass the large amount of sensing data obtained through linear or non-linear in multiple processing layers. Linear transformation (linear or non-linear transformation) uses a feature extraction step to obtain features representing the characteristics of the sensing data of the object to be detected.

常見深度學習演算法採用了卷積神經網路(Convolution Neural Networks,CNN)或遞迴神經網路(Recurrent neural network,RNN)兩種方法,卷積神經網路可以其卷積層(convolutional layer)裡利用卷積運算過濾感測數據,以電腦處理器算力逐步抽取其中特徵,以求最終能建立模型(如上述檢測模型),能用以檢測系統產生的感測數據。Common deep learning algorithms use convolutional neural networks (Convolution Neural Networks, CNN) or recurrent neural network (Recurrent neural network, RNN) two methods, convolutional neural network can be in its convolutional layer (convolutional layer) Use the convolution operation to filter the sensed data, and use the computing power of the computer processor to gradually extract the features in order to finally establish a model (such as the above-mentioned detection model) that can be used to detect the sensed data generated by the system.

舉例來說,自待檢測對象取得的感測數據如影像數據、聲音數據、震動數據等,在所述方法中,系統可將感測數據(sensed data)中的一部分(如90%)設為訓練數據(training data),訓練數據通過深度學習演算法法(如CNN、RNN)建立檢測模型,感測數據剩下的一部分(如10%)設為測試數據(testing data),用以測試系統所建立的檢測模型。For example, the sensing data obtained from the object to be detected, such as image data, sound data, vibration data, etc., in the method, the system can set a part (such as 90%) of the sensed data Training data. The training data uses deep learning algorithms (such as CNN, RNN) to establish a detection model, and the remaining part of the sensing data (such as 10%) is set as testing data to test the system The established detection model.

圖3顯示系統運行感測數據智能檢測方法的流程實施例。Figure 3 shows an embodiment of the process of a method for intelligently detecting system operation sensing data.

在流程一開始,可以自待檢測對象產生感測數據(301),並形成感測數據智能檢測建立模型的感測數據(303),感測數據或其部分(如從感測數據取得的訓練數據)用於執行深度學習演算法(305),以建立一種基於深度學習的檢測模型,再以部分數據(如從感測數據取得的測試數據)測試此檢測模型(307),針對通過測試的部分,即無需後續參數優化的過程,結束流程(309);針對未通過測試的部分,則用以建立一參數模型(311)。At the beginning of the process, the sensing data (301) can be generated from the object to be detected, and the sensing data (303) of the intelligent detection establishment model of the sensing data can be formed, the sensing data or its part (such as the training obtained from the sensing data) Data) is used to execute the deep learning algorithm (305) to establish a detection model based on deep learning, and then test the detection model (307) with partial data (such as the test data obtained from the sensor data), and target the Part, that is, the process without subsequent parameter optimization, ends the process (309); for the part that fails the test, it is used to build a parameter model (311).

在建立參數模型(311)的過程中,將所述未通過測試的數據再次進行機器學習,從系統中歷史參數數據庫(313)取得歷史參數數據,對參數進行模型訓練,建立參數模型,並以一種模型優化演算法(model optimization)(315)優化檢測模型的模型參數,形成基於機器學習的檢測模型,最終產生經過優化的控制參數(317),能再次匯入待檢測對象,繼續產生感測數據(301)。In the process of establishing the parameter model (311), machine learning is performed again on the data that failed the test, historical parameter data is obtained from the historical parameter database (313) in the system, the parameters are modeled, and the parameter model is established. A model optimization algorithm (315) optimizes the model parameters of the detection model to form a detection model based on machine learning, and finally generates optimized control parameters (317), which can be re-injected into the object to be detected and continue to generate sensing Data (301).

在此一提的是,所述控制參數,為驅動待檢測對象運作的參數,或是產生待檢測對象的系統的運作參數。特別的是,在一實施例中,還可從訓練數據中得出驗證數據(validation data),可以在訓練數據經深度學習演算法形成檢測模型時,以此驗證數據驗證檢測模型,以得出用以產生控制參數的一參數模型,之後才以模型優化演算法(315)優化參數模型,再輸出經優化的控制參數。It is mentioned here that the control parameters are parameters that drive the operation of the object to be inspected or the operating parameters of a system that generates the object to be inspected. In particular, in one embodiment, validation data can also be derived from the training data. When the training data is used to form a detection model through a deep learning algorithm, the validation data can be used to validate the detection model to obtain A parameter model is used to generate the control parameters, and then the parameter model is optimized by the model optimization algorithm (315), and then the optimized control parameters are output.

如此,將經優化的控制參數(317)驅動待檢測對象,再次得出感測數據(301),通過重複所述的感測數據智能檢測方法持續優化待檢測對象的控制參數,直到系統預設的一個期待的狀態。In this way, the optimized control parameters (317) drive the object to be detected, and the sensing data (301) is obtained again, and the control parameters of the object to be detected are continuously optimized by repeating the intelligent detection method of the sensor data until the system presets A state of expectation.

圖4接著顯示另一系統運行的流程實施例,此實施例顯示系統中保存持續產生的感測數據(303)將成為歷史感測數據庫(400),這些歷史感測數據庫400繼續進行深度學習(305),利用電腦系統的算力持續訓練數據,優化檢測數據。另一方面,經測試檢測模型後,通過測試的數據,其中的參數可成為歷史參數數據庫(313)的一部分,持續反覆地進行機器學習,優化參數模型。Figure 4 then shows another example of the process of system operation. This example shows that the continuously generated sensing data (303) stored in the system will become the historical sensing database (400), and these historical sensing databases 400 continue to perform deep learning ( 305), using the computing power of the computer system to continuously train data to optimize the detection data. On the other hand, after testing the detection model, the parameters in the data that pass the test can become part of the historical parameter database (313), and continue to perform machine learning repeatedly to optimize the parameter model.

根據一實施例,在執行模型優化演算法時,可以採用多種參數模型,例如遺傳演算法(Genetic Algorithms)、粒子群優化演算法(Particle Swarm Optimization)、蟻群優化演算法(Ant Colony Optimization)、模擬退火法(Simulated Annealing)、禁制搜尋法(Tabu Search)、海鷗優化演算法(Seagull Optimization Algorithm)以及貝氏最佳化演算法(Bayesian Optimization)的其中之一。而進行優化的參數模型如梯度提升決策樹模型(Gradient Boosting Decision Tree)、極限梯度提升模型(Extreme Gradient Boosting)、類別提昇模型(Categorical boosting)、輕型GBM模型(Light GBM)、隨機森林模型(Random Forest)、支持向量機模型(Support Vector Machine)、關聯式向量機模型(Relevance vector machine)、簡單貝氏分類模型(Naïve Bayes)、K最近鄰居演算模型(K nearest neighbor)、CNN模型或RNN模型。在一較佳實施例中,系統所採用的模型優化演算法可以採用貝氏最佳化演算法(Bayesian Optimization),深度學習演算法可採用CNN模型,參數模型則可採用極限梯度提升模型(Extreme Gradient Boosting)。According to an embodiment, when the model optimization algorithm is executed, a variety of parameter models may be used, such as genetic algorithms (Genetic Algorithms), particle swarm optimization (Particle Swarm Optimization), ant colony optimization (Ant Colony Optimization), One of Simulated Annealing, Tabu Search, Seagull Optimization Algorithm, and Bayesian Optimization. The optimized parameter models such as gradient boosting decision tree model (Gradient Boosting Decision Tree), extreme gradient boosting model (Extreme Gradient Boosting), category boosting model (Categorical boosting), light GBM model (Light GBM), random forest model (Random Forest), Support Vector Machine model (Support Vector Machine), Relevance vector machine model (Relevance vector machine), simple Bayes classification model (Naïve Bayes), K nearest neighbor calculus model (K nearest neighbor), CNN model or RNN model . In a preferred embodiment, the model optimization algorithm used by the system can use Bayesian Optimization, the deep learning algorithm can use the CNN model, and the parameter model can use the extreme gradient boosting model (Extreme Gradient Boosting).

根據實施例之一,所述感測數據智能檢測方法中可以採用一K折交叉驗證法(K-fold cross-validation),此驗證法可為將訓練數據分為多組(K個)數據,其中一組數據作為驗證模型的數據,其他組數據(K−1個)作為訓練數據,之後輪替K組數據進行K次驗證,最終可得到評估模型的參數。其中,以此K折交叉驗證法從驗證數據評估從多個深度學習演算法產生的多個模型,再從中選出檢測模型,而其中評估多個模型的方式之一為得出各模型的一準確度(accuracy)、一精確度(precision)與一召回率(recall)等因子,包括利用這些因子所得出的評估方程式。According to one of the embodiments, a K-fold cross-validation method may be used in the intelligent detection method for sensing data, and this verification method may be to divide the training data into multiple groups (K) data, One set of data is used as the data for the verification model, and the other sets of data (K−1) are used as the training data. After that, K sets of data are used for K verifications, and finally the parameters of the evaluation model can be obtained. Among them, the K-fold cross-validation method evaluates multiple models generated from multiple deep learning algorithms from the verification data, and then selects detection models from them, and one of the ways to evaluate multiple models is to obtain an accuracy of each model Factors such as accuracy, precision, and recall, including the evaluation equations derived from these factors.

舉例來說,所述K折交叉驗證法,以10折(10-fold)交叉驗證為例,運算時,將所取得的感測數據分為10等分,其中第1分數據可用來作為測試模型用的測試數據,其餘9分可用於訓練數據用。接著,到了下一輪流程,將以第2分數據作為測試檢測模型用的數據,其餘9分同樣用於訓練數據用。以此類推,總共執行10輪流程,可以取得10的準確率,並取得平均值,得到較為客觀的準確率。For example, the K-fold cross-validation method uses 10-fold cross-validation as an example. During the calculation, the acquired sensing data is divided into 10 equal parts, and the first point data can be used as a test For the test data used by the model, the remaining 9 points can be used for training data. Then, in the next round of the process, the second point data will be used as the data for testing the detection model, and the remaining 9 points will also be used for training data. By analogy, a total of 10 rounds of the process can be executed to obtain an accuracy rate of 10 and an average value to obtain a more objective accuracy rate.

在一實施例中,可根據各個檢測模型所預測的結果為是或否(YES/NO)以及實際量測待檢測對象所得到的實際檢測結果為是或否(YES/NO)之間的關聯性得出「準確度」、「精確度」與「召回率」,作為評估檢測模型的依據。In one embodiment, the relationship between whether the result predicted by each detection model is yes or no (YES/NO) and whether the actual detection result obtained by actually measuring the object to be detected is yes or no (YES/NO) The "accuracy", "precision" and "recall rate" are derived based on the characteristics, which are used as the basis for evaluating the detection model.

舉例來說,模型預測結果為是(YES)而實際檢測結果也為是(YES)的數據設為「TP」;模型預測結果為是(YES)而實際檢測結果為否(NO)(表示預測錯誤)的數據設為「FP」;模型預測的結果為否(NO)而實際檢測結果為是(YES)(表示預測錯誤)的數據設為「FN」;模型預測為否(NO)且實際測試也為否(NO)的數據設為「TN」。For example, the data whose model prediction result is YES and the actual detection result is YES is set to "TP"; the model prediction result is YES and the actual detection result is NO (predicted The data of wrong) is set to "FP"; the result of model prediction is no (NO) and the actual test result is (YES) (indicating that the prediction is wrong) data is set to "FN"; the model predicted is no (NO) and the actual The data whose test is also No (NO) is set to "TN".

根據以上設定,所述「準確度」表示模型預測正確的比例,數學式為:“Accuracy=(TP+TN)/N totoal”,也就是:模型預測結果為是而實際檢測結果也為是的數據(”TP”)加上模型預測為否且實際測試也為否的數據(”TN”)除以全部數據(N total)。 According to the above settings, the "accuracy" indicates the correct ratio of model prediction, the mathematical formula is: "Accuracy=(TP+TN)/N totoal ", that is: the model prediction result is yes and the actual detection result is also yes The data ("TP") plus the data that the model predicts to be no and the actual test is also no ("TN") is divided by the total data (N total ).

所述「精確度」為整個系統要優化檢測模型的主要目標之一,數學式為:”Precision=TP/(TP+FP)”,也就是實際檢測結果為是且模型預測也為是的數量(”TP”)佔了模型預測為是的全部數量(即”TP”+”FP”)的比例。The "accuracy" is one of the main goals for the entire system to optimize the detection model. The mathematical formula is: "Precision=TP/(TP+FP)", that is, the actual detection result is yes and the model prediction is also yes ("TP") is the proportion of the total number predicted by the model (ie, "TP" + "FP").

所述「召回率」表示模型的錯誤率,數學式為:”Recall=TP/(TP+FN)”,也就是:模型預測結果為是而實際檢測結果也為是的數據(”TP”)佔了實際檢測為是的全部數據(即”TP”+”FN”)的比例。The "recall rate" represents the error rate of the model, and the mathematical formula is: "Recall=TP/(TP+FN)", that is, the data that the model prediction result is yes and the actual detection result is also yes ("TP") It accounts for the percentage of all data actually detected as yes (ie "TP" + "FN").

進一步地,更可將以上「準確度」、「精確度」與「召回率」的計算結果進行其他運算(如F1 Score=2/((1/Precision)+(1/Recall)))作為評估模型優劣的依據。Furthermore, other calculations (such as F1 Score=2/((1/Precision)+(1/Recall))) of the calculation results of the above "accuracy", "precision" and "recall rate" can be used as evaluation The basis for the pros and cons of the model.

圖5顯示感測數據智能檢測方法中訓練數據、驗證數據與測試數據的運作實施例示意圖,以下並配合圖6所示感測數據智能檢測方法的實施例流程圖進行說明。FIG. 5 shows a schematic diagram of an embodiment of the operation of training data, verification data, and test data in the method for intelligent detection of sensor data. The following description is provided in conjunction with the flowchart of the embodiment of the method for intelligent detection of sensor data shown in FIG. 6.

系統中數據庫50設有感測數據與參數數據(步驟S601),感測數據主要可分為訓練數據501與測試數據505,而訓練數據501的一部分可用於作為驗證數據503(步驟S603)。基於訓練數據501,以深度學習演算法訓練模型(52),得出一檢測模型(步驟S605)。以測試數據505進行測試模型(56)(步驟S607),以得出用以產生控制參數的參數模型。這時,可以機器學習模型產生控制參數(步驟S609)。另一方面,驗證數據503則是執行模型的驗證,得出一參數模型(步驟S611)。The database 50 in the system is provided with sensing data and parameter data (step S601). The sensing data can be mainly divided into training data 501 and test data 505, and part of the training data 501 can be used as verification data 503 (step S603). Based on the training data 501, a deep learning algorithm is used to train the model (52) to obtain a detection model (step S605). Perform a test model (56) with the test data 505 (step S607) to obtain a parameter model for generating control parameters. At this time, the control parameters can be generated by the machine learning model (step S609). On the other hand, the verification data 503 is to perform model verification to obtain a parametric model (step S611).

根據一實施例,其中可通過模型優化演算法(53)優化參數模型(步驟S613),並可繼續以測試數據測試參數模型(步驟S615),再形成檢測模型(54)。經反覆上述流程,可以從引入不同的深度學習演算法,通過訓練數據501、驗證數據503與測試數據505反覆優化而得出多個檢測模型,以產生控制參數(步驟S617)。再經比較模型57,而根據需求判斷出系統適用的模型(58),並完成所述感測數據智能檢測流程(59)。According to an embodiment, the parameter model can be optimized by the model optimization algorithm (53) (step S613), and the parameter model can be continuously tested with test data (step S615), and then the detection model (54) can be formed. After repeating the above process, different deep learning algorithms can be introduced, and multiple detection models can be obtained through repeated optimization of training data 501, verification data 503, and test data 505 to generate control parameters (step S617). After comparing the model 57, the model (58) suitable for the system is determined according to the requirements, and the intelligent detection process of the sensing data (59) is completed.

上述優化模型的方法可參考圖7所示感測數據智能檢測方法中優化的範例流程圖。For the above method of optimizing the model, please refer to the example flow chart of optimization in the method for intelligent detection of sensing data shown in FIG.

根據以上實施例描述利用模型優化演算法優化模型以定義出最優檢測模型的流程中,可匯入歷史參數數據(步驟S701),以機器學習演算法訓練這些數據建立參數模型(步驟S703),接著以此參數模型得出控制參數,在逐一以K折交叉驗證法(步驟S705),利用驗證數據測試從多個深度學習演算法產生的多個模型(步驟S707),再從中評估(如採用上述「準確度」、「精確度」與「召回率」等因子)與選出最適合的檢測模型(步驟S709)。之後對所選擇的模型執行模型參數優化演算法(步驟S711),以得出優化後的檢測模型(步驟S713),檢測模型可用來生成最優控制參數。According to the above embodiment, in the process of using the model optimization algorithm to optimize the model to define the optimal detection model, historical parameter data can be imported (step S701), and the machine learning algorithm is used to train these data to establish a parameter model (step S703). Then use the parameter model to obtain the control parameters, and use the K-fold cross-validation method one by one (step S705) to test multiple models generated from multiple deep learning algorithms with the verification data (step S707), and then evaluate them (if using The above-mentioned factors such as "accuracy", "precision" and "recall rate") and selecting the most suitable detection model (step S709). Then, a model parameter optimization algorithm is performed on the selected model (step S711) to obtain an optimized detection model (step S713), and the detection model can be used to generate optimal control parameters.

列舉一範例,可參考圖8所示流程圖,此例顯示建立檢測馬達的檢測模型的智能方法,待檢測對象為馬達。For an example, refer to the flowchart shown in FIG. 8. This example shows an intelligent method for establishing a detection model for detecting a motor. The object to be detected is a motor.

通過聲音感測器取得馬達的振動聲音(步驟S801),將音訊轉換為頻譜,建立感測數據庫中的數據(步驟S803),接著以深度學習演算法訓練這些感測數據(如其中取得的訓練數據),抽取數據中關於馬達運作狀況的聲音特徵,得出各種音頻關於馬達運作異常與否以及其控制參數的關聯性,建立用以檢測馬達的檢測模型(步驟S805)。之後,系統利用感測數據中取得的驗證數據驗證上述步驟訓練得出檢測模型(步驟S807),驗證後決定檢測模型(步驟S809)。Obtain the vibration sound of the motor through the sound sensor (step S801), convert the audio into a frequency spectrum, create data in the sensing database (step S803), and then train the sensing data with a deep learning algorithm (such as the training obtained therein) Data), extract the sound characteristics of the motor operation status in the data, obtain the correlation of various audio frequencies on the abnormal operation of the motor and its control parameters, and establish a detection model for detecting the motor (step S805). After that, the system uses the verification data obtained from the sensing data to verify the above-mentioned step training to obtain a detection model (step S807), and determine the detection model after verification (step S809).

系統即利用此檢測模型產生控制參數,驅動馬達,也同時通過感測器錄製聲音,形成音訊的感測數據,接著檢測這些感測數據(如影像化的頻譜)(步驟S811),從感測數據判斷是否通過測試?(步驟S813),若通過測試,表示以目前的檢測模型決定的控制參數驅動馬達是符合系統所需,即結束此流程(步驟S815)。The system uses this detection model to generate control parameters, drive the motor, and at the same time record sound through the sensor to form the audio sensing data, and then detect these sensing data (such as the imaged spectrum) (step S811), from the sensing Has the data passed the test? (Step S813), if the test is passed, it means that the control parameters determined by the current detection model are used to drive the motor to meet the requirements of the system, and the process ends (Step S815).

若並未通過測試(否),表示需要持續以參數模型優化參數(步驟S817),再以產生的控制參數驅動馬達運作(步驟S819),持續利用感測器得出震動聲音,經轉頻譜後,由檢測模型檢測數據判斷是否通過檢測,並反覆以上步驟,持續優化參數模型以得出最優的控制參數。If it fails the test (No), it means that it is necessary to continue to optimize the parameters with the parameter model (step S817), and then drive the motor to operate with the generated control parameters (step S819), and continue to use the sensor to obtain the vibration sound. , Judging whether to pass the test from the test data of the test model, and repeat the above steps to continuously optimize the parameter model to obtain the optimal control parameters.

進一步地,根據另一應用的實施例,以所揭露的感測數據智能檢測方法應用在檢測屏幕,待檢測對象為屏幕,以顯示參數驅動屏幕以顯示內容,如上流程,可先以影像感測器取得大量屏幕的影像數據,成為系統的數據庫中的感測數據,從中以深度學習演算法取得影像數據中的特徵,建立影像與屏幕顯示參數的關聯性,可以建立檢測屏幕的檢測模型,包括以驗證數據驗證而決定檢測模型,再利用此檢測模型產生顯示參數,並接著產生屏幕的影像數據,進行測試,以及執行後續機器學習演算法優化檢測模型,以得出屏幕經優化的顯示參數。Further, according to another embodiment of the application, the disclosed intelligent detection method for sensing data is applied to the detection screen, the object to be detected is the screen, and the screen is driven by display parameters to display the content. In the above process, image sensing can be used first The device obtains a large number of screen image data, which becomes the sensing data in the system’s database, from which the features in the image data are obtained by the deep learning algorithm, the correlation between the image and the screen display parameters is established, and the detection model of the detection screen can be established, including The detection model is determined by the verification data verification, and then the detection model is used to generate the display parameters, and then the image data of the screen is generated, tested, and the subsequent machine learning algorithm is executed to optimize the detection model to obtain the optimized display parameters of the screen.

綜上所述,根據以上實施例所描述的感測數據智能檢測系統,特別的是,訓練數據建立模型時,除了由感測數據中的一部分作為訓練數據(training data)外,也有一部分作為測試模型的數據(testing data),再從訓練數據中取得一部分作為驗證數據(validation data),以驗證系統產生的檢測模型,此為一種內部優化的步驟。更者,在訓練模型時,還可採用多種深度學習與機器學習演算法,產生多種模型,可同樣優化這些模型後,最後進行模型比較、評估後再選擇其中之一模型進入實際應用。To sum up, according to the sensory data intelligent detection system described in the above embodiments, in particular, when the training data is used to build a model, in addition to part of the sensor data as training data (training data), part of it is also used as a test Model data (testing data), and then obtain a part from the training data as verification data (validation data) to verify the detection model generated by the system, which is an internal optimization step. What's more, when training a model, a variety of deep learning and machine learning algorithms can also be used to generate a variety of models. These models can be optimized in the same way, and then the model can be compared and evaluated before one of the models is selected for practical application.

以上所公開的內容僅為本新型的優選可行實施例,並非因此侷限本新型的申請專利範圍,所以凡是運用本新型說明書及圖式內容所做的等效技術變化,均包含於本新型的申請專利範圍內。The content disclosed above is only a preferred and feasible embodiment of the present model, and does not therefore limit the scope of the patent application of the present model. Therefore, all equivalent technical changes made using the description and schematic content of the present model are included in the application of the present model. Within the scope of the patent.

10:待檢測對象 101:感測器一 102:感測器二 103:感測器三 12:感測數據處理主機 14:電腦系統 141:處理器 143:記憶體 145:數據庫 301:產生感測數據 303:感測數據 305:深度學習演算法 307:測試檢測模型 309:結束 311:參數模型 313:歷史參數數據庫 315:模型優化演算法 317:產生控制參數 400:歷史感測數據庫 50:數據庫 501:訓練數據 503:驗證數據 505:測試數據 52:訓練模型 53:模型優化演算法 54:檢測模型 56:測試模型 57:比較模型 58:判斷模型 59:完成 步驟S201~S211:感測數據智能檢測方法的主要流程 步驟S601~S617:感測數據智能檢測方法的流程 步驟S701~S713:感測數據智能檢測方法中優化流程 步驟S801~S819:感測數據智能檢測方法的流程範例 10: Object to be detected 101: Sensor One 102: Sensor Two 103: Sensor Three 12: Sensing data processing host 14: Computer system 141: Processor 143: Memory 145: Database 301: Generate sensing data 303: Sensed Data 305: Deep Learning Algorithm 307: test detection model 309: End 311: Parametric Model 313: Historical parameter database 315: Model optimization algorithm 317: Generate control parameters 400: Historical sensor database 50: database 501: training data 503: verify data 505: test data 52: training model 53: Model optimization algorithm 54: Detection model 56: Test model 57: compare models 58: Judgment Model 59: Done Steps S201~S211: the main flow of the intelligent detection method of sensing data Steps S601~S617: the flow of the sensing data intelligent detection method Steps S701~S713: Optimization process in the intelligent detection method of sensing data Steps S801~S819: Process example of the intelligent detection method of sensing data

圖1顯示感測數據智能檢測系統的系統架構實施例圖;Figure 1 shows an embodiment diagram of the system architecture of a sensing data intelligent detection system;

圖2顯示感測數據智能檢測方法的主要流程實施例圖;Figure 2 shows an embodiment diagram of the main flow of a method for intelligent detection of sensed data;

圖3顯示系統運行感測數據智能檢測方法的流程實施例之一;Figure 3 shows one of the process embodiments of a method for intelligent detection of system operation sensing data;

圖4顯示系統運行感測數據智能檢測方法的流程實施例之二;Figure 4 shows the second embodiment of the process of a method for intelligent detection of system operation sensing data;

圖5顯示感測數據智能檢測方法中訓練數據、驗證數據與測試數據的運作實施例示意圖;FIG. 5 shows a schematic diagram of an operation embodiment of training data, verification data, and test data in the intelligent detection method for sensing data;

圖6顯示感測數據智能檢測方法的實施例流程圖;Fig. 6 shows a flowchart of an embodiment of a method for intelligent detection of sensor data;

圖7顯示感測數據智能檢測方法中優化的範例流程圖;以及Figure 7 shows an exemplary flow chart of optimization in the intelligent detection method of sensor data; and

圖8顯示應用感測數據智能檢測方法的範例流程圖。Fig. 8 shows an exemplary flow chart of an intelligent detection method using sensing data.

301:產生感測數據 301: Generate sensing data

303:感測數據 303: Sensed Data

305:深度學習演算法 305: Deep Learning Algorithm

307:測試檢測模型 307: test detection model

309:結束 309: End

311:參數模型 311: Parametric Model

313:歷史參數數據庫 313: Historical parameter database

315:模型優化演算法 315: Model optimization algorithm

317:產生控制參數 317: Generate control parameters

Claims (10)

一種感測數據智能檢測系統,包括:一電腦系統,設有一記憶體,其中儲存執行一感測數據智能檢測方法的程式集以及演算法,該電腦系統還設有一數據庫,其中儲存自一待檢測對象所取得的感測數據;其中以該電腦系統的一處理器執行該感測數據智能檢測方法,包括:取得該感測數據,將該感測數據區分為訓練數據與測試數據;對該訓練數據執行一深度學習演算法,從該訓練數據中取得關於該待檢測對象的特徵,建立用以檢測該待檢測對象的一檢測模型;以該測試數據測試該檢測模型;針對測試結果為不通過的測試數據,執行機器學習演算法,並以歷史參數數據訓練該檢測模型,以一模型優化演算法優化該檢測模型,以得出經優化該待檢測對象的控制參數。 An intelligent detection system for sensing data includes: a computer system provided with a memory in which programs and algorithms for executing a sensing data intelligent detection method are stored, and the computer system is also provided with a database, which is stored from a to-be-tested The sensing data obtained by the subject; wherein a processor of the computer system is used to execute the sensing data intelligent detection method, including: acquiring the sensing data, distinguishing the sensing data into training data and test data; The data executes a deep learning algorithm, obtains the characteristics of the object to be detected from the training data, and establishes a detection model for detecting the object to be detected; the detection model is tested with the test data; the test result is failed The machine learning algorithm is executed on the test data, and the detection model is trained with historical parameter data, and the detection model is optimized with a model optimization algorithm to obtain the optimized control parameters of the object to be detected. 如請求項1所述的感測數據智能檢測系統,其中通過一或多個感測器感測該待檢測對象以得出感測數據,所產生的感測數據儲存於一感測數據處理主機,再轉換與初步處理成為該電腦系統的該數據庫中的感測數據。 The sensing data intelligent detection system of claim 1, wherein the object to be detected is sensed by one or more sensors to obtain sensing data, and the generated sensing data is stored in a sensing data processing host , And then converted and initially processed to become the sensing data in the database of the computer system. 如請求項2所述的感測數據智能檢測系統,其中該一或多個感測器為一聲音感測器,該待檢測對象為一馬達,通過該聲音感測器得出振動聲音,將音訊轉換為頻譜,建立該數據庫中的感測數據。 The sensory data intelligent detection system of claim 2, wherein the one or more sensors are a sound sensor, the object to be detected is a motor, and the vibration sound is obtained through the sound sensor, and the The audio is converted to frequency spectrum, and the sensing data in the database is established. 如請求項2所述的感測數據智能檢測系統,其中該一或多個感測器為一影像感測器,該待檢測對象為一屏幕,通過該影 像感測器取得該屏幕的影像數據,成為該數據庫中的感測數據。 The sensory data intelligent detection system of claim 2, wherein the one or more sensors is an image sensor, the object to be detected is a screen, and the image The image sensor obtains the image data of the screen and becomes the sensing data in the database. 如請求項1所述的感測數據智能檢測系統,其中從該訓練數據中得出驗證數據,於該訓練數據經該深度學習演算法形成該檢測模型時,以該驗證數據驗證該檢測模型,以得出用以產生該控制參數的一參數模型。 The sensing data intelligent detection system according to claim 1, wherein verification data is obtained from the training data, and when the training data forms the detection model through the deep learning algorithm, the verification data is used to verify the detection model, To obtain a parameter model for generating the control parameter. 如請求項5所述的感測數據智能檢測系統,其中,再以該模型優化演算法優化該參數模型,再產生經優化的該控制參數。 The sensor data intelligent detection system of claim 5, wherein the parameter model is optimized by the model optimization algorithm, and then the optimized control parameter is generated. 如請求項6所述的感測數據智能檢測系統,其中,於該感測數據智能檢測方法中,再將經優化的該控制參數驅動該待檢測對象,再次得出感測數據,通過重複所述的感測數據智能檢測方法優化該待檢測對象的該控制參數。 The sensory data intelligent detection system according to claim 6, wherein, in the sensory data intelligent detection method, the optimized control parameter is then driven to the object to be detected to obtain the sensory data again, and by repeating all The intelligent detection method for sensing data described above optimizes the control parameters of the object to be detected. 如請求項7所述的感測數據智能檢測系統,更包括一歷史感測數據庫,用於保存該感測數據智能檢測系統持續產生的感測數據,以該歷史感測數據庫中的數據繼續進行深度學習,持續訓練數據,以優化該參數模型。 The sensory data intelligent detection system according to claim 7, further comprising a historical sensor database for storing the sensory data continuously generated by the sensory data intelligent detection system, and proceed with the data in the historical sensor database Deep learning, continuous training data to optimize the parameter model. 如請求項5至8中任一項所述的感測數據智能檢測系統,其中以一K折交叉驗證法利用該驗證數據評估從多個深度學習演算法產生的多個模型,再從中選出該檢測模型。 The sensing data intelligent detection system according to any one of claim 5 to 8, wherein the verification data is used to evaluate a plurality of models generated from a plurality of deep learning algorithms by a K-fold cross-validation method, and then the Detection model. 如請求項9所述的感測數據智能檢測系統,其中評估得出該檢測模型的依據包括從該多個深度學習演算法產生的該多個模型中得出各模型的一準確度、一精確度與一召回率。 The sensing data intelligent detection system according to claim 9, wherein the basis for evaluating the detection model includes obtaining an accuracy and an accuracy of each model from the plurality of models generated by the plurality of deep learning algorithms Degree and a recall rate.
TW109205865U 2020-05-14 2020-05-14 Intelligent system for testing sensed data TWM601387U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109205865U TWM601387U (en) 2020-05-14 2020-05-14 Intelligent system for testing sensed data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109205865U TWM601387U (en) 2020-05-14 2020-05-14 Intelligent system for testing sensed data

Publications (1)

Publication Number Publication Date
TWM601387U true TWM601387U (en) 2020-09-11

Family

ID=73645125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109205865U TWM601387U (en) 2020-05-14 2020-05-14 Intelligent system for testing sensed data

Country Status (1)

Country Link
TW (1) TWM601387U (en)

Similar Documents

Publication Publication Date Title
US20210383235A1 (en) Neural networks with subdomain training
Samanta et al. Artificial neural networks and genetic algorithm for bearing fault detection
US10664754B2 (en) Information processing apparatus
US10605188B2 (en) Control device, control method, and control program
TWI761834B (en) Intelligent method for testing sensed data and system thereof
EP4068140A1 (en) Method and system for optimizing a simulation model using machine learning
US20230282216A1 (en) Authentication method and apparatus with transformation model
CN110060738B (en) Method and system for predicting bacterial protective antigen protein based on machine learning technology
JP2022548293A (en) AUTOMATIC MODELING METHOD AND DEVICE FOR TARGET DETECTION MODEL
JP2019086475A (en) Learning program, detection program, learning method, detection method, learning device, and detection device
US20230003801A1 (en) Apparatus and method for estimating a state of a battery
US20200151481A1 (en) Method and apparatus with image recognition
Senanayaka et al. Similarity-based multi-source transfer learning approach for time series classification
KR102546340B1 (en) Method and apparatus for detecting out-of-distribution using noise filter
CN113688853A (en) Intelligent detection method and system for sensing data
JP2020187667A (en) Information processing apparatus and information processing method
TWM601387U (en) Intelligent system for testing sensed data
CN117038055B (en) Pain assessment method, system, device and medium based on multi-expert model
US20180285643A1 (en) Object recognition device and object recognition method
CN114358274A (en) Method and apparatus for training neural network for image recognition
KR20190140546A (en) System and method for predicting force based on image
JP2022003451A (en) Optimal solution acquisition program, optimal solution acquisition method, and information processing device
CN107578774A (en) For promoting the method and system of the detection to time sequence model
JP2015075798A (en) Data processing device, length measuring system, defect inspection system, image tracking system, and data processing method
CN115423045A (en) System log detection method and system based on GAN network and meta learning